General functions#

Data manipulations and SQL#

melt(frame[,��id_vars,��value_vars,��var_name,��...])

Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set.

merge(obj,��right[,��how,��on,��left_on,��...])

Merge DataFrame objects with a database-style join.

merge_asof(left,��right[,��on,��left_on,��...])

Perform an asof merge.

get_dummies(data[,��prefix,��prefix_sep,��...])

Convert categorical variable into dummy/indicator variables, also known as one hot encoding.

concat(objs[,��axis,��join,��ignore_index,��sort])

Concatenate pandas-on-Spark objects along a particular axis with optional set logic along the other axes.

sql(query[,��index_col,��args])

Execute a SQL query and return the result as a pandas-on-Spark DataFrame.

broadcast(obj)

Marks a DataFrame as small enough for use in broadcast joins.

Top-level missing data#

isna(obj)

Detect missing values for an array-like object.

isnull(obj)

Detect missing values for an array-like object.

notna(obj)

Detect existing (non-missing) values.

notnull(obj)

Detect existing (non-missing) values.

Top-level dealing with numeric data#

to_numeric(arg[,��errors])

Convert argument to a numeric type.

Top-level dealing with datetimelike data#

to_datetime(arg[,��errors,��format,��unit,��...])

Convert argument to datetime.

date_range([start,��end,��periods,��freq,��tz,��...])

Return a fixed frequency DatetimeIndex.

to_timedelta(arg[,��unit,��errors])

Convert argument to timedelta.

timedelta_range([start,��end,��periods,��freq,��...])

Return a fixed frequency TimedeltaIndex, with day as the default frequency.