
Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Edited by:

Paul E. McKenney
Linux Technology Center

IBM Beaverton
paulmck@linux.vnet.ibm.com

December 5, 2018

mailto:paulmck@linux.vnet.ibm.com

ii

Legal Statement
This work represents the views of the editor and the authors and does not necessarily
represent the view of their respective employers.

Trademarks:

• IBM, z Systems, and PowerPC are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the United States, other countries, or
both.

• Linux is a registered trademark of Linus Torvalds.

• i386 is a trademark of Intel Corporation or its subsidiaries in the United States,
other countries, or both.

• Other company, product, and service names may be trademarks or service marks
of such companies.

The non-source-code text and images in this document are provided under the terms
of the Creative Commons Attribution-Share Alike 3.0 United States license.1 In brief,
you may use the contents of this document for any purpose, personal, commercial, or
otherwise, so long as attribution to the authors is maintained. Likewise, the document
may be modified, and derivative works and translations made available, so long as
such modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.2 Some of this code is
GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later.
See the comment headers of the individual source files within the CodeSamples directory
in the git archive3 for the exact licenses. If you are unsure of the license for a given
code fragment, you should assume GPLv2-only.

Combined work© 2005-2018 by Paul E. McKenney.

1 http://creativecommons.org/licenses/by-sa/3.0/us/
2 http://www.gnu.org/licenses/gpl-2.0.html
3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book 1
1.1 Roadmap . 1
1.2 Quick Quizzes . 2
1.3 Alternatives to This Book . 2
1.4 Sample Source Code . 3
1.5 Whose Book Is This? . 3

2 Introduction 7
2.1 Historic Parallel Programming Difficulties 7
2.2 Parallel Programming Goals . 8

2.2.1 Performance . 8
2.2.2 Productivity . 9
2.2.3 Generality . 10

2.3 Alternatives to Parallel Programming 12
2.3.1 Multiple Instances of a Sequential Application 12
2.3.2 Use Existing Parallel Software 12
2.3.3 Performance Optimization 12

2.4 What Makes Parallel Programming Hard? 13
2.4.1 Work Partitioning . 14
2.4.2 Parallel Access Control . 14
2.4.3 Resource Partitioning and Replication 14
2.4.4 Interacting With Hardware 15
2.4.5 Composite Capabilities . 15
2.4.6 How Do Languages and Environments Assist With These Tasks? 15

2.5 Discussion . 15

3 Hardware and its Habits 17
3.1 Overview . 17

3.1.1 Pipelined CPUs . 17
3.1.2 Memory References . 18
3.1.3 Atomic Operations . 19
3.1.4 Memory Barriers . 19
3.1.5 Cache Misses . 19
3.1.6 I/O Operations . 20

3.2 Overheads . 21
3.2.1 Hardware System Architecture 21
3.2.2 Costs of Operations . 22
3.2.3 Hardware Optimizations . 22

iii

iv CONTENTS

3.3 Hardware Free Lunch? . 23
3.3.1 3D Integration . 24
3.3.2 Novel Materials and Processes 24
3.3.3 Light, Not Electrons . 24
3.3.4 Special-Purpose Accelerators 25
3.3.5 Existing Parallel Software 25

3.4 Software Design Implications . 25

4 Tools of the Trade 27
4.1 Scripting Languages . 27
4.2 POSIX Multiprocessing . 28

4.2.1 POSIX Process Creation and Destruction 28
4.2.2 POSIX Thread Creation and Destruction 29
4.2.3 POSIX Locking . 30
4.2.4 POSIX Reader-Writer Locking 31
4.2.5 Atomic Operations (GCC Classic) 33
4.2.6 Atomic Operations (C11) . 34
4.2.7 Atomic Operations (Modern GCC) 34
4.2.8 Per-Thread Variables . 34

4.3 Alternatives to POSIX Operations 35
4.3.1 Organization and Initialization 35
4.3.2 Thread Creation, Destruction, and Control 35
4.3.3 Locking . 36
4.3.4 Accessing Shared Variables 37
4.3.5 Atomic Operations . 42
4.3.6 Per-CPU Variables . 42

4.4 The Right Tool for the Job: How to Choose? 43

5 Counting 45
5.1 Why Isn’t Concurrent Counting Trivial? 45
5.2 Statistical Counters . 47

5.2.1 Design . 47
5.2.2 Array-Based Implementation 47
5.2.3 Eventually Consistent Implementation 48
5.2.4 Per-Thread-Variable-Based Implementation 49
5.2.5 Discussion . 50

5.3 Approximate Limit Counters . 51
5.3.1 Design . 51
5.3.2 Simple Limit Counter Implementation 52
5.3.3 Simple Limit Counter Discussion 55
5.3.4 Approximate Limit Counter Implementation 56
5.3.5 Approximate Limit Counter Discussion 56

5.4 Exact Limit Counters . 56
5.4.1 Atomic Limit Counter Implementation 56
5.4.2 Atomic Limit Counter Discussion 59
5.4.3 Signal-Theft Limit Counter Design 59
5.4.4 Signal-Theft Limit Counter Implementation 60
5.4.5 Signal-Theft Limit Counter Discussion 62

5.5 Applying Specialized Parallel Counters 63
5.6 Parallel Counting Discussion . 64

CONTENTS v

5.6.1 Parallel Counting Performance 64
5.6.2 Parallel Counting Specializations 64
5.6.3 Parallel Counting Lessons 65

6 Partitioning and Synchronization Design 69
6.1 Partitioning Exercises . 69

6.1.1 Dining Philosophers Problem 69
6.1.2 Double-Ended Queue . 73
6.1.3 Partitioning Example Discussion 77

6.2 Design Criteria . 78
6.3 Synchronization Granularity . 79

6.3.1 Sequential Program . 79
6.3.2 Code Locking . 80
6.3.3 Data Locking . 81
6.3.4 Data Ownership . 83
6.3.5 Locking Granularity and Performance 83

6.4 Parallel Fastpath . 85
6.4.1 Reader/Writer Locking . 85
6.4.2 Hierarchical Locking . 86
6.4.3 Resource Allocator Caches 86

6.5 Beyond Partitioning . 89
6.5.1 Work-Queue Parallel Maze Solver 90
6.5.2 Alternative Parallel Maze Solver 91
6.5.3 Performance Comparison I 92
6.5.4 Alternative Sequential Maze Solver 94
6.5.5 Performance Comparison II 94
6.5.6 Future Directions and Conclusions 95

6.6 Partitioning, Parallelism, and Optimization 95

7 Locking 97
7.1 Staying Alive . 97

7.1.1 Deadlock . 97
7.1.2 Livelock and Starvation . 103
7.1.3 Unfairness . 104
7.1.4 Inefficiency . 104

7.2 Types of Locks . 104
7.2.1 Exclusive Locks . 104
7.2.2 Reader-Writer Locks . 105
7.2.3 Beyond Reader-Writer Locks 105
7.2.4 Scoped Locking . 106

7.3 Locking Implementation Issues . 107
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic

Exchange . 107
7.3.2 Other Exclusive-Locking Implementations 108

7.4 Lock-Based Existence Guarantees 110
7.5 Locking: Hero or Villain? . 111

7.5.1 Locking For Applications: Hero! 111
7.5.2 Locking For Parallel Libraries: Just Another Tool 111
7.5.3 Locking For Parallelizing Sequential Libraries: Villain! 113

7.6 Summary . 115

vi CONTENTS

8 Data Ownership 117
8.1 Multiple Processes . 117
8.2 Partial Data Ownership and pthreads 118
8.3 Function Shipping . 118
8.4 Designated Thread . 118
8.5 Privatization . 118
8.6 Other Uses of Data Ownership . 119

9 Deferred Processing 121
9.1 Running Example . 121
9.2 Reference Counting . 122
9.3 Hazard Pointers . 124
9.4 Sequence Locks . 126
9.5 Read-Copy Update (RCU) . 129

9.5.1 Introduction to RCU . 129
9.5.2 RCU Fundamentals . 131
9.5.3 RCU Usage . 138
9.5.4 RCU Linux-Kernel API . 147
9.5.5 RCU Related Work . 152
9.5.6 RCU Exercises . 154

9.6 Which to Choose? . 154
9.7 What About Updates? . 156

10 Data Structures 159
10.1 Motivating Application . 159
10.2 Partitionable Data Structures . 159

10.2.1 Hash-Table Design . 160
10.2.2 Hash-Table Implementation 160
10.2.3 Hash-Table Performance . 161

10.3 Read-Mostly Data Structures . 163
10.3.1 RCU-Protected Hash Table Implementation 163
10.3.2 RCU-Protected Hash Table Performance 164
10.3.3 RCU-Protected Hash Table Discussion 166

10.4 Non-Partitionable Data Structures 166
10.4.1 Resizable Hash Table Design 167
10.4.2 Resizable Hash Table Implementation 168
10.4.3 Resizable Hash Table Discussion 172
10.4.4 Other Resizable Hash Tables 173

10.5 Other Data Structures . 174
10.6 Micro-Optimization . 175

10.6.1 Specialization . 175
10.6.2 Bits and Bytes . 176
10.6.3 Hardware Considerations . 176

10.7 Summary . 177

11 Validation 179
11.1 Introduction . 179

11.1.1 Where Do Bugs Come From? 179
11.1.2 Required Mindset . 180
11.1.3 When Should Validation Start? 182

CONTENTS vii

11.1.4 The Open Source Way . 182
11.2 Tracing . 183
11.3 Assertions . 183
11.4 Static Analysis . 184
11.5 Code Review . 184

11.5.1 Inspection . 184
11.5.2 Walkthroughs . 185
11.5.3 Self-Inspection . 185

11.6 Probability and Heisenbugs . 186
11.6.1 Statistics for Discrete Testing 187
11.6.2 Abusing Statistics for Discrete Testing 188
11.6.3 Statistics for Continuous Testing 189
11.6.4 Hunting Heisenbugs . 190

11.7 Performance Estimation . 193
11.7.1 Benchmarking . 193
11.7.2 Profiling . 194
11.7.3 Differential Profiling . 194
11.7.4 Microbenchmarking . 194
11.7.5 Isolation . 195
11.7.6 Detecting Interference . 195

11.8 Summary . 198

12 Formal Verification 199
12.1 State-Space Search . 199

12.1.1 Promela and Spin . 199
12.1.2 How to Use Promela . 202
12.1.3 Promela Example: Locking 204
12.1.4 Promela Example: QRCU 205
12.1.5 Promela Parable: dynticks and Preemptible RCU 209
12.1.6 Validating Preemptible RCU and dynticks 212

12.2 Special-Purpose State-Space Search 224
12.2.1 Anatomy of a Litmus Test 225
12.2.2 What Does This Litmus Test Mean? 226
12.2.3 Running a Litmus Test . 226
12.2.4 PPCMEM Discussion . 227

12.3 Axiomatic Approaches . 228
12.3.1 Axiomatic Approaches and Locking 229
12.3.2 Axiomatic Approaches and RCU 229

12.4 SAT Solvers . 231
12.5 Stateless Model Checkers . 232
12.6 Summary . 232

13 Putting It All Together 235
13.1 Counter Conundrums . 235

13.1.1 Counting Updates . 235
13.1.2 Counting Lookups . 235

13.2 Refurbish Reference Counting . 235
13.2.1 Implementation of Reference-Counting Categories 236
13.2.2 Linux Primitives Supporting Reference Counting 239
13.2.3 Counter Optimizations . 240

viii CONTENTS

13.3 RCU Rescues . 240
13.3.1 RCU and Per-Thread-Variable-Based Statistical Counters . . . 241
13.3.2 RCU and Counters for Removable I/O Devices 242
13.3.3 Array and Length . 243
13.3.4 Correlated Fields . 243

13.4 Hashing Hassles . 244
13.4.1 Correlated Data Elements 244
13.4.2 Update-Friendly Hash-Table Traversal 245

14 Advanced Synchronization 247
14.1 Avoiding Locks . 247
14.2 Non-Blocking Synchronization . 247

14.2.1 Simple NBS . 248
14.2.2 NBS Discussion . 249

14.3 Parallel Real-Time Computing . 249
14.3.1 What is Real-Time Computing? 250
14.3.2 Who Needs Real-Time Computing? 254
14.3.3 Who Needs Parallel Real-Time Computing? 254
14.3.4 Implementing Parallel Real-Time Systems 255
14.3.5 Implementing Parallel Real-Time Operating Systems 256
14.3.6 Implementing Parallel Real-Time Applications 265
14.3.7 Real Time vs. Real Fast: How to Choose? 268

15 Advanced Synchronization: Memory Ordering 269
15.1 Ordering: Why and How? . 269

15.1.1 Why Hardware Misordering? 270
15.1.2 How to Force Ordering? . 271
15.1.3 Basic Rules of Thumb . 272

15.2 Tricks and Traps . 274
15.2.1 Variables With Multiple Values 275
15.2.2 Memory-Reference Reordering 277
15.2.3 Address Dependencies . 279
15.2.4 Data Dependencies . 280
15.2.5 Control Dependencies . 281
15.2.6 Cache Coherence . 281
15.2.7 Multicopy Atomicity . 282

15.3 Compile-Time Consternation . 289
15.3.1 Memory-Reference Restrictions 289
15.3.2 Address- and Data-Dependency Difficulties 291
15.3.3 Control-Dependency Calamities 293

15.4 Hardware Specifics . 296
15.4.1 Alpha . 298
15.4.2 ARMv7-A/R . 300
15.4.3 ARMv8 . 300
15.4.4 Itanium . 301
15.4.5 MIPS . 301
15.4.6 POWER / PowerPC . 302
15.4.7 SPARC TSO . 303
15.4.8 x86 . 303
15.4.9 z Systems . 304

CONTENTS ix

15.5 Where is Memory Ordering Needed? 304

16 Ease of Use 307
16.1 What is Easy? . 307
16.2 Rusty Scale for API Design . 307
16.3 Shaving the Mandelbrot Set . 308

17 Conflicting Visions of the Future 311
17.1 The Future of CPU Technology Ain’t What it Used to Be 311

17.1.1 Uniprocessor Über Alles . 311
17.1.2 Multithreaded Mania . 312
17.1.3 More of the Same . 313
17.1.4 Crash Dummies Slamming into the Memory Wall 313

17.2 Transactional Memory . 314
17.2.1 Outside World . 315
17.2.2 Process Modification . 317
17.2.3 Synchronization . 321
17.2.4 Discussion . 324

17.3 Hardware Transactional Memory . 325
17.3.1 HTM Benefits WRT to Locking 326
17.3.2 HTM Weaknesses WRT Locking 327
17.3.3 HTM Weaknesses WRT to Locking When Augmented 331
17.3.4 Where Does HTM Best Fit In? 331
17.3.5 Potential Game Changers . 335
17.3.6 Conclusions . 337

17.4 Formal Regression Testing? . 337
17.4.1 Automatic Translation . 338
17.4.2 Environment . 338
17.4.3 Overhead . 339
17.4.4 Locate Bugs . 340
17.4.5 Minimal Scaffolding . 340
17.4.6 Relevant Bugs . 340
17.4.7 Formal Regression Scorecard 341

17.5 Functional Programming for Parallelism 342

A Important Questions 345
A.1 What Does “After” Mean? . 345
A.2 What is the Difference Between “Concurrent” and “Parallel”? 347
A.3 What Time Is It? . 348

B “Toy” RCU Implementations 349
B.1 Lock-Based RCU . 349
B.2 Per-Thread Lock-Based RCU . 349
B.3 Simple Counter-Based RCU . 350
B.4 Starvation-Free Counter-Based RCU 351
B.5 Scalable Counter-Based RCU . 353
B.6 Scalable Counter-Based RCU With Shared Grace Periods 354
B.7 RCU Based on Free-Running Counter 356
B.8 Nestable RCU Based on Free-Running Counter 357
B.9 RCU Based on Quiescent States . 358

x CONTENTS

B.10 Summary of Toy RCU Implementations 360

C Why Memory Barriers? 363
C.1 Cache Structure . 363
C.2 Cache-Coherence Protocols . 364

C.2.1 MESI States . 365
C.2.2 MESI Protocol Messages . 365
C.2.3 MESI State Diagram . 366
C.2.4 MESI Protocol Example . 367

C.3 Stores Result in Unnecessary Stalls 367
C.3.1 Store Buffers . 368
C.3.2 Store Forwarding . 368
C.3.3 Store Buffers and Memory Barriers 369

C.4 Store Sequences Result in Unnecessary Stalls 371
C.4.1 Invalidate Queues . 371
C.4.2 Invalidate Queues and Invalidate Acknowledge 371
C.4.3 Invalidate Queues and Memory Barriers 372

C.5 Read and Write Memory Barriers . 373
C.6 Example Memory-Barrier Sequences 374

C.6.1 Ordering-Hostile Architecture 374
C.6.2 Example 1 . 375
C.6.3 Example 2 . 375
C.6.4 Example 3 . 375

C.7 Are Memory Barriers Forever? . 376
C.8 Advice to Hardware Designers . 376

D Style Guide 379
D.1 Paul’s Conventions . 379
D.2 NIST Style Guide . 380

D.2.1 Unit Symbol . 380
D.2.2 NIST Guide Yet To Be Followed 381

D.3 LATEX Conventions . 381
D.3.1 Monospace Font . 381
D.3.2 Non Breakable Spaces . 385
D.3.3 Hyphenation and Dashes . 385
D.3.4 Punctuation . 386
D.3.5 Floating Object Format . 387
D.3.6 Improvement Candidates . 387

E Answers to Quick Quizzes 393
E.1 How To Use This Book . 393
E.2 Introduction . 394
E.3 Hardware and its Habits . 397
E.4 Tools of the Trade . 400
E.5 Counting . 406
E.6 Partitioning and Synchronization Design 419
E.7 Locking . 423
E.8 Data Ownership . 429
E.9 Deferred Processing . 431
E.10 Data Structures . 441

CONTENTS xi

E.11 Validation . 443
E.12 Formal Verification . 447
E.13 Putting It All Together . 452
E.14 Advanced Synchronization . 455
E.15 Advanced Synchronization: Memory Ordering 457
E.16 Ease of Use . 465
E.17 Conflicting Visions of the Future . 465
E.18 Important Questions . 469
E.19 “Toy” RCU Implementations . 469
E.20 Why Memory Barriers? . 475

F Glossary and Bibliography 479

G Credits 519
G.1 LATEX Advisor . 519
G.2 Reviewers . 519
G.3 Machine Owners . 519
G.4 Original Publications . 519
G.5 Figure Credits . 520
G.6 Other Support . 521

xii CONTENTS

Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-
memory parallel machines without risking your sanity.1

We hope that this book’s design principles will help you
avoid at least some parallel-programming pitfalls. That
said, you should think of this book as a foundation on
which to build, rather than as a completed cathedral. Your
mission, if you choose to accept, is to help make further
progress in the exciting field of parallel programming—
progress that will in time render this book obsolete. Paral-
lel programming is not as hard as some say, and we hope
that this book makes your parallel-programming projects
easier and more fun.

In short, where parallel programming once focused
on science, research, and grand-challenge projects, it is
quickly becoming an engineering discipline. We therefore
examine specific parallel-programming tasks and describe
how to approach them. In some surprisingly common
cases, they can even be automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, enabling them to instead focus their
energy and creativity on new frontiers. We sincerely hope
that parallel programming brings you at least as much fun,
excitement, and challenge that it has brought to us!

1.1 Roadmap
This book is a handbook of widely applicable and heav-
ily used design techniques, rather than a collection of
optimal algorithms with tiny areas of applicability. You
are currently reading Chapter 1, but you knew that al-

1 Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much.

ready. Chapter 2 gives a high-level overview of parallel
programming.

Chapter 3 introduces shared-memory parallel hardware.
After all, it is difficult to write good parallel code un-
less you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be
out of date. We will nevertheless do our best to keep up.
Chapter 4 then provides a very brief overview of common
shared-memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one
of the simplest problems imaginable, namely counting.
Because almost everyone has an excellent grasp of count-
ing, this chapter is able to delve into many important
parallel-programming issues without the distractions of
more-typical computer-science problems. My impression
is that this chapter has seen the greatest use in parallel-
programming coursework.

Chapter 6 introduces a number of design-level meth-
ods of addressing the issues identified in Chapter 5. It
turns out that it is important to address parallelism at
the design level when feasible: To paraphrase Dijk-
stra [Dij68], “retrofitted parallelism considered grossly
suboptimal” [McK12b].

The next three chapters examine three important ap-
proaches to synchronization. Chapter 7 covers locking,
which in 2014 is not only the workhorse of production-
quality parallel programming, but is also widely consid-
ered to be parallel programming’s worst villain. Chap-
ter 8 gives a brief overview of data ownership, an of-
ten overlooked but remarkably pervasive and power-
ful approach. Finally, Chapter 9 introduces a number
of deferred-processing mechanisms, including reference
counting, hazard pointers, sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to
hash tables, which are heavily used due to their excel-
lent partitionability, which (usually) leads to excellent

1

2 CHAPTER 1. HOW TO USE THIS BOOK

performance and scalability.
As many have learned to their sorrow, parallel program-

ming without validation is a sure path to abject failure.
Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the
fact, so Chapter 12 follows up with a brief overview of a
couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel
programming problems. The difficulty of these problems
vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods,
including non-blocking synchronization and parallel real-
time computing, while Chapter 15 covers the advanced
topic of memory ordering. Chapter 16 follows up with
some ease-of-use advice. Finally, Chapter 17 looks at a
few possible future directions, including shared-memory
parallel system design, software and hardware transac-
tional memory, functional programming for parallelism,
and quantum computing.

This chapter is followed by a number of appendices.
The most popular of these appears to be Appendix C,
which delves even further into memory ordering. Appen-
dix E contains the answers to the infamous Quick Quizzes,
which are discussed in the next section.

1.2 Quick Quizzes

“Quick quizzes” appear throughout this book, and the
answers may be found in Appendix E starting on page 393.
Some of them are based on material in which that quick
quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the realm of current
knowledge. As with most endeavors, what you get out of
this book is largely determined by what you are willing to
put into it. Therefore, readers who make a genuine effort
to solve a quiz before looking at the answer find their
effort repaid handsomely with increased understanding of
parallel programming.

Quick Quiz 1.1: Where are the answers to the Quick
Quizzes found?

Quick Quiz 1.2: Some of the Quick Quiz questions
seem to be from the viewpoint of the reader rather than
the author. Is that really the intent?

Quick Quiz 1.3: These Quick Quizzes are just not my
cup of tea. What can I do about it?

In short, if you need a deep understanding of the ma-
terial, then you should invest some time into answering

the Quick Quizzes. Don’t get me wrong, passively read-
ing the material can be quite valuable, but gaining full
problem-solving capability really does require that you
practice solving problems.

I learned this the hard way during coursework for my
late-in-life Ph.D. I was studying a familiar topic, and
was surprised at how few of the chapter’s exercises I
could answer off the top of my head.2 Forcing myself to
answer the questions greatly increased my retention of the
material. So with these Quick Quizzes I am not asking
you to do anything that I have not been doing myself!

Finally, the most common learning disability is think-
ing that you already know. The quick quizzes can be an
extremely effective cure.

1.3 Alternatives to This Book
As Knuth learned, if you want your book to be finite, it
must be focused. This book focuses on shared-memory
parallel programming, with an emphasis on software
that lives near the bottom of the software stack, such as
operating-system kernels, parallel data-management sys-
tems, low-level libraries, and the like. The programming
language used by this book is C.

If you are interested in other aspects of parallelism,
you might well be better served by some other book.
Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treat-
ment of parallel programming, you might like Her-
lihy’s and Shavit’s textbook [HS08]. This book starts
with an interesting combination of low-level primi-
tives at high levels of abstraction from the hardware,
and works its way through locking and simple data
structures including lists, queues, hash tables, and
counters, culminating with transactional memory.
Michael Scott’s textbook [Sco13] approaches sim-
ilar material with more of a software-engineering
focus, and, as far as I know, is the first formally
published academic textbook to include a section
devoted to RCU.

2. If you would like an academic treatment of parallel
programming from a programming-language-prag-
matics viewpoint, you might be interested in the
concurrency chapter from Scott’s textbook [Sco06]
on programming-language pragmatics.

2 So I suppose that it was just as well that my professors refused to
let me waive that class!

1.4. SAMPLE SOURCE CODE 3

3. If you are interested in an object-oriented patternist
treatment of parallel programming focussing on
C++, you might try Volumes 2 and 4 of Schmidt’s
POSA series [SSRB00, BHS07]. Volume 4 in par-
ticular has some interesting chapters applying this
work to a warehouse application. The realism of this
example is attested to by the section entitled “Parti-
tioning the Big Ball of Mud”, wherein the problems
inherent in parallelism often take a back seat to the
problems inherent in getting one’s head around a
real-world application.

4. If you want to work with Linux-kernel device driv-
ers, then Corbet’s, Rubini’s, and Kroah-Hartman’s
“Linux Device Drivers” [CRKH05] is indispensable,
as is the Linux Weekly News web site (http:
//lwn.net/). There is a large number of books
and resources on the more general topic of Linux
kernel internals.

5. If your primary focus is scientific and technical com-
puting, and you prefer a patternist approach, you
might try Mattson et al.’s textbook [MSM05]. It cov-
ers Java, C/C++, OpenMP, and MPI. Its patterns are
admirably focused first on design, then on implemen-
tation.

6. If your primary focus is scientific and technical com-
puting, and you are interested in GPUs, CUDA, and
MPI, you might check out Norm Matloff’s “Program-
ming on Parallel Machines” [Mat13]. Of course, the
GPU vendors have quite a bit of additional informa-
tion [AMD17, Zel11, NVi17a, NVi17b].

7. If you are interested in POSIX Threads, you might
take a look at David R. Butenhof’s book [But97].
In addition, W. Richard Stevens’s book [Ste92] cov-
ers UNIX and POSIX, and Stewart Weiss’s lecture
notes [Wei13] provide an thorough and accessible
introduction with a good set of examples.

8. If you are interested in C++11, you might like
Anthony Williams’s “C++ Concurrency in Action:
Practical Multithreading” [Wil12].

9. If you are interested in C++, but in a Windows en-
vironment, you might try Herb Sutter’s “Effective
Concurrency” series in Dr. Dobbs Journal [Sut08].
This series does a reasonable job of presenting a
commonsense approach to parallelism.

10. If you want to try out Intel Threading Building
Blocks, then perhaps James Reinders’s book [Rei07]
is what you are looking for.

11. Those interested in learning how various types of
multi-processor hardware cache organizations affect
the implementation of kernel internals should take
a look at Curt Schimmel’s classic treatment of this
subject [Sch94].

12. Finally, those using Java might be well-served by
Doug Lea’s textbooks [Lea97, GPB+07].

However, if you are interested in principles of parallel
design for low-level software, especially software written
in C, read on!

1.4 Sample Source Code
This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For ex-
ample, on UNIX systems, you should be able to type the
following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls.c,
which is called out in Appendix B. Other types of systems
have well-known ways of locating files by filename.

1.5 Whose Book Is This?
As the cover says, the editor is one Paul E. McKen-

ney. However, the editor does accept contributions via the
perfbook@vger.kernel.org email list. These contri-
butions can be in pretty much any form, with popular ap-
proaches including text emails, patches against the book’s
LATEX source, and even git pull requests. Use whatever
form works best for you.

To create patches or git pull requests, you
will need the LATEX source to the book, which is at
git://git.kernel.org/pub/scm/linux/kernel/
git/paulmck/perfbook.git. You will of course also
need git and LATEX, which are available as part of most
mainstream Linux distributions. Other packages may
be required, depending on the distribution you use. The
required list of packages for a few popular distributions is

http://lwn.net/
http://lwn.net/
mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

4 CHAPTER 1. HOW TO USE THIS BOOK

Listing 1.1: Creating an Up-To-Date PDF
1 git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
2 cd perfbook
3 # You may need to install a font here. See item 1 in FAQ.txt.
4 make
5 evince perfbook.pdf & # Two-column version
6 make perfbook-1c.pdf
7 evince perfbook-1c.pdf & # One-column version for e-readers

Listing 1.2: Generating an Updated PDF
1 git remote update
2 git checkout origin/master
3 make
4 evince perfbook.pdf & # Two-column version
5 make perfbook-1c.pdf
6 evince perfbook-1c.pdf & # One-column version for e-readers

listed in the file FAQ-BUILD.txt in the LATEX source to
the book.

To create and display a current LATEX source tree of
this book, use the list of Linux commands shown in List-
ing 1.1. In some environments, the evince command that
displays perfbook.pdf may need to be replaced, for ex-
ample, with acroread. The git clone command need
only be used the first time you create a PDF, subsequently,
you can run the commands shown in Listing 1.2 to pull in
any updates and generate an updated PDF. The commands
in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at
http://kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.html and at http:
//www.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and send-
ing git pull requests is similar to that of the Linux
kernel, which is documented in the Documentation/
SubmittingPatches file in the Linux source tree. One
important requirement is that each patch (or commit, in
the case of a git pull request) must contain a valid
Signed-off-by: line, which has the following format:

Signed-off-by: My Name <myname@example.org>

Please see http://lkml.org/lkml/2007/1/15/
219 for an example patch containing a Signed-off-by:
line.

It is important to note that the Signed-off-by: line
has a very specific meaning, namely that you are certify-
ing that:

(a) The contribution was created in whole or in part by
me and I have the right to submit it under the open
source license indicated in the file; or

(b) The contribution is based upon previous work that, to
the best of my knowledge, is covered under an appro-
priate open source License and I have the right under
that license to submit that work with modifications,
whether created in whole or in part by me, under the
same open source license (unless I am permitted to
submit under a different license), as indicated in the
file; or

(c) The contribution was provided directly to me by
some other person who certified (a), (b) or (c) and I
have not modified it.

(d) I understand and agree that this project and the contri-
bution are public and that a record of the contribution
(including all personal information I submit with it,
including my sign-off) is maintained indefinitely and
may be redistributed consistent with this project or
the open source license(s) involved.

This is quite similar to the Developer’s Certificate of
Origin (DCO) 1.1 used by the Linux kernel. You must use
your real name: I unfortunately cannot accept pseudony-
mous or anonymous contributions.

The language of this book is American English, how-
ever, the open-source nature of this book permits transla-
tions, and I personally encourage them. The open-source
licenses covering this book additionally allow you to sell
your translation, if you wish. I do request that you send
me a copy of the translation (hardcopy if available), but
this is a request made as a professional courtesy, and is
not in any way a prerequisite to the permission that you
already have under the Creative Commons and GPL li-
censes. Please see the FAQ.txt file in the source tree
for a list of translations currently in progress. I consider
a translation effort to be “in progress” once at least one
chapter has been fully translated.

http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
http://lkml.org/lkml/2007/1/15/219
http://lkml.org/lkml/2007/1/15/219

1.5. WHOSE BOOK IS THIS? 5

As noted at the beginning of this section, I am this
book’s editor. However, if you choose to contribute, it
will be your book as well. With that, I offer you Chapter 2,
our introduction.

6 CHAPTER 1. HOW TO USE THIS BOOK

If parallel programming is so hard, why are there any
parallel programs?

UnknownChapter 2

Introduction

Parallel programming has earned a reputation as one of
the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience dealing with them, and all of the
emotional scars, grey hairs, and hair loss that go with
such experiences.

However, new technologies that are difficult to use
at introduction invariably become easier over time. For
example, the once-rare ability to drive a car is now com-
monplace in many countries. This dramatic change came
about for two basic reasons: (1) cars became cheaper and
more readily available, so that more people had the op-
portunity to learn to drive, and (2) cars became easier to
operate due to automatic transmissions, automatic chokes,
automatic starters, greatly improved reliability, and a host
of other technological improvements.

The same is true of a many other technologies, includ-
ing computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has
been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out re-
search project [Eng68], described at the time as “like a
UFO landing on the White House lawn”[Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived
by many to be, it is you who bears the burden of proof,
keeping in mind the many centuries of counter-examples
in a variety of fields of endeavor.

2.1 Historic Parallel Programming
Difficulties

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of
parallel programming, it instead examines the reasons
why parallel programming is difficult, and then works to
help the reader to overcome these difficulties. As will be
seen, these difficulties have fallen into several categories,
including:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high overhead of communication relative to
that of processing, even in tightly coupled shared-
memory computers.

Many of these historic difficulties are well on the way
to being overcome. First, over the past few decades, the
cost of parallel systems has decreased from many mul-
tiples of that of a house to a fraction of that of a bicy-
cle, courtesy of Moore’s Law. Papers calling out the
advantages of multicore CPUs were published as early
as 1996 [ONH+96]. IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in

7

8 CHAPTER 2. INTRODUCTION

late 2005. In fact, by 2008, it was becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By
2012, even smartphones were starting to sport multiple
CPUs.

Second, the advent of low-cost and readily available
multicore systems means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems
are now well within the budget of students and hobbyists.
We can therefore expect greatly increased levels of inven-
tion and innovation surrounding parallel systems, and that
increased familiarity will over time make the once pro-
hibitively expensive field of parallel programming much
more friendly and commonplace.

Third, in the 20th century, large systems of highly par-
allel software were almost always closely guarded propri-
etary secrets. In happy contrast, the 21st century has seen
numerous open-source (and thus publicly available) paral-
lel software projects, including the Linux kernel [Tor03],
database systems [Pos08, MS08], and message-passing
systems [The08, Uni08a]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-program-
ming projects of the 1980s and 1990s were almost all
proprietary projects, these projects have seeded other com-
munities with a cadre of developers who understand the
engineering discipline required to develop production-
quality parallel code. A major purpose of this book is to
present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. Although this difficulty has been receiving in-
creasing attention during the new millennium, according
to Stephen Hawking, the finite speed of light and the
atomic nature of matter is likely to limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future
hardware will be more friendly to parallel software as
discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel program-
ming has been known to be exceedingly hard for many
decades. You seem to be hinting that it is not so hard.
What sort of game are you playing?

However, even though parallel programming might not
be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 2.2: How could parallel programming
ever be as easy as sequential programming?

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

2.2 Parallel Programming Goals
The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.

2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is
possible to achieve at best two of these three goals for
any given parallel program. These three goals therefore
form the iron triangle of parallel programming, a triangle
upon which overly optimistic hopes all too often come to
grief.1

Quick Quiz 2.3: Oh, really??? What about correct-
ness, maintainability, robustness, and so on?

Quick Quiz 2.4: And if correctness, maintainability,
and robustness don’t make the list, why do productivity
and generality?

Quick Quiz 2.5: Given that parallel programs are
much harder to prove correct than are sequential pro-
grams, again, shouldn’t correctness really be on the list?

Quick Quiz 2.6: What about just having fun?
Each of these goals is elaborated upon in the following

sections.

2.2.1 Performance
Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor: Just write sequential

1 Kudos to Michael Wong for naming the iron triangle.

2.2. PARALLEL PROGRAMMING GOALS 9

 0.1

 1

 10

 100

 1000

 10000
 1

97
5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

C
P

U
 C

lo
ck

 F
re

qu
en

cy
 /

M
IP

S

Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

code, and be happy? It will very likely be easier and you
will probably get done much more quickly.

Quick Quiz 2.7: Are there no cases where parallel
programming is about something other than performance?

Note that “performance” is interpreted quite broadly
here, including scalability (performance per CPU) and
efficiency (for example, performance per watt).

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases. This
can be seen in Figure 2.12, which shows that writing
single-threaded code and simply waiting a year or two for
the CPUs to catch up may no longer be an option. Given
the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting the avail themselves of
the full performance of their systems.

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain

2 This plot shows clock frequencies for newer CPUs theoretically ca-
pable of retiring one or more instructions per clock, and MIPS (millions
of instructions per second, usually from the old Dhrystone benchmark)
for older CPUs requiring multiple clocks to execute even the simplest in-
struction. The reason for shifting between these two measures is that the
newer CPUs’ ability to retire multiple instructions per clock is typically
limited by memory-system performance. Furthermore, the benchmarks
commonly used on the older CPUs are obsolete, and it is difficult to
run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions per
second on a single CPU, but does not scale at all? Or a
program that provides 10 transactions per second on a
single CPU, but scales perfectly? The first program seems
like a better bet, though the answer might change if you
happened to have a 32-CPU system.

That said, just because you have multiple CPUs is not
necessarily in and of itself a reason to use them all, espe-
cially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel pro-
gramming is primarily a performance optimization, and,
as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no rea-
son to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.3

By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

2.2.2 Productivity
Quick Quiz 2.8: Why all this prattling on about non-
technical issues??? And not just any non-technical issue,
but productivity of all things? Who cares?

Productivity has been becoming increasingly important
in recent decades. To see this, consider that the price of
early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars
a year. If dedicating a team of ten engineers to such a
machine would improve its performance, even by only
10 %, then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-
intact stored-program computer, which was put into op-
eration in 1949 [Mus04, Dep06]. Because this machine
was built before the transistor era, it was constructed of
2,000 vacuum tubes, ran with a clock frequency of 1 kHz,
consumed 30 kW of power, and weighed more than three
metric tons. Given that this machine had but 768 words
of RAM, it is safe to say that it did not suffer from the
productivity issues that often plague today’s large-scale
software projects.

3 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.

10 CHAPTER 2. INTRODUCTION

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

M
IP

S
 p

er
 D

ie

Year

Figure 2.2: MIPS per Die for Intel CPUs

Today, it would be quite difficult to purchase a machine
with so little computing power. Perhaps the closest equiv-
alents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [Wik08], but even the old Z80 had
a CPU clock frequency more than 1,000 times faster than
the CSIRAC. The Z80 CPU had 8,500 transistors, and
could be purchased in 2008 for less than $2 US per unit
in 1,000-unit quantities. In stark contrast to the CSIRAC,
software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-term
trend, as can be seen in Figure 2.2. This figure plots an
approximation to computational power per die over the
past four decades, showing an impressive six-order-of-
magnitude increase over a period of forty years. Note
that the advent of multicore CPUs has permitted this in-
crease to continue apace despite the clock-frequency wall
encountered in 2003, albeit courtesy of dies supporting
more than 50 hardware threads.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
becomes increasingly important. It is no longer sufficient
merely to make efficient use of the hardware: It is now
necessary to make extremely efficient use of software
developers as well. This has long been the case for se-
quential hardware, but parallel hardware has become a
low-cost commodity only recently. Therefore, only re-
cently has high productivity become critically important
when creating parallel software.

Quick Quiz 2.9: Given how cheap parallel systems
have become, how can anyone afford to pay people to

program them?
Perhaps at one time, the sole purpose of parallel soft-

ware was performance. Now, however, productivity is
gaining the spotlight.

2.2.3 Generality
One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one. In
fact, this economic force explains much of the maniacal
focus on portability, which can be seen as an important
special case of generality.4

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. For example, portability
is often achieved via adaptation layers, which inevitably
exact a performance penalty. To see this more gener-
ally, consider the following popular parallel programming
environments:

C/C++ “Locking Plus Threads”: This category, which
includes POSIX Threads (pthreads) [Ope97], Win-
dows Threads, and numerous operating-system ker-
nel environments, offers excellent performance (at
least within the confines of a single SMP system) and
also offers good generality. Pity about the relatively
low productivity.

Java: This general purpose and inherently multithreaded
programming environment is widely believed to offer
much higher productivity than C or C++, courtesy
of the automatic garbage collector and the rich set
of class libraries. However, its performance, though
greatly improved in the early 2000s, lags that of C
and C++.

MPI: This Message Passing Interface [MPI08] powers
the largest scientific and technical computing clus-
ters in the world and offers unparalleled performance
and scalability. In theory, it is general purpose, but
it is mainly used for scientific and technical com-
puting. Its productivity is believed by many to be
even lower than that of C/C++ “locking plus threads”
environments.

OpenMP: This set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It

4 Kudos to Michael Wong for pointing this out.

2.2. PARALLEL PROGRAMMING GOALS 11

Application

Middleware (e.g., DBMS)

System Libraries

Operating System Kernel

Firmware

Hardware

Productivity

P
er

fo
rm

an
ce G

enerality

Figure 2.3: Software Layers and Performance, Produc-
tivity, and Generality

is, however, much easier to use than MPI or C/C++

“locking plus threads.”

SQL: Structured Query Language [Int92] is specific to
relational database queries. However, its perfor-
mance is quite good as measured by the Transaction
Processing Performance Council (TPC) benchmark
results [Tra01]. Productivity is excellent; in fact, this
parallel programming environment enables people to
make good use of a large parallel system despite hav-
ing little or no knowledge of parallel programming
concepts.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nir-
vana appears, it will be necessary to make engineering
tradeoffs among performance, productivity, and gener-
ality. One such tradeoff is shown in Figure 2.3, which
shows how productivity becomes increasingly important
at the upper layers of the system stack, while performance
and generality become increasingly important at the lower
layers of the system stack. The huge development costs
incurred at the lower layers must be spread over equally
huge numbers of users (hence the importance of general-
ity), and performance lost in lower layers cannot easily be
recovered further up the stack. In the upper layers of the
stack, there might be very few users for a given specific
application, in which case productivity concerns are para-
mount. This explains the tendency towards “bloatware”
further up the stack: extra hardware is often cheaper than
the extra developers. This book is intended for developers
working near the bottom of the stack, where performance
and generality are of great concern.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is more productive

User 2

User 3 User 4

User 1

General−Purpose
Environment

for User 1
Env Productive

Special−Purpose

Special−Purpose

Special−Purpose Environment
Productive for User 3 Special−Purpose

Environment
Productive for User 4

Productive for User 2
Environment

HW /
Abs

Figure 2.4: Tradeoff Between Productivity and General-
ity

than a hammer for driving nails, but in contrast to the
nailgun, a hammer can be used for many things besides
driving nails. It should therefore be no surprise to see
similar tradeoffs appear in the field of parallel comput-
ing. This tradeoff is shown schematically in Figure 2.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need
the computer to help them with. The most productive
possible language or environment for a given user is one
that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 2.10: This is a ridiculously unachievable
ideal! Why not focus on something that is achievable in
practice?

Unfortunately, a system that does the job required by
user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for exam-
ple, low-level languages such as assembly, C, C++, or
Java) or to some abstraction (for example, Haskell, Prolog,
or Snobol), as is shown by the circular region near the cen-
ter of Figure 2.4. These languages can be considered to be
general in the sense that they are equally ill-suited to the
jobs required by users 1, 2, 3, and 4. In other words, their
generality is purchased at the expense of decreased pro-
ductivity when compared to domain-specific languages
and environments. Worse yet, a language that is tailored
to a given abstraction is also likely to suffer from perfor-
mance and scalability problems unless and until someone
figures out how to efficiently map that abstraction to real

12 CHAPTER 2. INTRODUCTION

hardware.
Is there no escape from iron triangle’s three conflicting

goals of performance, productivity, and generality?
It turns out that there often is an escape, for example,

using the alternatives to parallel programming discussed
in the next section. After all, parallel programming can
be a great deal of fun, but it is not always the best tool for
the job.

2.3 Alternatives to Parallel Pro-
gramming

In order to properly consider alternatives to parallel pro-
gramming, you must first decide on what exactly you
expect the parallelism to do for you. As seen in Sec-
tion 2.2, the primary goals of parallel programming are
performance, productivity, and generality. Because this
book is intended for developers working on performance-
critical code near the bottom of the software stack, the re-
mainder of this section focuses primarily on performance
improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.

2. Make the application use existing parallel software.

3. Apply performance optimization to the serial appli-
cation.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential
Application

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of

that sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact
some denigrate such programs as “embarrassingly paral-
lel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is of-
ten extremely productive, garnering extreme performance
gains with little or no added effort.

2.3.2 Use Existing Parallel Software
There is no longer any shortage of parallel software en-
vironments that can present a single-threaded program-
ming environment, including relational databases [Dat82],
web-application servers, and map-reduce environments.
For example, a common design provides a separate pro-
gram for each user, each of which generates SQL pro-
grams. These per-user SQL programs are run concur-
rently against a common relational database, which au-
tomatically runs the users’ queries concurrently. The
per-user programs are responsible only for the user inter-
face, with the relational database taking full responsibility
for the difficult issues surrounding parallelism and persis-
tence.

In addition, there are a growing number of parallel
library functions, particularly for numeric computation.
Even better, some libraries take advantage of special-pur-
pose hardware such as vector units and general-purpose
graphical processing units (GPGPUs).

Taking this approach often sacrifices some perfor-
mance, at least when compared to carefully hand-coding a
fully parallel application. However, such sacrifice is often
well repaid by a huge reduction in development effort.

Quick Quiz 2.11: Wait a minute! Doesn’t this ap-
proach simply shift the development effort from you to
whoever wrote the existing parallel software you are us-
ing?

2.3.3 Performance Optimization
Up through the early 2000s, CPU performance was dou-
bling every 18 months. In such an environment, it is often
much more important to create new functionality than to
do careful performance optimization. Now that Moore’s
Law is “only” increasing transistor density instead of in-
creasing both transistor density and per-transistor perfor-
mance, it might be a good time to rethink the importance
of performance optimization. After all, new hardware

2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 13

generations no longer bring significant single-threaded
performance improvements. Furthermore, many perfor-
mance optimizations can also conserve energy.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise
to keep in mind that the speedup available from parallel-
ism is limited to roughly the number of CPUs (but see
Section 6.5 for an interesting exception). In contrast, the
speedup available from traditional single-threaded soft-
ware optimizations can be much larger. For example,
replacing a long linked list with a hash table or a search
tree can improve performance by many orders of mag-
nitude. This highly optimized single-threaded program
might run much faster than its unoptimized parallel coun-
terpart, making parallelization unnecessary. Of course, a
highly optimized parallel program would be even better,
aside from the added development effort required.

Furthermore, different programs might have different
performance bottlenecks. For example, if your program
spends most of its time waiting on data from your disk
drive, using multiple CPUs will probably just increase the
time wasted waiting for the disks. In fact, if the program
was reading from a single large file laid out sequentially
on a rotating disk, parallelizing your program might well
make it a lot slower due to the added seek overhead. You
should instead optimize the data layout so that the file can
be smaller (thus faster to read), split the file into chunks
which can be accessed in parallel from different drives,
cache frequently accessed data in main memory, or, if
possible, reduce the amount of data that must be read.

Quick Quiz 2.12: What other bottlenecks might pre-
vent additional CPUs from providing additional perfor-
mance?

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate
for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

2.4 What Makes Parallel Program-
ming Hard?

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of

Partitioning
Work

Access Control
Parallel

With Hardware
Interacting

Performance Productivity

Generality

Resource
Partitioning and

Replication

Figure 2.5: Categories of Tasks Required of Parallel
Programmers

technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel sys-
tems what to do, otherwise known as programming. But
parallel programming involves two-way communication,
with a program’s performance and scalability being the
communication from the machine to the human. In short,
the human writes a program telling the computer what
to do, and the computer critiques this program via the
resulting performance and scalability. Therefore, appeals
to abstractions or to mathematical analyses will often be
of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel pro-
gramming [ENS05, ES05, HCS+05, SS94], these studies
have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10 %
difference in productivity. Although the multiple-order-
of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive im-
provements tend to be based on a long series of 10 %
improvements.

We must therefore take a different approach.
One such approach is to carefully consider the tasks

that parallel programmers must undertake that are not
required of sequential programmers. We can then evaluate
how well a given programming language or environment
assists the developer with these tasks. These tasks fall into
the four categories shown in Figure 2.5, each of which is
covered in the following sections.

14 CHAPTER 2. INTRODUCTION

2.4.1 Work Partitioning

Work partitioning is absolutely required for parallel exe-
cution: if there is but one “glob” of work, then it can be
executed by at most one CPU at a time, which is by defini-
tion sequential execution. However, partitioning the code
requires great care. For example, uneven partitioning can
result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware
and restore performance and scalabilty.

Although partitioning can greatly improve performance
and scalability, it can also increase complexity. For ex-
ample, partitioning can complicate handling of global
errors and events: A parallel program may need to carry
out non-trivial synchronization in order to safely process
such global events. More generally, each partition re-
quires some sort of communication: After all, if a given
thread did not communicate at all, it would have no effect
and would thus not need to be executed. However, be-
cause communication incurs overhead, careless partition-
ing choices can result in severe performance degradation.

Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too
many threads are permitted to execute concurrently, the
CPU caches will overflow, resulting in high cache miss
rate, which in turn degrades performance. Conversely,
large numbers of threads are often required to overlap
computation and I/O so as to fully utilize I/O devices.

Quick Quiz 2.13: Other than CPU cache capacity,
what might require limiting the number of concurrent
threads?

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand and debug, de-
grading productivity. All else being equal, smaller state
spaces having more regular structure are more easily un-
derstood, but this is a human-factors statement as much
as it is a technical or mathematical statement. Good par-
allel designs might have extremely large state spaces, but
nevertheless be easy to understand due to their regular
structure, while poor designs can be impenetrable despite
having a comparatively small state space. The best de-
signs exploit embarrassing parallelism, or transform the
problem to one having an embarrassingly parallel solu-
tion. In either case, “embarrassingly parallel” is in fact
an embarrassment of riches. The current state of the art
enumerates good designs; more work is required to make
more general judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single
thread has full access to all of the program’s resources.
These resources are most often in-memory data structures,
but can be CPUs, memory (including caches), I/O devices,
computational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the
form of the access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions and
assignments, while remote-variable access uses an en-
tirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query
Language (SQL) [Int92], and partitioned global address-
space (PGAS) environments such as Universal Parallel C
(UPC) [EGCD03] offer implicit access, while Message
Passing Interface (MPI) [MPI08] offers explicit access be-
cause access to remote data requires explicit messaging.

The other parallel-access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMW07], but such elabora-
tion is beyond the scope of this section. (See Sections 17.2
and 17.3 for more information on transactional memory.)

Quick Quiz 2.14: Just what is “explicit timing”???

2.4.3 Resource Partitioning and Replica-
tion

The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of syn-
chronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed
“data locking” [BK85].

2.5. DISCUSSION 15

Partitioning
Work

Access Control
Parallel

With Hardware
Interacting

Performance Productivity

Generality

Resource
Partitioning and

Replication

Figure 2.6: Ordering of Parallel-Programming Tasks

Resource partitioning is frequently application depen-
dent. For example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
Thus, a commercial application might assign the data for
a given customer to a given few computers out of a large
cluster. An application might statically partition data, or
dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can
be quite challenging for complex multilinked data struc-
tures.

2.4.4 Interacting With Hardware
Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which is subject to partitioning or access control,
as described in the previous sections.

2.4.5 Composite Capabilities
Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition

communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communica-
tion, as shown in Figure 2.6. The developer can then
consider each partition separately, greatly reducing the
size of the relevant state space, in turn increasing produc-
tivity. Even though some problems are non-partitionable,
clever transformations into forms permitting partitioning
can sometimes greatly enhance both performance and
scalability [Met99].

2.4.6 How Do Languages and Environ-
ments Assist With These Tasks?

Although many environments require the developer to
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.

Quick Quiz 2.15: Are there any other obstacles to
parallel programming?

2.5 Discussion
This section has given an overview of the difficulties
with, goals of, and alternatives to parallel program-
ming. This overview was followed by a discussion
of what can make parallel programming hard, along
with a high-level approach for dealing with parallel
programming’s difficulties. Those who still insist that
parallel programming is impossibly difficult should re-
view some of the older guides to parallel programm-
ming [Seq88, Dig89, BK85, Inm85]. The following quote
from Andrew Birrell’s monograph [Dig89] is especially
telling:

Writing concurrent programs has a reputation
for being exotic and difficult. I believe it is
neither. You need a system that provides you
with good primitives and suitable libraries, you
need a basic caution and carefulness, you need

16 CHAPTER 2. INTRODUCTION

an armory of useful techniques, and you need
to know of the common pitfalls. I hope that
this paper has helped you towards sharing my
belief.

The authors of these older guides were well up to the
parallel programming challenge back in the 1980s. As
such, there are simply no excuses for refusing to step up
to the parallel-programming challenge here in the 21st

century!
We are now ready to proceed to the next chapter, which

dives into the relevant properties of the parallel hardware
underlying our parallel software.

Premature abstraction is the root of all evil.

A cast of thousandsChapter 3

Hardware and its Habits

Most people have an intuitive understanding that pass-
ing messages between systems is considerably more ex-
pensive than performing simple calculations within the
confines of a single system. However, it is not always
so clear that communicating among threads within the
confines of a single shared-memory system can also be
quite expensive. This chapter therefore looks at the cost
of synchronization and communication within a shared-
memory system. These few pages can do no more than
scratch the surface of shared-memory parallel hardware
design; readers desiring more detail would do well to start
with a recent edition of Hennessy and Patterson’s classic
text [HP11, HP95].

Quick Quiz 3.1: Why should parallel programmers
bother learning low-level properties of the hardware?
Wouldn’t it be easier, better, and more general to remain
at a higher level of abstraction?

3.1 Overview
Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 3.1, where
the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal case shown in Figure 3.1, the typical
program more closely resembles an obstacle course than
a race track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of Moore’s Law. These changes are described in
the following sections.

3.1.1 Pipelined CPUs
In the early 1980s, the typical microprocessor fetched an
instruction, decoded it, and executed it, typically taking at

CPU Benchmark TrackmeetCPU Benchmark Trackmeet

Figure 3.1: CPU Performance at its Best

least three clock cycles to complete one instruction before
proceeding to the next. In contrast, the CPU of the late
1990s and early 2000s will be executing many instructions
simultaneously, using a deep “pipeline” to control the
flow of instructions internally to the CPU. These modern
hardware features can greatly improve performance, as
illustrated by Figure 3.2.

Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through
the program. Suitable control flow can be provided by
a program that executes primarily in tight loops, for ex-
ample, arithmetic on large matrices or vectors. The CPU
can then correctly predict that the branch at the end of
the loop will be taken in almost all cases, allowing the
pipeline to be kept full and the CPU to execute at full
speed.

However, branch prediction is not always so easy. For
example, consider a program with many loops, each of

17

18 CHAPTER 3. HARDWARE AND ITS HABITS

4.0 GHz clock, 20 MB L3

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.

Figure 3.2: CPUs Old and New

PIPELINE ERROR

PIPELINE ERROR

BR
AN
CH
 M
IS
PR
ED
IC
TI
ON

Figure 3.3: CPU Meets a Pipeline Flush

which iterates a small but random number of times. For
another example, consider an object-oriented program
with many virtual objects that can reference many dif-
ferent real objects, all with different implementations for
frequently invoked member functions. In these cases, it is
difficult or even impossible for the CPU to predict where
the next branch might lead. Then either the CPU must
stall waiting for execution to proceed far enough to be
certain where that branch leads, or it must guess. Al-
though guessing works extremely well for programs with
predictable control flow, for unpredictable branches (such
as those in binary search) the guesses will frequently be
wrong. A wrong guess can be expensive because the CPU
must discard any speculatively executed instructions fol-
lowing the corresponding branch, resulting in a pipeline
flush. If pipeline flushes appear too frequently, they dras-

tically reduce overall performance, as fancifully depicted
in Figure 3.3.

Unfortunately, pipeline flushes are not the only hazards
in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

3.1.2 Memory References
In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. In 2006, a microprocessor might be capable
of executing hundreds or even thousands of instructions
in the time required to access memory. This disparity
is due to the fact that Moore’s Law has increased CPU
performance at a much greater rate than it has decreased
memory latency, in part due to the rate at which memory
sizes have grown. For example, a typical 1970s minicom-
puter might have 4 KB (yes, kilobytes, not megabytes,
let alone gigabytes) of main memory, with single-cycle
access.1 In 2008, CPU designers still can construct a
4 KB memory with single-cycle access, even on systems
with multi-GHz clock frequencies. And in fact they fre-
quently do construct such memories, but they now call
them “level-0 caches”, and they can be quite a bit bigger
than 4 KB.

Figure 3.4: CPU Meets a Memory Reference

1 It is only fair to add that each of these single cycles lasted no less
than 1.6 microseconds.

3.1. OVERVIEW 19

Although the large caches found on modern micro-
processors can do quite a bit to help combat memory-
access latencies, these caches require highly predictable
data-access patterns to successfully hide those latencies.
Unfortunately, common operations such as traversing a
linked list have extremely unpredictable memory-access
patterns—after all, if the pattern was predictable, us soft-
ware types would not bother with the pointers, right?
Therefore, as shown in Figure 3.4, memory references
often pose severe obstacles to modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem
here is that the whole idea of an atomic operation con-
flicts with the piece-at-a-time assembly-line operation of
a CPU pipeline. To hardware designers’ credit, modern
CPUs use a number of extremely clever tricks to make
such operations look atomic even though they are in fact
being executed piece-at-a-time, with one common trick
being to identify all the cachelines containing the data to
be atomically operated on, ensure that these cachelines
are owned by the CPU executing the atomic operation,
and only then proceed with the atomic operation while
ensuring that these cachelines remained owned by this
CPU. Because all the data is private to this CPU, other
CPUs are unable to interfere with the atomic operation
despite the piece-at-a-time nature of the CPU’s pipeline.
Needless to say, this sort of trick can require that the pipe-
line must be delayed or even flushed in order to perform
the setup operations that permit a given atomic operation
to complete correctly.

In contrast, when executing a non-atomic operation, the
CPU can load values from cachelines as they appear and
place the results in the store buffer, without the need to
wait for cacheline ownership. Fortunately, CPU designers
have focused heavily on atomic operations, so that as of
early 2014 they have greatly reduced their overhead. Even
so, the resulting effect on performance is all too often as
depicted in Figure 3.5.

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as

Figure 3.5: CPU Meets an Atomic Operation

performance-sapping obstacles, as described in the next
section.

Quick Quiz 3.2: What types of machines would allow
atomic operations on multiple data elements?

3.1.4 Memory Barriers
Memory barriers will be considered in more detail in
Chapter 15 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

1 spin_lock(&mylock);
2 a = a + 1;
3 spin_unlock(&mylock);

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would certainly defeat the purpose
of acquiring it. To prevent such destructive reordering,
locking primitives contain either explicit or implicit mem-
ory barriers. Because the whole purpose of these memory
barriers is to prevent reorderings that the CPU would
otherwise undertake in order to increase performance,
memory barriers almost always reduce performance, as
depicted in Figure 3.6.

As with atomic operations, CPU designers have been
working hard to reduce memory-barrier overhead, and
have made substantial progress.

3.1.5 Cache Misses
An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern

20 CHAPTER 3. HARDWARE AND ITS HABITS

Memory

Barrier
Memory

Barrier

Figure 3.6: CPU Meets a Memory Barrier

CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU
wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Section C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as
shown in Figure 3.7.

Quick Quiz 3.3: So have CPU designers also greatly
reduced the overhead of cache misses?

3.1.6 I/O Operations
A cache miss can be thought of as a CPU-to-CPU I/O
operation, and as such is one of the cheapest I/O oper-
ations available. I/O operations involving networking,
mass storage, or (worse yet) human beings pose much
greater obstacles than the internal obstacles called out in
the prior sections, as illustrated by Figure 3.8.

This is one of the differences between shared-memory
and distributed-system parallelism: shared-memory paral-
lel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be

CACHE-
MISS

TOLL
BOOTH

CACHE-
MISS

TOLL
BOOTH

Figure 3.7: CPU Meets a Cache Miss

TELETELE Please stay on the

line. Your call is very

important to us...

Figure 3.8: CPU Waits for I/O Completion

thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel hardware design is to reduce this
ratio as needed to achieve the relevant performance and
scalability goals. In turn, as will be seen in Chapter 6,
a major goal of parallel software design is to reduce the
frequency of expensive operations like communications
cache misses.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.

3.2. OVERHEADS 21

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory Memory

Speed−of−Light Round−Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

System Interconnect

Figure 3.9: System Hardware Architecture

3.2 Overheads

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.9 shows a rough schematic of an eight-core com-
puter system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect in the middle of the diagram allows the four
dies to communicate, and also connects them to main
memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks
of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its
registers, it must first load the cacheline containing that
variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-
and-swap (CAS) operation on a variable whose cacheline
resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the
cacheline.

2. The request is forwarded to CPU 0’s and 1’s intercon-
nect, which checks CPU 1’s local cache, and does
not find the cacheline.

3. The request is forwarded to the system interconnect,
which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.

4. The request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect,
and also flushes the cacheline from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the
value in its cache.

Quick Quiz 3.4: This is a simplified sequence of
events? How could it possibly be any more complex?

Quick Quiz 3.5: Why is it necessary to flush the cache-
line from CPU 7’s cache?

This simplified sequence is just the beginning of a dis-
cipline called cache-coherency protocols [HP95, CSG99,
MHS12, SHW11], which is discussed in more detail in
Appendix C. As can be seen in the sequence of events trig-
gered by a CAS operation, a single instruction can cause
considerable protocol traffic, which can significantly de-
grade your parallel program’s performance.

Fortunately, if a given variable is being frequently read
during a time interval during which it is never updated,
that variable can be replicated across all CPUs’ caches.
This replication permits all CPUs to enjoy extremely fast
access to this read-mostly variable. Chapter 9 presents
synchronization mechanisms that take full advantage of
this important hardware read-mostly optimization.

22 CHAPTER 3. HARDWARE AND ITS HABITS

Table 3.1: Performance of Synchronization Mechanisms
on 4-CPU 1.8 GHz AMD Opteron 844 System

Operation Cost (ns)
Ratio

(cost/clock)

Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 5,000 8,330
Global Comms 195,000,000 325,000,000

3.2.2 Costs of Operations

The overheads of some common operations important
to parallel programs are displayed in Table 3.1. This
system’s clock period rounds to 0.6 ns. Although it is not
unusual for modern microprocessors to be able to retire
multiple instructions per clock period, the operations’
costs are nevertheless normalized to a clock period in
the third column, labeled “Ratio”. The first thing to note
about this table is the large values of many of the ratios.

The best-case compare-and-swap (CAS) operation con-
sumes almost forty nanoseconds, a duration more than
sixty times that of the clock period. Here, “best case”
means that the same CPU now performing the CAS op-
eration on a given variable was the last CPU to operate
on this variable, so that the corresponding cache line is
already held in that CPU’s cache. Similarly, the best-case
lock operation (a “round trip” pair consisting of a lock
acquisition followed by a lock release) consumes more
than sixty nanoseconds, or more than one hundred clock
cycles. Again, “best case” means that the data structure
representing the lock is already in the cache belonging
to the CPU acquiring and releasing the lock. The lock
operation is more expensive than CAS because it requires
two atomic operations on the lock data structure.

An operation that misses the cache consumes almost
one hundred and forty nanoseconds, or more than two
hundred clock cycles. The code used for this cache-miss
measurement passes the cache line back and forth between
a pair of CPUs, so this cache miss is satisfied not from
memory, but rather from the other CPU’s cache. A CAS
operation, which must look at the old value of the variable
as well as store a new value, consumes over three hundred
nanoseconds, or more than five hundred clock cycles.
Think about this a bit. In the time required to do one CAS
operation, the CPU could have executed more than five

hundred normal instructions. This should demonstrate
the limitations not only of fine-grained locking, but of any
other synchronization mechanism relying on fine-grained
global agreement.

Quick Quiz 3.6: Surely the hardware designers could
be persuaded to improve this situation! Why have they
been content with such abysmal performance for these
single-instruction operations?

I/O operations are even more expensive. As shown
in the “Comms Fabric” row, high performance (and ex-
pensive!) communications fabric, such as InfiniBand or
any number of proprietary interconnects, has a latency
of roughly five microseconds for an end-to-end round
trip, during which time more than eight thousand in-
structions might have been executed. Standards-based
communications networks often require some sort of pro-
tocol processing, which further increases the latency. Of
course, geographic distance also increases latency, with
the speed-of-light through optical fiber latency around
the world coming to roughly 195 milliseconds, or more
than 300 million clock cycles, as shown in the “Global
Comms” row.

Quick Quiz 3.7: These numbers are insanely large!
How can I possibly get my head around them?

3.2.3 Hardware Optimizations

It is only natural to ask how the hardware is helping, and
the answer is “Quite a bit!”

One hardware optimization is large cachelines. This
can provide a big performance boost, especially when
software is accessing memory sequentially. For example,
given a 64-byte cacheline and software accessing 64-bit
variables, the first access will still be slow due to speed-of-
light delays (if nothing else), but the remaining seven can
be quite fast. However, this optimization has a dark side,
namely false sharing, which happens when different vari-
ables in the same cacheline are being updated by different
CPUs, resulting in a high cache-miss rate. Software can
use the alignment directives available in many compilers
to avoid false sharing, and adding such directives is a
common step in tuning parallel software.

A second related hardware optimization is cache
prefetching, in which the hardware reacts to consecutive
accesses by prefetching subsequent cachelines, thereby
evading speed-of-light delays for these subsequent cache-
lines. Of course, the hardware must use simple heuristics
to determine when to prefetch, and these heuristics can be
fooled by the complex data-access patterns in many ap-

3.3. HARDWARE FREE LUNCH? 23

Figure 3.10: Hardware and Software: On Same Side

plications. Fortunately, some CPU families allow for this
by providing special prefetch instructions. Unfortunately,
the effectiveness of these instructions in the general case
is subject to some dispute.

A third hardware optimization is the store buffer, which
allows a string of store instructions to execute quickly
even when the stores are to non-consecutive addresses
and when none of the needed cachelines are present in
the CPU’s cache. The dark side of this optimization is
memory misordering, for which see Chapter 15.

A fourth hardware optimization is speculative execu-
tion, which can allow the hardware to make good use of
the store buffers without resulting in memory misorder-
ing. The dark side of this optimization can be energy
inefficiency and lowered performance if the speculative
execution goes awry and must be rolled back and retried.
Worse yet, the advent of Spectre and Meltdown [Hor18]
made it apparent that hardware speculation can also en-
able side-channel attacks that defeat memory-protection
hardware so as to allow unprivileged processes to read
memory that they should not have access to. It is clear
that the combination of speculative execution and cloud
computing needs more than a bit of rework!

A fifth hardware optimization is large caches, allowing
individual CPUs to operate on larger datasets without
incurring expensive cache misses. Although large caches
can degrade energy efficiency and cache-miss latency, the
ever-growing cache sizes on production microprocessors
attests to the power of this optimization.

A final hardware optimization is read-mostly replica-
tion, in which data that is frequently read but rarely up-
dated is present in all CPUs’ caches. This optimization
allows the read-mostly data to be accessed exceedingly
efficiently, and is the subject of Chapter 9.

In short, hardware and software engineers are really
fighting on the same side, trying to make computers go

fast despite the best efforts of the laws of physics, as fan-
cifully depicted in Figure 3.10 where our data stream is
trying its best to exceed the speed of light. The next sec-
tion discusses some additional things that the hardware
engineers might (or might not) be able to do, depend-
ing on how well recent research translates to practice.
Software’s contribution to this fight is outlined in the
remaining chapters of this book.

3.3 Hardware Free Lunch?
The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-
Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 9.
This section briefly surveys a few ways that hardware
designers might be able to bring back some form of the
“free lunch”.

However, the preceding section presented some sub-
stantial hardware obstacles to exploiting concurrency.
One severe physical limitation that hardware designers
face is the finite speed of light. As noted in Figure 3.9
on page 21, light can travel only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of a modern computer system.

To make matters even worse, electric waves in silicon
move from three to thirty times more slowly than does
light in a vacuum, and common clocked logic constructs
run still more slowly, for example, a memory reference
may need to wait for a local cache lookup to complete be-
fore the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.

Quick Quiz 3.8: But individual electrons don’t move
anywhere near that fast, even in conductors!!! The elec-
tron drift velocity in a conductor under the low voltages
found in semiconductors is on the order of only one mil-
limeter per second. What gives???

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electricity,

24 CHAPTER 3. HARDWARE AND ITS HABITS

1.5 cm3 cm

70 um

Figure 3.11: Latency Benefit of 3D Integration

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sec-
tions.

3.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [Kni08].

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 3.11.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given
proper attention to design and placement, long horizontal
electrical connections (which are both slow and power
hungry) can be replaced by short vertical electrical con-
nections, which are both faster and more power efficient.

However, delays due to levels of clocked logic will
not be decreased by 3D integration, and significant man-
ufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach pro-
duction while still delivering on its promise. The heat-
dissipation problems might be solved using semiconduc-
tors based on diamond, which is a good conductor for
heat, but an electrical insulator. That said, it remains
difficult to grow large single diamond crystals, to say
nothing of slicing them into wafers. In addition, it seems
unlikely that any of these technologies will be able to de-
liver the exponential increases to which some people have
become accustomed. That said, they may be necessary
steps on the path to the late Jim Gray’s “smoking hairy
golf balls” [Gra02].

3.3.2 Novel Materials and Processes
Stephen Hawking is said to have claimed that semiconduc-
tor manufacturers have but two fundamental problems: (1)
the finite speed of light and (2) the atomic nature of mat-
ter [Gar07]. It is possible that semiconductor manufactur-
ers are approaching these limits, but there are nevertheless
a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-
called “high-K dielectric” materials, which allow larger
devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabri-
cation challenges, but nevertheless may help push the
frontiers out a bit farther. Another more-exotic work-
around stores multiple bits in a single electron, relying
on the fact that a given electron can exist at a number
of energy levels. It remains to be seen if this particu-
lar approach can be made to work reliably in production
semiconductor devices.

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage.

One challenge is that many recent hardware-device-
level breakthroughs require very tight control of which
atoms are placed where [Kel17]. It therefore seems likely
that whoever finds a good way to hand-place atoms on
each of the billions of devices on a chip will have most
excellent bragging rights, if nothing else!

3.3.3 Light, Not Electrons
Although the speed of light would be a hard limit, the fact
is that semiconductor devices are limited by the speed
of electricity rather than that of light, given that electric
waves in semiconductor materials move at between 3 %
and 30 % of the speed of light in a vacuum. The use
of copper connections on silicon devices is one way to
increase the speed of electricity, and it is quite possible
that additional advances will push closer still to the actual
speed of light. In addition, there have been some experi-
ments with tiny optical fibers as interconnects within and
between chips, based on the fact that the speed of light
in glass is more than 60 % of the speed of light in a vac-
uum. One obstacle to such optical fibers is the inefficiency
conversion between electricity and light and vice versa,
resulting in both power-consumption and heat-dissipation
problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of

3.4. SOFTWARE DESIGN IMPLICATIONS 25

data flow will be sharply limited by the actual speed of
light in a vacuum.

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in
some sense wasted effort: the real goal is instead to multi-
ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
not in use. Software must be modified to take advantage
of this specialized hardware, and this specialized hard-
ware must be sufficiently generally useful that the high
up-front hardware-design costs can be spread over enough
users to make the specialized hardware affordable. In part
due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application
areas, including graphics processing (GPUs), vector pro-
cessors (MMX, SSE, and VMX instructions), and, to a
lesser extent, encryption.

Unlike the server and PC arena, smartphones have long
used a wide variety of hardware accelerators. These hard-
ware accelerators are often used for media decoding, so
much so that a high-end MP3 player might be able to play
audio for several minutes—with its CPU fully powered
off the entire time. The purpose of these accelerators
is to improve energy efficiency and thus extend battery
life: special purpose hardware can often compute more
efficiently than can a general-purpose CPU. This is an-
other example of the principle called out in Section 2.2.3:

Generality is almost never free.
Nevertheless, given the end of Moore’s-Law-induced

single-threaded performance increases, it seems safe to
predict that there will be an increasing variety of special-
purpose hardware going forward.

3.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been commer-
cially available for more than a quarter century. This is
more than enough time for significant parallel software to
make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Use of existing
parallel software can go a long ways towards solving any
parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.
A very nice trick when it works!

3.4 Software Design Implications

The values of the ratios in Table 3.1 are critically im-
portant, as they limit the efficiency of a given parallel
application. To see this, suppose that the parallel applica-
tion uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss,
that is, assuming that the threads are communicating pri-
marily with each other rather than with themselves. Sup-
pose further that the unit of work corresponding to each
CAS communication operation takes 300 ns, which is
sufficient time to compute several floating-point transcen-
dental functions. Then about half of the execution time
will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such
a parallel program would run no faster than a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important

26 CHAPTER 3. HARDWARE AND ITS HABITS

it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 3.9: Given that distributed-systems com-
munication is so horribly expensive, why does anyone
bother with such systems?

The lesson should be quite clear: parallel algorithms
must be explicitly designed with these hardware prop-
erties firmly in mind. One approach is to run nearly
independent threads. The less frequently the threads com-
municate, whether by atomic operations, locks, or explicit
messages, the better the application’s performance and
scalability will be. This approach will be touched on in
Chapter 5, explored in Chapter 6, and taken to its logical
extreme in Chapter 8.

Another approach is to make sure that any sharing be
read-mostly, which allows the CPUs’ caches to replicate
the read-mostly data, in turn allowing all CPUs fast access.
This approach is touched on in Section 5.2.3, and explored
more deeply in Chapter 9.

In short, achieving excellent parallel performance and
scalability means striving for embarrassingly parallel al-
gorithms and implementations, whether by careful choice
of data structures and algorithms, use of existing paral-
lel applications and environments, or transforming the
problem into one for which an embarrassingly parallel
solution exists.

Quick Quiz 3.10: OK, if we are going to have to apply
distributed-programming techniques to shared-memory
parallel programs, why not just always use these distrib-
uted techniques and dispense with shared memory?

So, to sum up:

1. The good news is that multicore systems are inex-
pensive and readily available.

2. More good news: The overhead of many synchro-
nization operations is much lower than it was on
parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is
still high, especially on large systems.

The remainder of this book describes ways of handling
this bad news.

In particular, Chapter 4 will cover some of the low-
level tools used for parallel programming, Chapter 5 will
investigate problems and solutions to parallel counting,
and Chapter 6 will discuss design disciplines that promote
performance and scalability.

You are only as good as your tools, and your tools
are only as good as you are.

UnknownChapter 4

Tools of the Trade

This chapter provides a brief introduction to some ba-
sic tools of the parallel-programming trade, focusing
mainly on those available to user applications running
on operating systems similar to Linux. Section 4.1 be-
gins with scripting languages, Section 4.2 describes the
multi-process parallelism supported by the POSIX API
and touches on POSIX threads, Section 4.3 presents anal-
ogous operations in other environments, and finally, Sec-
tion 4.4 helps to choose the tool that will get the job done.

Quick Quiz 4.1: You call these tools??? They look
more like low-level synchronization primitives to me!

Please note that this chapter provides but a brief in-
troduction. More detail is available from the references
cited (and especially from Internet), and more informa-
tion on how best to use these tools will be provided in
later chapters.

4.1 Scripting Languages
The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments.
This can be accomplished using UNIX shell scripting as
follows:

1 compute_it 1 > compute_it.1.out &
2 compute_it 2 > compute_it.2.out &
3 wait
4 cat compute_it.1.out
5 cat compute_it.2.out

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &
character directing the shell to run the two instances of
the program in the background. Line 3 waits for both in-
stances to complete, and lines 4 and 5 display their output.

compute_it 1 >
compute_it.1.out &

compute_it 2 >
compute_it.2.out &

wait

cat compute_it.1.out

cat compute_it.2.out

Figure 4.1: Execution Diagram for Parallel Shell Execu-
tion

The resulting execution is as shown in Figure 4.1: the two
instances of compute_it execute in parallel, wait com-
pletes after both of them do, and then the two instances
of cat execute sequentially.

Quick Quiz 4.2: But this silly shell script isn’t a real
parallel program! Why bother with such trivia???

Quick Quiz 4.3: Is there a simpler way to create a
parallel shell script? If so, how? If not, why not?

For another example, the make software-build scripting
language provides a -j option that specifies how much
parallelism should be introduced into the build process.
For example, typing make -j4 when building a Linux
kernel specifies that up to four parallel compiles be carried
out concurrently.

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.

Quick Quiz 4.4: But if script-based parallel program-
ming is so easy, why bother with anything else?

27

28 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.1: Using the fork() Primitive
1 pid = fork();
2 if (pid == 0) {
3 /* child */
4 } else if (pid < 0) {
5 /* parent, upon error */
6 perror("fork");
7 exit(EXIT_FAILURE);
8 } else {
9 /* parent, pid == child ID */

10 }

4.2 POSIX Multiprocessing
This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 4.2.1
provides a glimpse of the POSIX fork() and related
primitives, Section 4.2.2 touches on thread creation and
destruction, Section 4.2.3 gives a brief overview of POSIX
locking, and, finally, Section 4.2.4 describes a specific
lock which can be used for data that is read by many
threads and only occasionally updated.

4.2.1 POSIX Process Creation and De-
struction

Processes are created using the fork() primitive, they
may be destroyed using the kill() primitive, they may
destroy themselves using the exit() primitive. A process
executing a fork() primitive is said to be the “parent”
of the newly created process. A parent may wait on its
children using the wait() primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
concerns can of course add substantial complexity to the
code. For more information, see any of a number of
textbooks on the subject [Ste92, Wei13].

If fork() succeeds, it returns twice, once for the par-
ent and again for the child. The value returned from
fork() allows the caller to tell the difference, as shown
in Listing 4.1 (forkjoin.c). Line 1 executes the fork()
primitive, and saves its return value in local variable pid.
Line 2 checks to see if pid is zero, in which case, this is
the child, which continues on to execute line 3. As noted
earlier, the child may terminate via the exit() primitive.
Otherwise, this is the parent, which checks for an error

Listing 4.2: Using the wait() Primitive
1 int pid;
2 int status;
3

4 for (;;) {
5 pid = wait(&status);
6 if (pid == -1) {
7 if (errno == ECHILD)
8 break;
9 perror("wait");

10 exit(EXIT_FAILURE);
11 }
12 }

return from the fork() primitive on line 4, and prints an
error and exits on lines 5-7 if so. Otherwise, the fork()
has executed successfully, and the parent therefore exe-
cutes line 9 with the variable pid containing the process
ID of the child.

The parent process may use the wait() primitive to
wait for its children to complete. However, use of this
primitive is a bit more complicated than its shell-script
counterpart, as each invocation of wait() waits for but
one child process. It is therefore customary to wrap
wait() into a function similar to the waitall() func-
tion shown in Listing 4.2 (api-pthread.h), with this
waitall() function having semantics similar to the shell-
script wait command. Each pass through the loop span-
ning lines 4-12 waits on one child process. Line 5 invokes
the wait() primitive, which blocks until a child process
exits, and returns that child’s process ID. If the process
ID is instead −1, this indicates that the wait() primitive
was unable to wait on a child. If so, line 7 checks for
the ECHILD errno, which indicates that there are no more
child processes, so that line 8 exits the loop. Otherwise,
lines 9 and 10 print an error and exit.

Quick Quiz 4.5: Why does this wait() primitive need
to be so complicated? Why not just make it work like the
shell-script wait does?

It is critically important to note that the parent and child
do not share memory. This is illustrated by the program
shown in Listing 4.3 (forkjoinvar.c), in which the
child sets a global variable x to 1 on line 9, prints a
message on line 10, and exits on line 11. The parent
continues at line 20, where it waits on the child, and on
line 21 finds that its copy of the variable x is still zero.
The output is thus as follows:

Child process set x=1
Parent process sees x=0

Quick Quiz 4.6: Isn’t there a lot more to fork() and
wait() than discussed here?

4.2. POSIX MULTIPROCESSING 29

Listing 4.3: Processes Created Via fork() Do Not Share Mem-
ory

1 int x = 0;
2

3 int main(int argc, char *argv[])
4 {
5 int pid;
6

7 pid = fork();
8 if (pid == 0) { /* child */
9 x = 1;

10 printf("Child process set x=1\n");
11 exit(EXIT_SUCCESS);
12 }
13 if (pid < 0) { /* parent, upon error */
14 perror("fork");
15 exit(EXIT_FAILURE);
16 }
17

18 /* parent */
19

20 waitall();
21 printf("Parent process sees x=%d\n", x);
22

23 return EXIT_SUCCESS;
24 }

The finest-grained parallelism requires shared memory,
and this is covered in Section 4.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

4.2.2 POSIX Thread Creation and De-
struction

To create a thread within an existing process, invoke the
pthread_create() primitive, for example, as shown on
lines 16 and 17 of Listing 4.4 (pcreate.c). The first ar-
gument is a pointer to a pthread_t in which to store the
ID of the thread to be created, the second NULL argument
is a pointer to an optional pthread_attr_t, the third
argument is the function (in this case, mythread()) that
is to be invoked by the new thread, and the last NULL ar-
gument is the argument that will be passed to mythread.

In this example, mythread() simply returns, but it
could instead call pthread_exit().

Quick Quiz 4.7: If the mythread() function in List-
ing 4.4 can simply return, why bother with pthread_
exit()?

The pthread_join() primitive, shown on line 24, is
analogous to the fork-join wait() primitive. It blocks
until the thread specified by the tid variable completes
execution, either by invoking pthread_exit() or by re-
turning from the thread’s top-level function. The thread’s
exit value will be stored through the pointer passed as
the second argument to pthread_join(). The thread’s

Listing 4.4: Threads Created Via pthread_create() Share
Memory

1 int x = 0;
2

3 void *mythread(void *arg)
4 {
5 x = 1;
6 printf("Child process set x=1\n");
7 return NULL;
8 }
9

10 int main(int argc, char *argv[])
11 {
12 int en;
13 pthread_t tid;
14 void *vp;
15

16 if ((en = pthread_create(&tid, NULL,
17 mythread, NULL)) != 0) {
18 fprintf(stderr, "pthread_join: %s\n", strerror(en));
19 exit(EXIT_FAILURE);
20 }
21

22 /* parent */
23

24 if ((en = pthread_join(tid, &vp)) != 0) {
25 fprintf(stderr, "pthread_join: %s\n", strerror(en));
26 exit(EXIT_FAILURE);
27 }
28 printf("Parent process sees x=%d\n", x);
29

30 return EXIT_SUCCESS;
31 }

exit value is either the value passed to pthread_exit()
or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Listing 4.4 produces output
as follows, demonstrating that memory is in fact shared
between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.
Any situation in which one thread might be storing a value
to a given variable while some other thread either loads
from or stores to that same variable is termed a “data
race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 4.8: If the C language makes no guaran-
tees in presence of a data race, then why does the Linux
kernel have so many data races? Are you trying to tell me
that the Linux kernel is completely broken???

30 CHAPTER 4. TOOLS OF THE TRADE

4.2.3 POSIX Locking
The POSIX standard allows the programmer to avoid
data races via “POSIX locking”. POSIX locking fea-
tures a number of primitives, the most fundamental
of which are pthread_mutex_lock() and pthread_
mutex_unlock(). These primitives operate on locks,
which are of type pthread_mutex_t. These locks may
be declared statically and initialized with PTHREAD_
MUTEX_INITIALIZER, or they may be allocated dynami-
cally and initialized using the pthread_mutex_init()
primitive. The demonstration code in this section will
take the former course.

The pthread_mutex_lock() primitive “acquires”
the specified lock, and the pthread_mutex_unlock()
“releases” the specified lock. Because these are “exclu-
sive” locking primitives, only one thread at a time may
“hold” a given lock at a given time. For example, if a pair
of threads attempt to acquire the same lock concurrently,
one of the pair will be “granted” the lock first, and the
other will wait until the first thread releases the lock. A
simple and reasonably useful programming model per-
mits a given data item to be accessed only while holding
the corresponding lock [Hoa74].

Quick Quiz 4.9: What if I want several threads to hold
the same lock at the same time?

This exclusive-locking property is demonstrated using
the code shown in Listing 4.5 (lock.c). Line 1 defines
and initializes a POSIX lock named lock_a, while line 2
similarly defines and initializes a lock named lock_b.
Line 4 defines and initializes a shared variable x.

Lines 6-33 defines a function lock_reader() which
repeatedly reads the shared variable x while holding the
lock specified by arg. Line 12 casts arg to a pointer
to a pthread_mutex_t, as required by the pthread_
mutex_lock() and pthread_mutex_unlock() primi-
tives.

Quick Quiz 4.10: Why not simply make the argument
to lock_reader() on line 6 of Listing 4.5 be a pointer
to a pthread_mutex_t?

Quick Quiz 4.11: What is the READ_ONCE() on
lines 20 and 47 and the WRITE_ONCE() on line 47 of
Listing 4.5?

Lines 14-18 acquire the specified pthread_mutex_t,
checking for errors and exiting the program if any occur.
Lines 19-26 repeatedly check the value of x, printing the
new value each time that it changes. Line 25 sleeps for
one millisecond, which allows this demonstration to run
nicely on a uniprocessor machine. Lines 27-31 release the
pthread_mutex_t, again checking for errors and exiting

Listing 4.5: Demonstration of Exclusive Locks
1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3

4 int x = 0;
5

6 void *lock_reader(void *arg)
7 {
8 int en;
9 int i;

10 int newx = -1;
11 int oldx = -1;
12 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
13

14 if ((en = pthread_mutex_lock(pmlp)) != 0) {
15 fprintf(stderr, "lock_reader:pthread_mutex_lock: %s\n",
16 strerror(en));
17 exit(EXIT_FAILURE);
18 }
19 for (i = 0; i < 100; i++) {
20 newx = READ_ONCE(x);
21 if (newx != oldx) {
22 printf("lock_reader(): x = %d\n", newx);
23 }
24 oldx = newx;
25 poll(NULL, 0, 1);
26 }
27 if ((en = pthread_mutex_unlock(pmlp)) != 0) {
28 fprintf(stderr, "lock_reader:pthread_mutex_lock: %s\n",
29 strerror(en));
30 exit(EXIT_FAILURE);
31 }
32 return NULL;
33 }
34

35 void *lock_writer(void *arg)
36 {
37 int en;
38 int i;
39 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
40

41 if ((en = pthread_mutex_lock(pmlp)) != 0) {
42 fprintf(stderr, "lock_writer:pthread_mutex_lock: %s\n",
43 strerror(en));
44 exit(EXIT_FAILURE);
45 }
46 for (i = 0; i < 3; i++) {
47 WRITE_ONCE(x, READ_ONCE(x) + 1);
48 poll(NULL, 0, 5);
49 }
50 if ((en = pthread_mutex_unlock(pmlp)) != 0) {
51 fprintf(stderr, "lock_writer:pthread_mutex_lock: %s\n",
52 strerror(en));
53 exit(EXIT_FAILURE);
54 }
55 return NULL;
56 }

4.2. POSIX MULTIPROCESSING 31

Listing 4.6: Demonstration of Same Exclusive Lock
1 printf("Creating two threads using same lock:\n");
2 en = pthread_create(&tid1, NULL, lock_reader, &lock_a);
3 if (en != 0) {
4 fprintf(stderr, "pthread_create: %s\n", strerror(en));
5 exit(EXIT_FAILURE);
6 }
7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);
8 if (en != 0) {
9 fprintf(stderr, "pthread_create: %s\n", strerror(en));

10 exit(EXIT_FAILURE);
11 }
12 if ((en = pthread_join(tid1, &vp)) != 0) {
13 fprintf(stderr, "pthread_join: %s\n", strerror(en));
14 exit(EXIT_FAILURE);
15 }
16 if ((en = pthread_join(tid2, &vp)) != 0) {
17 fprintf(stderr, "pthread_join: %s\n", strerror(en));
18 exit(EXIT_FAILURE);
19 }

the program if any occur. Finally, line 32 returns NULL,
again to match the function type required by pthread_
create().

Quick Quiz 4.12: Writing four lines of code for
each acquisition and release of a pthread_mutex_t sure
seems painful! Isn’t there a better way?

Lines 35-56 of Listing 4.5 shows lock_writer(),
which periodically update the shared variable x while
holding the specified pthread_mutex_t. As with lock_
reader(), line 39 casts arg to a pointer to pthread_
mutex_t, lines 41-45 acquires the specified lock, and
lines 50-54 releases it. While holding the lock, lines 46-
49 increment the shared variable x, sleeping for five mil-
liseconds between each increment. Finally, lines 50-54
release the lock.

Listing 4.6 shows a code fragment that runs lock_
reader() and lock_writer() as threads using the
same lock, namely, lock_a. Lines 2-6 create a thread
running lock_reader(), and then Lines 7-11 create a
thread running lock_writer(). Lines 12-19 wait for
both threads to complete. The output of this code frag-
ment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the
lock_reader() thread cannot see any of the interme-
diate values of x produced by lock_writer() while
holding the lock.

Quick Quiz 4.13: Is “x = 0” the only possible output
from the code fragment shown in Listing 4.6? If so, why?
If not, what other output could appear, and why?

Listing 4.7 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader() and

Listing 4.7: Demonstration of Different Exclusive Locks
1 printf("Creating two threads w/different locks:\n");
2 x = 0;
3 en = pthread_create(&tid1, NULL, lock_reader, &lock_a);
4 if (en != 0) {
5 fprintf(stderr, "pthread_create: %s\n", strerror(en));
6 exit(EXIT_FAILURE);
7 }
8 en = pthread_create(&tid2, NULL, lock_writer, &lock_b);
9 if (en != 0) {

10 fprintf(stderr, "pthread_create: %s\n", strerror(en));
11 exit(EXIT_FAILURE);
12 }
13 if ((en = pthread_join(tid1, &vp)) != 0) {
14 fprintf(stderr, "pthread_join: %s\n", strerror(en));
15 exit(EXIT_FAILURE);
16 }
17 if ((en = pthread_join(tid2, &vp)) != 0) {
18 fprintf(stderr, "pthread_join: %s\n", strerror(en));
19 exit(EXIT_FAILURE);
20 }

lock_b for lock_writer(). The output of this code
fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they
do not exclude each other, and can run concurrently. The
lock_reader() function can therefore see the interme-
diate values of x stored by lock_writer().

Quick Quiz 4.14: Using different locks could cause
quite a bit of confusion, what with threads seeing each
others’ intermediate states. So should well-written paral-
lel programs restrict themselves to using a single lock in
order to avoid this kind of confusion?

Quick Quiz 4.15: In the code shown in Listing 4.7,
is lock_reader() guaranteed to see all the values pro-
duced by lock_writer()? Why or why not?

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6
didn’t initialize shared variable x, so why does it need to
be initialized in Listing 4.7?

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

4.2.4 POSIX Reader-Writer Locking
The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread_mutex_t, pthread_rwlock_t may be stat-
ically initialized via PTHREAD_RWLOCK_INITIALIZER

32 CHAPTER 4. TOOLS OF THE TRADE

or dynamically initialized via the pthread_rwlock_
init() primitive. The pthread_rwlock_rdlock()
primitive read-acquires the specified pthread_rwlock_
t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() prim-
itive releases it. Only a single thread may write-hold a
given pthread_rwlock_t at any given time, but multi-
ple threads may read-hold a given pthread_rwlock_t,
at least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by defini-
tion limited to a single thread holding the lock at any
given time, while the reader-writer lock permits an arbi-
trarily large number of readers to concurrently hold the
lock. However, in practice, we need to know how much
additional scalability is provided by reader-writer locks.

Listing 4.8 (rwlockscale.c) shows one way of mea-
suring reader-writer lock scalability. Line 1 shows the def-
inition and initialization of the reader-writer lock, line 2
shows the holdtime argument controlling the time each
thread holds the reader-writer lock, line 3 shows the
thinktime argument controlling the time between the
release of the reader-writer lock and the next acquisition,
line 4 defines the readcounts array into which each
reader thread places the number of times it acquired the
lock, and line 5 defines the nreadersrunning variable,
which determines when all reader threads have started
running.

Lines 7-10 define goflag, which synchronizes the
start and the end of the test. This variable is initially
set to GOFLAG_INIT, then set to GOFLAG_RUN after all
the reader threads have started, and finally set to GOFLAG_
STOP to terminate the test run.

Lines 12-44 define reader(), which is the
reader thread. Line 19 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 20-22 wait for the test to start.
The READ_ONCE() primitive forces the compiler to fetch
goflag on each pass through the loop—the compiler
would otherwise be within its rights to assume that the
value of goflag would never change.

Quick Quiz 4.17: Instead of using READ_ONCE() ev-
erywhere, why not just declare goflag as volatile on
line 10 of Listing 4.8?

Quick Quiz 4.18: READ_ONCE() only affects the com-
piler, not the CPU. Don’t we also need memory barriers to
make sure that the change in goflag’s value propagates

Listing 4.8: Measuring Reader-Writer Lock Scalability
1 pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
2 int holdtime = 0; /* # loops holding lock. */
3 int thinktime = 0; /* # loops not holding lock. */
4 long long *readcounts;
5 int nreadersrunning = 0;
6

7 #define GOFLAG_INIT 0
8 #define GOFLAG_RUN 1
9 #define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;
11

12 void *reader(void *arg)
13 {
14 int en;
15 int i;
16 long long loopcnt = 0;
17 long me = (long)arg;
18

19 __sync_fetch_and_add(&nreadersrunning, 1);
20 while (READ_ONCE(goflag) == GOFLAG_INIT) {
21 continue;
22 }
23 while (READ_ONCE(goflag) == GOFLAG_RUN) {
24 if ((en = pthread_rwlock_rdlock(&rwl)) != 0) {
25 fprintf(stderr,
26 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit(EXIT_FAILURE);
28 }
29 for (i = 1; i < holdtime; i++) {
30 barrier();
31 }
32 if ((en = pthread_rwlock_unlock(&rwl)) != 0) {
33 fprintf(stderr,
34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit(EXIT_FAILURE);
36 }
37 for (i = 1; i < thinktime; i++) {
38 barrier();
39 }
40 loopcnt++;
41 }
42 readcounts[me] = loopcnt;
43 return NULL;
44 }

to the CPU in a timely fashion in Listing 4.8?
Quick Quiz 4.19: Would it ever be necessary to use

READ_ONCE() when accessing a per-thread variable, for
example, a variable declared using GCC’s __thread stor-
age class?

The loop spanning lines 23-41 carries out the perfor-
mance test. Lines 24-28 acquire the lock, lines 29-31 hold
the lock for the specified duration (and the barrier() di-
rective prevents the compiler from optimizing the loop out
of existence), lines 32-36 release the lock, and lines 37-
39 wait for the specified duration before re-acquiring the
lock. Line 40 counts this lock acquisition.

Line 42 moves the lock-acquisition count to this
thread’s element of the readcounts[] array, and line 43
returns, terminating this thread.

Figure 4.2 shows the results of running this test on
a 64-core POWER5 system with two hardware threads

4.2. POSIX MULTIPROCESSING 33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140

C
rit

ic
al

 S
ec

tio
n

P
er

fo
rm

an
ce

Number of CPUs (Threads)

ideal

100M

10M

1M

100K

10K

1K

Figure 4.2: Reader-Writer Lock Scalability

per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and
the holdtime parameter set to values ranging from one
thousand (“1K” on the graph) to 100 million (“100M” on
the graph). The actual value plotted is:

LN

N L1
(4.1)

where N is the number of threads, LN is the number of
lock acquisitions by N threads, and L1 is the number of
lock acquisitions by a single thread. Given ideal hardware
and software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition can
be so slow, consider that all the acquiring threads must
update the pthread_rwlock_t data structure. Therefore,
if all 128 executing threads attempt to read-acquire the
reader-writer lock concurrently, they must update this
underlying pthread_rwlock_t one at a time. One lucky
thread might do so almost immediately, but the least-lucky
thread must wait for all the other 127 threads to do their
updates. This situation will only get worse as you add
CPUs.

Quick Quiz 4.20: Isn’t comparing against single-CPU
throughput a bit harsh?

Quick Quiz 4.21: But 1,000 instructions is not a par-
ticularly small size for a critical section. What do I do if
I need a much smaller critical section, for example, one

containing only a few tens of instructions?
Quick Quiz 4.22: In Figure 4.2, all of the traces other

than the 100M trace deviate gently from the ideal line. In
contrast, the 100M trace breaks sharply from the ideal
line at 64 CPUs. In addition, the spacing between the
100M trace and the 10M trace is much smaller than that
between the 10M trace and the 1M trace. Why does the
100M trace behave so much differently than the other
traces?

Quick Quiz 4.23: POWER5 is more than a decade
old, and new hardware should be faster. So why should
anyone worry about reader-writer locks being slow?

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 5 and 9.

4.2.5 Atomic Operations (GCC Classic)

Given that Figure 4.2 shows that the overhead of reader-
writer locking is most severe for the smallest critical sec-
tions, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic
operations. We have seen one atomic operations already,
in the form of the __sync_fetch_and_add() primitive
on line 18 of Listing 4.8. This primitive atomically adds
the value of its second argument to the value referenced
by its first argument, returning the old value (which was
ignored in this case). If a pair of threads concurrently ex-
ecute __sync_fetch_and_add() on the same variable,
the resulting value of the variable will include the result
of both additions.

The GNU C compiler offers a number of additional
atomic operations, including __sync_fetch_and_
sub(), __sync_fetch_and_or(), __sync_fetch_
and_and(), __sync_fetch_and_xor(), and __sync_
fetch_and_nand(), all of which return the old value.
If you instead need the new value, you can instead
use the __sync_add_and_fetch(), __sync_sub_
and_fetch(), __sync_or_and_fetch(), __sync_
and_and_fetch(), __sync_xor_and_fetch(), and
__sync_nand_and_fetch() primitives.

Quick Quiz 4.24: Is it really necessary to have both
sets of primitives?

The classic compare-and-swap operation is pro-
vided by a pair of primitives, __sync_bool_compare_
and_swap() and __sync_val_compare_and_swap().
Both of these primitive atomically update a location to a
new value, but only if its prior value was equal to the spec-

34 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.9: Compiler Barrier Primitive (for GCC)
#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \

({ typeof(x) ___x = ACCESS_ONCE(x); ___x; })
#define WRITE_ONCE(x, val) ({ ACCESS_ONCE(x) = (val); })
#define barrier() __asm__ __volatile__("": : :"memory")

ified old value. The first variant returns 1 if the operation
succeeded and 0 if it failed, for example, if the prior value
was not equal to the specified old value. The second vari-
ant returns the prior value of the location, which, if equal
to the specified old value, indicates that the operation
succeeded. Either of the compare-and-swap operation is
“universal” in the sense that any atomic operation on a
single location can be implemented in terms of compare-
and-swap, though the earlier operations are often more
efficient where they apply. The compare-and-swap opera-
tion is also capable of serving as the basis for a wider set
of atomic operations, though the more elaborate of these
often suffer from complexity, scalability, and performance
problems [Her90].

Quick Quiz 4.25: Given that these atomic operations
will often be able to generate single atomic instructions
that are directly supported by the underlying instruction
set, shouldn’t they be the fastest possible way to get things
done?

The __sync_synchronize() primitive issues a
“memory barrier”, which constrains both the compiler’s
and the CPU’s ability to reorder operations, as discussed
in Chapter 15. In some cases, it is sufficient to constrain
the compiler’s ability to reorder operations, while allow-
ing the CPU free rein, in which case the barrier()
primitive may be used, as it in fact was on line 28 of
Listing 4.8. In some cases, it is only necessary to ensure
that the compiler avoids optimizing away a given memory
read, in which case the READ_ONCE() primitive may be
used, as it was on line 17 of Listing 4.5. Similarly, the
WRITE_ONCE() primitive may be used to prevent the com-
piler from optimizing away a given memory write. These
last three primitives are not provided directly by GCC,
but may be implemented straightforwardly as shown in
Listing 4.9, and all three are discussed at length in Sec-
tion 4.3.4.

Quick Quiz 4.26: What happened to ACCESS_
ONCE()?

4.2.6 Atomic Operations (C11)

The C11 standard added atomic operations, including
loads (atomic_load()), stores (atomic_store()),

memory barriers (atomic_thread_fence() and
atomic_signal_fence()), and read-modify-write
atomics. The read-modify-write atomics include
atomic_fetch_add(), atomic_fetch_sub(),
atomic_fetch_and(), atomic_fetch_xor(),
atomic_exchange(), atomic_compare_exchange_
strong(), and atomic_compare_exchange_weak().
These operate in a manner similar to those described
in Section 4.2.5, but with the addition of memory-
order arguments to _explicit variants of all of the
operations. Without memory-order arguments, all the
atomic operations are fully ordered, and the arguments
permit weaker orderings. For example, “atomic_load_
explicit(&a, memory_order_relaxed)” is vaguely
similar to the Linux kernel’s “READ_ONCE()”.1

4.2.7 Atomic Operations (Modern GCC)
One restriction of the C11 atomics is that they apply
only to special atomic types, which can be problematic.
The GNU C compiler therefore provides atomic intrin-
sics, including __atomic_load(), __atomic_load_
n(), __atomic_store(), __atomic_store_n() __
atomic_thread_fence(), etc. These intrinsics offer
the same semantics as their C11 counterparts, but may
be used on plain non-atomic objects. Some of these in-
trinsics may be passed a memory-order argument from
this list: __ATOMIC_RELAXED, __ATOMIC_CONSUME,
__ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_
ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables
Per-thread variables, also called thread-specific data,
thread-local storage, and other less-polite names, are used
extremely heavily in concurrent code, as will be explored
in Chapters 5 and 8. POSIX supplies the pthread_key_
create() function to create a per-thread variable (and
return the corresponding key), pthread_key_delete()
to delete the per-thread variable corresponding to key,
pthread_setspecific() to set the value of the current
thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __
thread specifier that may be used in a variable definition
to designate that variable as being per-thread. The name
of the variable may then be used normally to access the

1 Memory ordering is described in more detail in Chapter 15 and
Appendix C.

4.3. ALTERNATIVES TO POSIX OPERATIONS 35

value of the current thread’s instance of that variable. Of
course, __thread is much easier to use than the POSIX
thead-specific data, and so __thread is usually preferred
for code that is to be built only with GCC or other com-
pilers supporting __thread.

Fortunately, the C11 standard introduced a _Thread_
local keyword that can be used in place of __thread. In
the fullness of time, this new keyword should combine the
ease of use of __thread with the portability of POSIX
thread-specific data.

4.3 Alternatives to POSIX Opera-
tions

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, GCC’s
__sync_ family of primitives all provide full memory-
ordering semantics, which in the past motivated many
developers to create their own implementations for situa-
tions where the full memory ordering semantics are not
required. The following sections show some alternatives
from the Linux kernel and some historical primitives used
by this book’s sample code.

4.3.1 Organization and Initialization

Although many environments do not require any special
initialization code, the code samples in this book start
with a call to smp_init(), which initializes a mapping
from pthread_t to consecutive integers. The userspace
RCU library similarly requires a call to rcu_init(). Al-
though these calls can be hidden in environments (such
as that of GCC) that support constructors, most of the
RCU flavors supported by the userspace RCU library also
require each thread invoke rcu_register_thread()
upon thread creation and rcu_unregister_thread()
before thread exit.

In the case of the Linux kernel, it is a philosophical
question as to whether the kernel does not require calls
to special initialization code or whether the kernel’s boot-
time code is in fact the required initialization code.

Listing 4.10: Thread API
int smp_thread_id(void)
thread_id_t create_thread(void *(*func)(void *), void *arg)
for_each_thread(t)
for_each_running_thread(t)
void *wait_thread(thread_id_t tid)
void wait_all_threads(void)

4.3.2 Thread Creation, Destruction, and
Control

The Linux kernel uses struct task_struct pointers
to track kthreads, kthread_create() to create them,
kthread_should_stop() to externally suggest that
they stop (which has no POSIX equivalent), kthread_
stop() to wait for them to stop, and schedule_
timeout_interruptible() for a timed wait. There
are quite a few additional kthread-management APIs, but
this provides a good start, as well as good search terms.

The CodeSamples API focuses on “threads”, which are
a locus of control.2 Each such thread has an identifier
of type thread_id_t, and no two threads running at a
given time will have the same identifier. Threads share ev-
erything except for per-thread local state,3 which includes
program counter and stack.

The thread API is shown in Listing 4.10, and members
are described in the following sections.

4.3.2.1 create_thread()

The create_thread() primitive creates a new thread,
starting the new thread’s execution at the function func
specified by create_thread()’s first argument, and
passing it the argument specified by create_thread()’s
second argument. This newly created thread will termi-
nate when it returns from the starting function specified
by func. The create_thread() primitive returns the
thread_id_t corresponding to the newly created child
thread.

This primitive will abort the program if more than NR_
THREADS threads are created, counting the one implic-
itly created by running the program. NR_THREADS is a
compile-time constant that may be modified, though some
systems may have an upper bound for the allowable num-
ber of threads.

2 There are many other names for similar software constructs, in-
cluding “process”, “task”, “fiber”, “event”, and so on. Similar design
principles apply to all of them.

3 How is that for a circular definition?

36 CHAPTER 4. TOOLS OF THE TRADE

4.3.2.2 smp_thread_id()

Because the thread_id_t returned from create_
thread() is system-dependent, the smp_thread_id()
primitive returns a thread index corresponding to the
thread making the request. This index is guaranteed to be
less than the maximum number of threads that have been
in existence since the program started, and is therefore
useful for bitmasks, array indices, and the like.

4.3.2.3 for_each_thread()

The for_each_thread() macro loops through all
threads that exist, including all threads that would ex-
ist if created. This macro is useful for handling per-thread
variables as will be seen in Section 4.2.8.

4.3.2.4 for_each_running_thread()

The for_each_running_thread() macro loops
through only those threads that currently exist. It is the
caller’s responsibility to synchronize with thread creation
and deletion if required.

4.3.2.5 wait_thread()

The wait_thread() primitive waits for completion of
the thread specified by the thread_id_t passed to it.
This in no way interferes with the execution of the spec-
ified thread; instead, it merely waits for it. Note that
wait_thread() returns the value that was returned by
the corresponding thread.

4.3.2.6 wait_all_threads()

The wait_all_threads() primitive waits for comple-
tion of all currently running threads. It is the caller’s
responsibility to synchronize with thread creation and
deletion if required. However, this primitive is normally
used to clean up at the end of a run, so such synchroniza-
tion is normally not needed.

4.3.2.7 Example Usage

Listing 4.11 (threadcreate.c) shows an example hello-
world-like child thread. As noted earlier, each thread is
allocated its own stack, so each thread has its own private
arg argument and myarg variable. Each child simply
prints its argument and its smp_thread_id() before ex-
iting. Note that the return statement on line 7 terminates

Listing 4.11: Example Child Thread
1 void *thread_test(void *arg)
2 {
3 int myarg = (intptr_t)arg;
4

5 printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());
7 return NULL;
8 }

Listing 4.12: Example Parent Thread
1 int main(int argc, char *argv[])
2 {
3 int i;
4 int nkids = 1;
5

6 smp_init();
7

8 if (argc > 1) {
9 nkids = strtoul(argv[1], NULL, 0);

10 if (nkids > NR_THREADS) {
11 fprintf(stderr, "nkids = %d too large, max = %d\n",
12 nkids, NR_THREADS);
13 usage(argv[0]);
14 }
15 }
16 printf("Parent thread spawning %d threads.\n", nkids);
17

18 for (i = 0; i < nkids; i++)
19 create_thread(thread_test, (void *)(intptr_t)i);
20

21 wait_all_threads();
22

23 printf("All spawned threads completed.\n");
24

25 exit(0);
26 }

the thread, returning a NULL to whoever invokes wait_
thread() on this thread.

The parent program is shown in Listing 4.12. It invokes
smp_init() to initialize the threading system on line 6,
parses arguments on lines 8-15, and announces its pres-
ence on line 16. It creates the specified number of child
threads on lines 18-19, and waits for them to complete
on line 21. Note that wait_all_threads() discards the
threads return values, as in this case they are all NULL,
which is not very interesting.

Quick Quiz 4.27: What happened to the Linux-kernel
equivalents to fork() and wait()?

4.3.3 Locking

A good starting subset of the Linux kernel’s locking API is
shown in Listing 4.13, each API element being described
in the following sections. This book’s CodeSamples lock-
ing API closely follows that of the Linux kernel.

4.3. ALTERNATIVES TO POSIX OPERATIONS 37

Listing 4.13: Locking API
void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);
int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

4.3.3.1 spin_lock_init()

The spin_lock_init() primitive initializes the speci-
fied spinlock_t variable, and must be invoked before
this variable is passed to any other spinlock primitive.

4.3.3.2 spin_lock()

The spin_lock() primitive acquires the specified spin-
lock, if necessary, waiting until the spinlock becomes
available. In some environments, such as pthreads, this
waiting will involve “spinning”, while in others, such as
the Linux kernel, it will involve blocking.

The key point is that only one thread may hold a spin-
lock at any given time.

4.3.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified
spinlock, but only if it is immediately available. It returns
true if it was able to acquire the spinlock and false
otherwise.

4.3.3.4 spin_unlock()

The spin_unlock() primitive releases the specified
spinlock, allowing other threads to acquire it.

4.3.3.5 Example Usage

A spinlock named mutex may be used to protect a vari-
able counter as follows:

spin_lock(&mutex);
counter++;
spin_unlock(&mutex);

Quick Quiz 4.28: What problems could occur if the
variable counter were incremented without the protec-
tion of mutex?

However, the spin_lock() and spin_unlock()
primitives do have performance consequences, as will
be seen in Chapter 10.

Listing 4.14: Living Dangerously Early 1990s Style
1 ptr = global_ptr;
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.15: C Compilers Can Invent Loads
1 if (global_ptr != NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr);

4.3.4 Accessing Shared Variables
The C standard defined semantics for concurrent read-
/write access to shared variables only in 2011, but concur-
rent C code was being written at least a quarter century
earlier [BK85, Inm85]. This raises the question as to what
today’s greybeards did back in long-past pre-C11 days. A
short answer to this question is “they lived dangerously”.

At least they would have been living dangerously had
they been using 2018 compilers. In (say) the early 1990s,
compilers were less capable in part because much less
work had been done on them and in part because they
were confined to the relatively small memories of the day.
Nevertheless, problems did arise, as shown in Listing 4.14,
which the compiler is within its rights to transform into
Listing 4.15. As you can, the temporary on line 1 of
Listing 4.14 has been optimized away, so that global_
ptr will been loaded up to three times.

Quick Quiz 4.29: What is wrong with loading List-
ing 4.14’s global_ptr up to three times?

Section 4.3.4.1 describes additional problems caused
by plain accesses, Sections 4.3.4.2 and 4.3.4.3 describe
some pre-C11 solutions. Of course, where practical, the
primitives described in Section 4.2.5 or (especially) Sec-
tion 4.2.6 should be instead be used to avoid data races,
that is, to ensure that if there are multiple concurrent ac-
cesses to a given variable, all of those accesses are loads.

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,4 the compiler
is within its rights to assume that the affected variables
are neither accessed nor modified by any other thread.
This assumption allows the compiler to carry out a large
number of transformations, including load tearing, store
tearing, load fusing, store fusing, code reordering, in-
vented loads, and invented stores, all of which work just
fine in single-threaded code. But concurrent code can

4 That is, normal loads and stores instead of C11 atomics, inline
assembly, or volatile accesses.

38 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.16: C Compilers Can Fuse Loads
1 if (!need_to_stop)
2 for (;;) {
3 do_something_quickly();
4 do_something_quickly();
5 do_something_quickly();
6 do_something_quickly();
7 do_something_quickly();
8 do_something_quickly();
9 do_something_quickly();

10 do_something_quickly();
11 do_something_quickly();
12 do_something_quickly();
13 do_something_quickly();
14 do_something_quickly();
15 do_something_quickly();
16 do_something_quickly();
17 do_something_quickly();
18 do_something_quickly();
19 }

be broken by each of these transformations, or shared-
variable shenanigans, as described below.

Load tearing occurs when the compiler uses mul-
tiple load instructions for a single access. For exam-
ple, the compiler could in theory compile the load from
global_ptr (see line 1 of Listing 4.14) as a series of
one-byte loads. If some other thread was concurrently
setting global_ptr to NULL, the result might have all
but one byte of the pointer set to zero, thus forming a
“wild pointer”. Stores using such a wild pointer could
corrupt arbitrary regions of memory, resulting in rare and
difficult-to-debug crashes.

Worse yet, on (say) an 8-bit system with 16-bit pointers,
the compiler might have no choice but to use a pair of
8-bit instructions to access a given pointer. Because the C
standard must support all manner of systems, the standard
cannot rule out load tearing in the general case.

Store tearing occurs when the compiler uses multiple
store instructions for a single access. For example, one
thread might store 0x1234 to a four-byte integer variable
at the same time another thread stored 0xabcd. If the
compiler used 16-bit stores for either access, the result
might well be 0x12cd, which could come as quite a sur-
prise to code loading from this integer. Again, the C
standard simply has no choice in the general case, given
the possibility of code using 32-bit integers running on a
16-bit system.

Load fusing occurs when the compiler uses the result
of a prior load from a given variable instead of repeating
the load. Not only is this sort of optimization just fine in
single-threaded code, it is often just fine in multithreaded
code. Unfortunately, the word “often” hides some truly
annoying exceptions.

For example, suppose that a real-time system needs

Listing 4.17: C Compilers Can Fuse Non-Adjacent Loads
1 int *gp;
2

3 void t0(void)
4 {
5 WRITE_ONCE(gp, &myvar);
6 }
7

8 void t1(void)
9 {

10 p1 = gp;
11 do_something(p1);
12 p2 = READ_ONCE(gp);
13 if (p2) {
14 do_something_else();
15 p3 = *gp;
16 }
17 }

to invoke a function named do_something_quickly()
repeatedly until the variable need_to_stop was set,
and that the compiler can see that do_something_
quickly() does not store to need_to_stop. The com-
piler might reasonably unroll this loop sixteen times in or-
der to reduce the per-invocation of the backwards branch
at the end of the loop. Worse yet, because the compiler
knows that do_something_quickly() does not store to
need_to_stop, the compiler could quite reasonably de-
cide to check this variable only once, resulting in the code
shown in Listing 4.16. Once entered, the loop on lines 2-
19 will never stop, regardless of how many times some
other thread stores a non-zero value to need_to_stop.
The result will at best be disappointment, and might well
also include severe physical damage.

The compiler can fuse loads across surprisingly large
spans of code. For example, in Listing 4.17, t0() and
t1() run concurrently, and do_something() and do_
something_else() are inline functions. Line 1 declares
pointer gp, which C initializes to NULL by default. At
some point, line 5 of t0() stores a non-NULL pointer
to gp. Meanwhile, t1() loads from gp three times on
lines 10, 12, and 15. Given that line 13 finds that gp is
non-NULL, one might hope that the dereference on line 15
would be guaranteed never to fault. Unfortunately, the
compiler is within its rights to fuse the read on lines 10
and 15, which means that if line 10 loads NULL and line 12
loads &myvar, line 15 could load NULL, resulting in a
fault.5 Note that the intervening READ_ONCE() does not
prevent the other two loads from being fused, despite the
fact that all three are loading from the same variable.

Quick Quiz 4.30: Why does it matter whether
do_something() and do_something_else() in List-
ing 4.17 are inline functions?

5 Will Deacon reports that this happened in the Linux kernel.

4.3. ALTERNATIVES TO POSIX OPERATIONS 39

Listing 4.18: C Compilers Can Fuse Stores
1 void shut_it_down(void)
2 {
3 status = SHUTTING_DOWN; /* BUGGY!!! */
4 start_shutdown();
5 while (!other_task_ready) /* BUGGY!!! */
6 continue;
7 finish_shutdown();
8 status = SHUT_DOWN; /* BUGGY!!! */
9 do_something_else();

10 }
11

12 void work_until_shut_down(void)
13 {
14 while (status != SHUTTING_DOWN) /* BUGGY!!! */
15 do_more_work();
16 other_task_ready = 1; /* BUGGY!!! */
17 }

Store fusing can occur when the compiler notices a
pair of successive stores to a given variable with no inter-
vening loads from that variable. In this case, the compiler
is within its rights to omit the first store. This is never
a problem in single-threaded code, and in fact it is usu-
ally the case that it is not a problem in correctly written
concurrent code. After all, if the two stores are executed
in quick succession, there is very little chance that some
other thread could load the value from the first store.

However, there are exceptions, for example as shown
in Listing 4.18. The function shut_it_down() stores
to the shared variable status on lines 3 and 8, and so
assuming that neither start_shutdown() nor finish_
shutdown() access status, the compiler could reason-
ably remove the store to status on line 3. Unfortu-
nately, this would mean that work_until_shut_down()
would never exit its loop spanning lines 14 and 15, and
thus would never set other_task_ready, which would
in turn mean that shut_it_down() would never exit
its loop spanning lines 5 and 6, even if the compiler
chooses not to fuse the successive loads from other_
task_ready on line 5.

And there are more problems with the code in List-
ing 4.18, including code reordering.

Code reordering is a common compilation technique
used to combine common subexpressions, reduce register
pressure, and improve utilization of the many functional
units available on modern superscalar microprocessors.
It is also another reason why the code in Listing 4.18 is
buggy. For example, suppose that the do_more_work()
function on line 15 does not access other_task_ready.
Then the compiler would be within its rights to move
the assignment to other_task_ready on line 16 to pre-
cede line 14, which might be a great disappointment for
anyone hoping that the last call to do_more_work() on

Listing 4.19: Inviting an Invented Store
1 if (condition)
2 a = 1;
3 else
4 do_a_bunch_of_stuff();

Listing 4.20: Compiler Invents an Invited Store
1 a = 1;
2 if (!condition) {
3 a = 0;
4 do_a_bunch_of_stuff();
5 }

line 15 happens before the call to finish_shutdown()
on line 7.

Invented loads were illustrated by the code in List-
ings 4.14 and 4.15, in which the compiler optimized away
a temporary variable, thus loading from a shared variable
more often than intended.

Invented loads can also be a performance hazard. These
hazards can occur when a load of variable in a “hot” cache-
line is hoisted out of an if statement. These hoisting op-
timizations are not uncommon, and can cause significant
increases in cache misses, and thus significant degradation
of both performance and scalability.

Invented stores can occur in a number of situations.
For example, a compiler emitting code for work_until_
shut_down() in Listing 4.18 might notice that other_
task_ready is not accessed by do_more_work(), and
stored to on line 16. If do_more_work() was a complex
inline function, it might be necessary to do a register spill,
in which case one attractive place to use for temporary
storage is other_task_ready. After all, there are no
accesses to it, so what is the harm?

Of course, a non-zero store to this variable at just
the wrong time would result in the while loop on
line 5 terminating prematurely, again allowing finish_
shutdown() to run concurrently with do_more_work().
Given that the entire point of this while appears to be to
prevent such concurrency, this is not a good thing.

Using a stored-to variable as a temporary might seem
outlandish, but it is permitted by the standard. Neverthe-
less, readers might be justified in wanting a less outlandish
example, which is provided by Listings 4.19 and 4.20.

A compiler emitting code for Listing 4.19 might know
that the value of a is initially zero, which might be a
strong temptation to optimize away one branch by trans-
forming this code to that in Listing 4.20. Here, line 1
unconditionally stores 1 to a, then resets the value back to
zero on line 3 if condition was not set. This transforms
the if-then-else into an if-then, saving one branch.

40 CHAPTER 4. TOOLS OF THE TRADE

Finally, pre-C11 compilers could invent writes to unre-
lated variables that happened to be adjacent to written-to
variables [Boe05, Section 4.2]. This variant of invented
stores has been outlawed by the prohibition against com-
piler optimizations that invent data races.

Reliable concurrent code clearly needs a way to cause
the compiler to preserve both the number and order of
important accesses, a topic taken up by Sections 4.3.4.2
and 4.3.4.3, which are up next.

4.3.4.2 A Volatile Solution

Although it is now much maligned, before the advent of
C11 and C++11 [Bec11], the volatile keyword was an
indispensible tool in the parallel programmer’s toolbox.
This raises the question of exactly what volatile means,
a question that is not answered with excessive precision
even by more recent versions of this standard [Smi18].6

This version guarantees that “Accesses through volatile
glvalues are evaluated strictly according to the rules of
the abstract machine”, that volatile accesses are side
effects, that they are one of the four forward-progress indi-
cators, and that their exact semantics are implementation-
defined. Perhaps the most clear guidance is provided by
this non-normative note:

volatile is a hint to the implementation to
avoid aggressive optimization involving the ob-
ject because the value of the object might be
changed by means undetectable by an imple-
mentation. Furthermore, for some implemen-
tations, volatile might indicate that special
hardware instructions are required to access the
object. See 6.8.1 for detailed semantics. In gen-
eral, the semantics of volatile are intended
to be the same in C++ as they are in C.

This wording might be reassuring to those writing low-
level code, except for the fact that compiler writers are
free to completely ignore non-normative notes. Parallel
programmers might instead reassure themselves that com-
piler writers would like to avoid breaking device drivers
(though perhaps only after a few “frank and open” discus-
sions with device-driver developers), and device drivers
impose at least the following constraints [MWPF18a]:

1. Implementations are forbidden from tearing an
aligned volatile access when machine instructions of

6 JF Bastien thoroughly documented the history and use cases for
the volatile keyword in C++ [Bas18].

Listing 4.21: Avoiding Danger, 2018 Style
1 ptr = READ_ONCE(global_ptr);
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.22: Preventing Load Fusing
1 while (!READ_ONCE((!need_to_stop))
2 do_something_quickly();

that access’s size and type are available.7 Concurrent
code relies on this constraint to avoid unnecessary
load and store tearing.

2. Implementations must not assume anything about the
semantics of a volatile access, nor, for any volatile
access that returns a value, about the possible set
of values that might be returned.8 Concurrent code
relies on this constraint to avoid optimizations that
are inapplicable given that other processors might be
concurrently accessing the location in question.

3. Aligned machine-sized non-mixed-size volatile ac-
cesses interact naturally with volatile assembly-code
sequences before and after. This is necessary be-
cause some devices must be accessed using a com-
bination of volatile MMIO accesses and special-
purpose assembly-language instructions. Concur-
rent code relies on this constraint in order to achieve
the desired ordering properties from combinations
of volatile accesses and other means discussed in
Section 4.3.4.3.

Concurrent code also relies on the first two constraints
to avoid undefined behavior that could result due to data
races if any of the accesses to a given object was either
non-atomic or non-volatile, assuming that all accesses are
aligned and machine-sized. The semantics of mixed-size
accesses to the same locations are more complex, and are
left aside for the time being.

So how does volatile stack up against the earlier
examples?

Using READ_ONCE() on line 1 of Listing 4.14 avoids in-
vented loads, resulting in the code shown in Listing 4.21.

As shown in Listing 4.22, READ_ONCE() can also pre-
vent the loop unrolling in Listing 4.16.

READ_ONCE() and WRITE_ONCE() can also be used to
prevent the store fusing and invented stores that were

7 Note that this leaves unspecified what to do with 128-bit loads and
stores on CPUs having 128-bit CAS but not 128-bit loads and stores.

8 This is strongly implied by the implementation-defined semantics
called out above.

4.3. ALTERNATIVES TO POSIX OPERATIONS 41

Listing 4.23: Preventing Store Fusing and Invented Stores
1 void shut_it_down(void)
2 {
3 WRITE_ONCE(status, SHUTTING_DOWN); /* BUGGY!!! */
4 start_shutdown();
5 while (!READ_ONCE(other_task_ready)) /* BUGGY!!! */
6 continue;
7 finish_shutdown();
8 WRITE_ONCE(status, SHUT_DOWN); /* BUGGY!!! */
9 do_something_else();

10 }
11

12 void work_until_shut_down(void)
13 {
14 while (READ_ONCE(status) != SHUTTING_DOWN) /* BUGGY!!! */
15 do_more_work();
16 WRITE_ONCE(other_task_ready, 1); /* BUGGY!!! */
17 }

Listing 4.24: Disinviting an Invented Store
1 if (condition)
2 WRITE_ONCE(a, 1);
3 else
4 do_a_bunch_of_stuff();

shown in Listing 4.18, with the result shown in List-
ing 4.23. However, this does nothing to prevent code
reordering, which requires some additional tricks taught
in Section 4.3.4.3.

Finally, WRITE_ONCE() can be used to prevent the
store invention shown in Listing 4.19, with the resulting
code shown in Listing 4.24.

To summarize, the volatile keyword can prevent
load tearing and store tearing in cases where the loads
and stores are machine-sized and properly aligned. It can
also prevent load fusing, store fusing, invented loads, and
invented stores. However, although it does prevent the
compiler from reordering volatile accesses with each
other, it does nothing to prevent the CPU from reordering
these accesses. Furthermore, it does nothing to prevent
either compiler or CPU from reordering non-volatile
accesses with each other or with volatile accesses. Pre-
venting these types of reordering requires the techniques
described in the next section.

4.3.4.3 Assembling the Rest of a Solution

Additional ordering has traditionally been provided by
recourse to assembly language, for example, GCC asm
directives. Oddly enough, these directives need not ac-
tually contain assembly language, as exemplified by the
barrier() macro shown in Listing 4.9.

In the barrier() macro, the __asm__ introduces the
asm directive, the __volatile__ prevents the compiler
from optimizing the asm away, the empty string specifies

Listing 4.25: Preventing C Compilers From Fusing Loads
1 while (!need_to_stop) {
2 barrier();
3 do_something_quickly();
4 barrier();
5 }

Listing 4.26: Preventing Reordering
1 void shut_it_down(void)
2 {
3 WRITE_ONCE(status, SHUTTING_DOWN);
4 smp_mb();
5 start_shutdown();
6 while (!READ_ONCE(other_task_ready))
7 continue;
8 smp_mb();
9 finish_shutdown();

10 smp_mb();
11 WRITE_ONCE(status, SHUT_DOWN);
12 do_something_else();
13 }
14

15 void work_until_shut_down(void)
16 {
17 while (READ_ONCE(status) != SHUTTING_DOWN) {
18 smp_mb();
19 do_more_work();
20 }
21 smp_mb();
22 WRITE_ONCE(other_task_ready, 1);
23 }

that no actual instructions are to be emitted, and the fi-
nal "memory" tells the compiler that this do-nothing asm
can arbitrarily change memory. In response, the com-
piler will avoid moving any memory references across
the barrier() macro. This means that the real-time-
destroying loop unrolling shown in Listing 4.16 can be
prevented by adding barrier() calls as shown on lines 2
and 4 of Listing 4.25. These two lines of code prevent
the compiler from pushing the load from need_to_stop
into or past do_something_quickly() from either di-
rection.

However, this does nothing to prevent the CPU from
reordering the references. In many cases, this is not a prob-
lem because the hardware can only do a certain amount of
reordering. However, there are cases such as Listing 4.18
where the hardware must be constrained. Listing 4.23
prevented store fusing and invention, and Listing 4.26
further prevents the remaining reordering by addition of
smp_mb() on lines 4, 8, 10, 18, and 21. The smp_mb()
macro is similar to barrier() shown in Listing 4.9, but
with the empty string replaced by a string containing
the instruction for a full memory barrier, for example,
"mfence" on x86 or "sync" on PowerPC.

Quick Quiz 4.31: But aren’t full memory barriers very
heavyweight? Isn’t there a cheaper way to enforce the

42 CHAPTER 4. TOOLS OF THE TRADE

ordering needed in Listing 4.26?
Ordering is also provided by some read-modify-write

atomic operations, some of which are presented in Sec-
tion 4.3.5. In the general case, memory ordering can be
quite subtle, as discussed in Chapter 15. The next section
covers an alternative to memory ordering, namely limiting
or even entirely avoiding data races.

4.3.4.4 Avoiding Data Races

“Doctor, it hurts my head when I think about concurrently
accessing shared variables!”

“Then stop concurrently accessing shared variables!!!”
The doctor’s advice might seem unhelpful, but simpli-

fication is often a very good thing. And one time-tested
way to avoid concurrently accessing shared variables is
to use locking, as will be discussed in Chapter 7. Another
way is to access a given “shared” variable from only one
CPU or thread, as will be discussed in Chapter 8. It is
possible to combine these, for example, a given variable
might be modified only by one CPU or thread while hold-
ing a particular lock, and might be read either from that
same CPU or thread on the one hand, or while holding
that same lock on the other.

In the spirit of “every little bit helps”, here is a list of
ways of allowing plain loads and stores in some cases,
while requiring markings (such as READ_ONCE() and
WRITE_ONCE()) for other cases:

1. If a shared variable is only modified while holding a
given lock by a given owning CPU or thread, then
all stores must use WRITE_ONCE() and non-owning
CPUs or threads that are not holding the lock must
use READ_ONCE() for loads. The owning CPU or
thread may use plain loads, as may any CPU or
thread holding the lock.

2. If a shared variable is only modified while hold-
ing a given lock, then all stores must use WRITE_
ONCE(). CPUs or threads not holding the lock must
use READ_ONCE() for loads. CPUs or threads hold-
ing the lock may use plain loads.

3. If a shared variable is only modified by a given own-
ing CPU or thread, then all stores must use WRITE_
ONCE() and non-owning CPUs or threads must use
READ_ONCE() for loads. The owning CPU or thread
may use plain loads.

In most other cases, loads from and stores to a shared
variable must use READ_ONCE() and WRITE_ONCE() or

stronger, respectively. But it bears repeating that neither
READ_ONCE() nor WRITE_ONCE() provide any ordering
guarantees. See the above Section 4.3.4.3 or Chapter 15
for information on providing ordering guarantees.

One important special case is when a given variable
is shared by process-level code on the one hand and by
an interrupt or signal handler on the other, but is never
accessed concurrently by some other CPU or thread. In
this case, the process-level code must use READ_ONCE()
and WRITE_ONCE() or stronger to access this variable.

Quick Quiz 4.32: What needs to happen if a given
interrupt or signal handler might itself be interrupted?

Examples of many of these data-race-avoidance pat-
terns are presented in Chapter 5.

4.3.5 Atomic Operations

The Linux kernel provides a wide variety of atomic opera-
tions, but those defined on type atomic_t provide a good
start. Normal non-tearing reads and stores are provided by
atomic_read() and atomic_set(), respectively. Ac-
quire load is provided by smp_load_acquire() and re-
lease store by smp_store_release().

Non-value-returning fetch-and-add operations are pro-
vided by atomic_add(), atomic_sub(), atomic_
inc(), and atomic_dec(), among others. An atomic
decrement that returns a reached-zero indication is pro-
vided by both atomic_dec_and_test() and atomic_
sub_and_test(). An atomic add that returns the
new value is provided by atomic_add_return().
Both atomic_add_unless() and atomic_inc_not_
zero() provide conditional atomic operations, where
nothing happens unless the original value of the atomic
variable is different than the value specified (these are very
handy for managing reference counters, for example).

An atomic exchange operation is provided by atomic_
xchg(), and the celebrated compare-and-swap (CAS)
operation is provided by atomic_cmpxchg(). Both
of these return the old value. Many additional atomic
RMW primitives are available in the Linux kernel, see
the Documentation/atomic_ops.txt file in the Linux-
kernel source tree.

This book’s CodeSamples API closely follows that of
the Linux kernel.

4.3.6 Per-CPU Variables

The Linux kernel uses DEFINE_PER_CPU() to define a
per-CPU variable, this_cpu_ptr() to form a reference

4.4. THE RIGHT TOOL FOR THE JOB: HOW TO CHOOSE? 43

Listing 4.27: Per-Thread-Variable API
DEFINE_PER_THREAD(type, name)
DECLARE_PER_THREAD(type, name)
per_thread(name, thread)
__get_thread_var(name)
init_per_thread(name, v)

to this CPU’s instance of a given per-CPU variable, per_
cpu() to access a specified CPU’s instance of a given
per-CPU variable, along with many other special-purpose
per-CPU operations.

Listing 4.27 shows this book’s per-thread-variable API,
which is patterned after the Linux kernel’s per-CPU-
variable API. This API provides the per-thread equiv-
alent of global variables. Although this API is, strictly
speaking, not necessary9, it can provide a good userspace
analogy to Linux kernel code.

Quick Quiz 4.33: How could you work around the
lack of a per-thread-variable API on systems that do not
provide it?

4.3.6.1 DEFINE_PER_THREAD()

The DEFINE_PER_THREAD() primitive defines a per-
thread variable. Unfortunately, it is not possible to pro-
vide an initializer in the way permitted by the Linux
kernel’s DEFINE_PER_CPU() primitive, but there is an
init_per_thread() primitive that permits easy run-
time initialization.

4.3.6.2 DECLARE_PER_THREAD()

The DECLARE_PER_THREAD() primitive is a declaration
in the C sense, as opposed to a definition. Thus, a
DECLARE_PER_THREAD() primitive may be used to ac-
cess a per-thread variable defined in some other file.

4.3.6.3 per_thread()

The per_thread() primitive accesses the specified
thread’s variable.

4.3.6.4 __get_thread_var()

The __get_thread_var() primitive accesses the cur-
rent thread’s variable.

9 You could instead use __thread or _Thread_local.

4.3.6.5 init_per_thread()

The init_per_thread() primitive sets all threads’ in-
stances of the specified variable to the specified value.
The Linux kernel accomplishes this via normal C initial-
ization, relying in clever use of linker scripts and code
executed during the CPU-online process.

4.3.6.6 Usage Example

Suppose that we have a counter that is incremented very
frequently but read out quite rarely. As will become clear
in Section 5.2, it is helpful to implement such a counter
using a per-thread variable. Such a variable can be defined
as follows:

DEFINE_PER_THREAD(int, counter);

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as
follows:

p_counter = &__get_thread_var(counter);
WRITE_ONCE(*p_counter, *p_counter + 1);

The value of the counter is then the sum of its instances.
A snapshot of the value of the counter can thus be col-
lected as follows:

for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));

Again, it is possible to gain a similar effect using other
mechanisms, but per-thread variables combine conve-
nience and high performance, as will be shown in more
detail in Section 5.2.

4.4 The Right Tool for the Job:
How to Choose?

As a rough rule of thumb, use the simplest tool that will
get the job done. If you can, simply program sequentially.
If that is insufficient, try using a shell script to mediate
parallelism. If the resulting shell-script fork()/exec()
overhead (about 480 microseconds for a minimal C pro-
gram on an Intel Core Duo laptop) is too large, try using
the C-language fork() and wait() primitives. If the

44 CHAPTER 4. TOOLS OF THE TRADE

overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing
the appropriate locking and/or atomic-operation primi-
tives. If the overhead of the POSIX threading primitives
(typically sub-microsecond) is too great, then the primi-
tives introduced in Chapter 9 may be required. Of course,
the actual overheads will depend not only on your hard-
ware, but most critically on the manner in which you use
the primitives. Furthermore, always remember that inter-
process communication and message-passing can be good
alternatives to shared-memory multithreaded execution,
especially when your code makes good use of the design
principles called out in Chapter 6.

Quick Quiz 4.34: Wouldn’t the shell normally use
vfork() rather than fork()?

Because concurrency was added to the C standard sev-
eral decades after the C language was first used to build
concurrent systems, there are a number of ways of concur-
rently accessing shared variables. All else being equal, the
C11 standard operations described in Section 4.2.6 should
be your first stop. If you need to access a given shared
variable both with plain accesses and atomically, then the
modern GCC atomics described in Section 4.2.7 might
work well for you. If you are working on an old code
base that uses the classic GCC __sync API, then you
should review Section 4.2.5 as well as the relevant GCC
documentation. If you are working on the Linux kernel
or similar code base that combines use of the volatile
keyword with inline assembly, or if you need dependen-
cies to provide ordering, look at the material presented in
Section 4.3.4 as well as that in Chapter 15.

Whatever approach you take, please keep in mind that
randomly hacking multi-threaded code is a spectacularly
bad idea, especially given that shared-memory parallel
systems use your own intelligence against you: The
smarter you are, the deeper a hole you will dig for your-
self before you realize that you are in trouble [Pok16].
Therefore, it is necessary to make the right design choices
as well as the correct choice of individual primitives, as
will be discussed at length in subsequent chapters.

As easy as 1, 2, 3!

UnknownChapter 5

Counting

Counting is perhaps the simplest and most natural thing
a computer can do. However, counting efficiently and
scalably on a large shared-memory multiprocessor can
be quite challenging. Furthermore, the simplicity of the
underlying concept of counting allows us to explore the
fundamental issues of concurrency without the distrac-
tions of elaborate data structures or complex synchroniza-
tion primitives. Counting therefore provides an excellent
introduction to parallel programming.

This chapter covers a number of special cases for which
there are simple, fast, and scalable counting algorithms.
But first, let us find out how much you already know about
concurrent counting.

Quick Quiz 5.1: Why on earth should efficient and
scalable counting be hard? After all, computers have
special hardware for the sole purpose of doing counting,
addition, subtraction, and lots more besides, don’t they???

Quick Quiz 5.2: Network-packet counting prob-
lem. Suppose that you need to collect statistics on the
number of networking packets (or total number of bytes)
transmitted and/or received. Packets might be transmitted
or received by any CPU on the system. Suppose further
that this large machine is capable of handling a million
packets per second, and that there is a systems-monitoring
package that reads out the count every five seconds. How
would you implement this statistical counter?

Quick Quiz 5.3: Approximate structure-allocation
limit problem. Suppose that you need to maintain a
count of the number of structures allocated in order to
fail any allocations once the number of structures in use
exceeds a limit (say, 10,000). Suppose further that these
structures are short-lived, that the limit is rarely exceeded,
and that a “sloppy” approximate limit is acceptable.

Quick Quiz 5.4: Exact structure-allocation limit
problem. Suppose that you need to maintain a count

of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds
an exact limit (again, say 10,000). Suppose further that
these structures are short-lived, and that the limit is rarely
exceeded, that there is almost always at least one structure
in use, and suppose further still that it is necessary to know
exactly when this counter reaches zero, for example, in
order to free up some memory that is not required unless
there is at least one structure in use.

Quick Quiz 5.5: Removable I/O device access-
count problem. Suppose that you need to maintain a
reference count on a heavily used removable mass-storage
device, so that you can tell the user when it is safe to re-
move the device. This device follows the usual removal
procedure where the user indicates a desire to remove the
device, and the system tells the user when it is safe to do
so.

The remainder of this chapter will develop answers
to these questions. Section 5.1 asks why counting on
multicore systems isn’t trivial, and Section 5.2 looks
into ways of solving the network-packet counting prob-
lem. Section 5.3 investigates the approximate structure-
allocation limit problem, while Section 5.4 takes on the
exact structure-allocation limit problem. Section 5.5 dis-
cusses how to use the various specialized parallel counters
introduced in the preceding sections. Finally, Section 5.6
concludes the chapter with performance measurements.

Sections 5.1 and 5.2 contain introductory material,
while the remaining sections are more appropriate for
advanced students.

5.1 Why Isn’t Concurrent Count-
ing Trivial?

Let’s start with something simple, for example, the

45

46 CHAPTER 5. COUNTING

Listing 5.1: Just Count!
1 unsigned long counter = 0;
2

3 static __inline__ void inc_count(void)
4 {
5 WRITE_ONCE(counter, READ_ONCE(counter) + 1);
6 }
7

8 static __inline__ unsigned long read_count(void)
9 {

10 return READ_ONCE(counter);
11 }

Listing 5.2: Just Count Atomically!
1 atomic_t counter = ATOMIC_INIT(0);
2

3 static __inline__ void inc_count(void)
4 {
5 atomic_inc(&counter);
6 }
7

8 static __inline__ long read_count(void)
9 {

10 return atomic_read(&counter);
11 }

straightforward use of arithmetic shown in Listing 5.1
(count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its
value on line 10. What could be simpler?

This approach has the additional advantage of being
blazingly fast if you are doing lots of reading and almost
no incrementing, and on small systems, the performance
is excellent.

There is just one large fly in the ointment: this ap-
proach can lose counts. On my dual-core laptop, a short
run invoked inc_count() 100,014,000 times, but the
final value of the counter was only 52,909,118. Although
approximate values do have their place in computing,
accuracies far greater than 50 % are almost always neces-
sary.

Quick Quiz 5.6: But can’t a smart compiler prove
line 5 of Listing 5.1 is equivalent to the ++ operator and
produce an x86 add-to-memory instruction? And won’t
the CPU cache cause this to be atomic?

Quick Quiz 5.7: The 8-figure accuracy on the number
of failures indicates that you really did test this. Why
would it be necessary to test such a trivial program, espe-
cially when the bug is easily seen by inspection?

The straightforward way to count accurately is to use
atomic operations, as shown in Listing 5.2 (count_
atomic.c). Line 1 defines an atomic variable, line 5
atomically increments it, and line 10 reads it out. Be-
cause this is atomic, it keeps perfect count. However, it is
slower: on a Intel Core Duo laptop, it is about six times

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8

Ti
m

e
P

er
 In

cr
em

en
t (

na
no

se
co

nd
s)

Number of CPUs (Threads)

Figure 5.1: Atomic Increment Scalability on Nehalem

slower than non-atomic increment when a single thread
is incrementing, and more than ten times slower if two
threads are incrementing.1

This poor performance should not be a surprise, given
the discussion in Chapter 3, nor should it be a surprise
that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in
Figure 5.1. In this figure, the horizontal dashed line rest-
ing on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an
algorithm, a given increment would incur the same over-
head that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly
non-ideal, and gets worse as you add CPUs.

Quick Quiz 5.8: Why doesn’t the dashed line on the
x axis meet the diagonal line at x = 1?

Quick Quiz 5.9: But atomic increment is still pretty
fast. And incrementing a single variable in a tight loop
sounds pretty unrealistic to me, after all, most of the
program’s execution should be devoted to actually doing
work, not accounting for the work it has done! Why
should I care about making this go faster?

For another perspective on global atomic increment,
consider Figure 5.2. In order for each CPU to get a chance
to increment a given global variable, the cache line con-

1 Interestingly enough, a pair of threads non-atomically increment-
ing a counter will cause the counter to increase more quickly than
a pair of threads atomically incrementing the counter. Of course, if
your only goal is to make the counter increase quickly, an easier ap-
proach is to simply assign a large value to the counter. Nevertheless,
there is likely to be a role for algorithms that use carefully relaxed
notions of correctness in order to gain greater performance and scalabil-
ity [And91, ACMS03, Ung11].

5.2. STATISTICAL COUNTERS 47

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory MemorySystem Interconnect

Figure 5.2: Data Flow For Global Atomic Increment

One one thousand.

Two one thousand.

Three one thousand...

Figure 5.3: Waiting to Count

taining that variable must circulate among all the CPUs,
as shown by the red arrows. Such circulation will take
significant time, resulting in the poor performance seen
in Figure 5.1, which might be thought of as shown in
Figure 5.3.

The following sections discuss high-performance
counting, which avoids the delays inherent in such circu-
lation.

Quick Quiz 5.10: But why can’t CPU designers sim-
ply ship the addition operation to the data, avoiding the
need to circulate the cache line containing the global vari-
able being incremented?

5.2 Statistical Counters

This section covers the common special case of statistical
counters, where the count is updated extremely frequently

Listing 5.3: Array-Based Per-Thread Statistical Counters
1 DEFINE_PER_THREAD(unsigned long, counter);
2

3 static __inline__ void inc_count(void)
4 {
5 unsigned long *p_counter = &__get_thread_var(counter);
6

7 WRITE_ONCE(*p_counter, *p_counter + 1);
8 }
9

10 static __inline__ unsigned long read_count(void)
11 {
12 int t;
13 unsigned long sum = 0;
14

15 for_each_thread(t)
16 sum += READ_ONCE(per_thread(counter, t));
17 return sum;
18 }

and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem posed in
Quick Quiz 5.2.

5.2.1 Design
Statistical counting is typically handled by providing a
counter per thread (or CPU, when running in the ker-
nel), so that each thread updates its own counter, as was
foreshadowed in Section 4.3.6. The aggregate value of
the counters is read out by simply summing up all of
the threads’ counters, relying on the commutative and
associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in
Section 6.3.4.

Quick Quiz 5.11: But doesn’t the fact that C’s “inte-
gers” are limited in size complicate things?

5.2.2 Array-Based Implementation
One way to provide per-thread variables is to allocate
an array with one element per thread (presumably cache
aligned and padded to avoid false sharing).

Quick Quiz 5.12: An array??? But doesn’t that limit
the number of threads?

Such an array can be wrapped into per-thread primi-
tives, as shown in Listing 5.3 (count_stat.c). Line 1
defines an array containing a set of per-thread coun-
ters of type unsigned long named, creatively enough,
counter.

Lines 3-8 show a function that increments the coun-
ters, using the __get_thread_var() primitive to locate
the currently running thread’s element of the counter
array. Because this element is modified only by the corre-
sponding thread, non-atomic increment suffices. However,

48 CHAPTER 5. COUNTING

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory MemorySystem Interconnect

Figure 5.4: Data Flow For Per-Thread Increment

this code uses WRITE_ONCE() to prevent destructive com-
piler optimizations. For but one example, the compiler
is within its rights to use a to-be-stored-to location as
temporary storage, thus writing what would be for all
intents and purposes garbage to that location just before
doing the desired store. This could of course be rather
confusing to anything attempting to read out the count.
The use of WRITE_ONCE() prevents this optimization and
others besides.

Quick Quiz 5.13: What other nasty optimizations
could GCC apply?

Lines 10-18 show a function that reads out the aggre-
gate value of the counter, using the for_each_thread()
primitive to iterate over the list of currently running
threads, and using the per_thread() primitive to fetch
the specified thread’s counter. This code also uses READ_
ONCE() to ensure that the compiler doesn’t optimize these
loads into oblivion. For but one example, a pair of consec-
utive calls to read_count() might be inlined, and an in-
trepid optimizer might notice that the same locations were
being summed and thus incorrectly conclude that it would
be simply wonderful to sum them once and use the result-
ing value twice. This sort of optimization might be rather
frustrating to people expecting later read_count() calls
to return larger values. The use of READ_ONCE() prevents
this optimization and others besides.

Quick Quiz 5.14: How does the per-thread counter
variable in Listing 5.3 get initialized?

Quick Quiz 5.15: How is the code in Listing 5.3 sup-
posed to permit more than one counter?

This approach scales linearly with increasing number
of updater threads invoking inc_count(). As is shown
by the green arrows on each CPU in Figure 5.4, the rea-
son for this is that each CPU can make rapid progress

incrementing its thread’s variable, without any expensive
cross-system communication. As such, this section solves
the network-packet counting problem presented at the
beginning of this chapter.

Quick Quiz 5.16: The read operation takes time to
sum up the per-thread values, and during that time, the
counter could well be changing. This means that the
value returned by read_count() in Listing 5.3 will not
necessarily be exact. Assume that the counter is being
incremented at rate r counts per unit time, and that read_
count()’s execution consumes ∆ units of time. What is
the expected error in the return value?

However, this excellent update-side scalability comes at
great read-side expense for large numbers of threads. The
next section shows one way to reduce read-side expense
while still retaining the update-side scalability.

5.2.3 Eventually Consistent Implementa-
tion

One way to retain update-side scalability while greatly
improving read-side performance is to weaken consis-
tency requirements. The counting algorithm in the previ-
ous section is guaranteed to return a value between the
value that an ideal counter would have taken on near the
beginning of read_count()’s execution and that near
the end of read_count()’s execution. Eventual consis-
tency [Vog09] provides a weaker guarantee: in absence
of calls to inc_count(), calls to read_count() will
eventually return an accurate count.

We exploit eventual consistency by maintaining a
global counter. However, updaters only manipulate their
per-thread counters. A separate thread is provided to
transfer counts from the per-thread counters to the global
counter. Readers simply access the value of the global
counter. If updaters are active, the value used by the
readers will be out of date, however, once updates cease,
the global counter will eventually converge on the true
value—hence this approach qualifies as eventually consis-
tent.

The implementation is shown in Listing 5.4 (count_
stat_eventual.c). Lines 1-2 show the per-thread vari-
able and the global variable that track the counter’s value,
and line 3 shows stopflag which is used to coordinate
termination (for the case where we want to terminate
the program with an accurate counter value). The inc_
count() function shown on lines 5-10 is similar to its
counterpart in Listing 5.3. The read_count() function
shown on lines 12-15 simply returns the value of the

5.2. STATISTICAL COUNTERS 49

Listing 5.4: Array-Based Per-Thread Eventually Consistent
Counters

1 DEFINE_PER_THREAD(unsigned long, counter);
2 unsigned long global_count;
3 int stopflag;
4

5 static __inline__ void inc_count(void)
6 {
7 unsigned long *p_counter = &__get_thread_var(counter);
8

9 WRITE_ONCE(*p_counter, *p_counter + 1);
10 }
11

12 static __inline__ unsigned long read_count(void)
13 {
14 return READ_ONCE(global_count);
15 }
16

17 void *eventual(void *arg)
18 {
19 int t;
20 unsigned long sum;
21

22 while (READ_ONCE(stopflag) < 3) {
23 sum = 0;
24 for_each_thread(t)
25 sum += READ_ONCE(per_thread(counter, t));
26 WRITE_ONCE(global_count, sum);
27 poll(NULL, 0, 1);
28 if (READ_ONCE(stopflag)) {
29 smp_mb();
30 WRITE_ONCE(stopflag, stopflag + 1);
31 }
32 }
33 return NULL;
34 }
35

36 void count_init(void)
37 {
38 int en;
39 thread_id_t tid;
40

41 en = pthread_create(&tid, NULL, eventual, NULL);
42 if (en != 0) {
43 fprintf(stderr, "pthread_create: %s\n", strerror(en));
44 exit(EXIT_FAILURE);
45 }
46 }
47

48 void count_cleanup(void)
49 {
50 WRITE_ONCE(stopflag, 1);
51 while (READ_ONCE(stopflag) < 3)
52 poll(NULL, 0, 1);
53 smp_mb();
54 }

global_count variable.
However, the count_init() function on lines 36-46

creates the eventual() thread shown on lines 17-34,
which cycles through all the threads, summing the per-
thread local counter and storing the sum to the global_
count variable. The eventual() thread waits an ar-
bitrarily chosen one millisecond between passes. The
count_cleanup() function on lines 48-54 coordinates
termination.

This approach gives extremely fast counter read-out
while still supporting linear counter-update performance.
However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread
running eventual().

Quick Quiz 5.17: Why doesn’t inc_count() in List-
ing 5.4 need to use atomic instructions? After all, we now
have multiple threads accessing the per-thread counters!

Quick Quiz 5.18: Won’t the single global thread in
the function eventual() of Listing 5.4 be just as severe
a bottleneck as a global lock would be?

Quick Quiz 5.19: Won’t the estimate returned by
read_count() in Listing 5.4 become increasingly in-
accurate as the number of threads rises?

Quick Quiz 5.20: Given that in the eventually-consis-
tent algorithm shown in Listing 5.4 both reads and updates
have extremely low overhead and are extremely scalable,
why would anyone bother with the implementation de-
scribed in Section 5.2.2, given its costly read-side code?

5.2.4 Per-Thread-Variable-Based Imple-
mentation

Fortunately, GCC provides an __thread storage class
that provides per-thread storage. This can be used as
shown in Listing 5.5 (count_end.c) to implement a sta-
tistical counter that not only scales, but that also incurs
little or no performance penalty to incrementers compared
to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-
thread counter variable, the counterp[] array allows
threads to access each others’ counters, finalcount ac-
cumulates the total as individual threads exit, and final_
mutex coordinates between threads accumulating the to-
tal value of the counter and exiting threads.

Quick Quiz 5.21: Why do we need an explicit array
to find the other threads’ counters? Why doesn’t GCC
provide a per_thread() interface, similar to the Linux

50 CHAPTER 5. COUNTING

Listing 5.5: Per-Thread Statistical Counters
1 unsigned long __thread counter = 0;
2 unsigned long *counterp[NR_THREADS] = { NULL };
3 unsigned long finalcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5

6 static __inline__ void inc_count(void)
7 {
8 WRITE_ONCE(counter, counter + 1);
9 }

10

11 static __inline__ unsigned long read_count(void)
12 {
13 int t;
14 unsigned long sum;
15

16 spin_lock(&final_mutex);
17 sum = finalcount;
18 for_each_thread(t)
19 if (counterp[t] != NULL)
20 sum += READ_ONCE(*counterp[t]);
21 spin_unlock(&final_mutex);
22 return sum;
23 }
24

25 void count_register_thread(unsigned long *p)
26 {
27 int idx = smp_thread_id();
28

29 spin_lock(&final_mutex);
30 counterp[idx] = &counter;
31 spin_unlock(&final_mutex);
32 }
33

34 void count_unregister_thread(int nthreadsexpected)
35 {
36 int idx = smp_thread_id();
37

38 spin_lock(&final_mutex);
39 finalcount += counter;
40 counterp[idx] = NULL;
41 spin_unlock(&final_mutex);
42 }

kernel’s per_cpu() primitive, to allow threads to more
easily access each others’ per-thread variables?

The inc_count() function used by updaters is quite
simple, as can be seen on lines 6-9.

The read_count() function used by readers is a bit
more complex. Line 16 acquires a lock to exclude exiting
threads, and line 21 releases it. Line 17 initializes the
sum to the count accumulated by those threads that have
already exited, and lines 18-20 sum the counts being
accumulated by threads currently running. Finally, line 22
returns the sum.

Quick Quiz 5.22: Doesn’t the check for NULL on
line 19 of Listing 5.5 add extra branch mispredictions?
Why not have a variable set permanently to zero, and
point unused counter-pointers to that variable rather than
setting them to NULL?

Quick Quiz 5.23: Why on earth do we need something
as heavyweight as a lock guarding the summation in the

function read_count() in Listing 5.5?
Lines 25-32 show the count_register_thread()

function, which must be called by each thread before its
first use of this counter. This function simply sets up this
thread’s element of the counterp[] array to point to its
per-thread counter variable.

Quick Quiz 5.24: Why on earth do we need to acquire
the lock in count_register_thread() in Listing 5.5?
It is a single properly aligned machine-word store to a
location that no other thread is modifying, so it should be
atomic anyway, right?

Lines 34-42 show the count_unregister_
thread() function, which must be called prior to
exit by each thread that previously called count_
register_thread(). Line 38 acquires the lock,
and line 41 releases it, thus excluding any calls to
read_count() as well as other calls to count_
unregister_thread(). Line 39 adds this thread’s
counter to the global finalcount, and then line 40
NULLs out its counterp[] array entry. A subsequent call
to read_count() will see the exiting thread’s count in
the global finalcount, and will skip the exiting thread
when sequencing through the counterp[] array, thus
obtaining the correct total.

This approach gives updaters almost exactly the same
performance as a non-atomic add, and also scales linearly.
On the other hand, concurrent reads contend for a sin-
gle global lock, and therefore perform poorly and scale
abysmally. However, this is not a problem for statistical
counters, where incrementing happens often and readout
happens almost never. Of course, this approach is consid-
erably more complex than the array-based scheme, due to
the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 5.25: Fine, but the Linux kernel doesn’t
have to acquire a lock when reading out the aggregate
value of per-CPU counters. So why should user-space
code need to do this???

5.2.5 Discussion

These three implementations show that it is possible to
obtain uniprocessor performance for statistical counters,
despite running on a parallel machine.

Quick Quiz 5.26: What fundamental difference is
there between counting packets and counting the total
number of bytes in the packets, given that the packets
vary in size?

Quick Quiz 5.27: Given that the reader must sum all

5.3. APPROXIMATE LIMIT COUNTERS 51

the threads’ counters, this could take a long time given
large numbers of threads. Is there any way that the in-
crement operation can remain fast and scalable while
allowing readers to also enjoy reasonable performance
and scalability?

Given what has been presented in this section, you
should now be able to answer the Quick Quiz about sta-
tistical counters for networking near the beginning of this
chapter.

5.3 Approximate Limit Counters
Another special case of counting involves limit-checking.
For example, as noted in the approximate structure-
allocation limit problem in Quick Quiz 5.3, suppose that
you need to maintain a count of the number of structures
allocated in order to fail any allocations once the number
of structures in use exceeds a limit, in this case, 10,000.
Suppose further that these structures are short-lived, that
this limit is rarely exceeded, and that this limit is approx-
imate in that it is OK to exceed it sometimes by some
bounded amount (see Section 5.4 if you instead need the
limit to be exact).

5.3.1 Design
One possible design for limit counters is to divide the
limit of 10,000 by the number of threads, and give each
thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100
structures. This approach is simple, and in some cases
works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by
another [MS93]. On the one hand, if a given thread takes
credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the
threads doing most of the freeing have lots of credits that
they cannot use. On the other hand, if freed structures
are credited to the CPU that allocated them, it will be
necessary for CPUs to manipulate each others’ counters,
which will require expensive atomic instructions or other
means of communicating between threads.2

In short, for many important workloads, we cannot fully
partition the counter. Given that partitioning the counters
was what brought the excellent update-side performance
for the three schemes discussed in Section 5.2, this might

2 That said, if each structure will always be freed by the same CPU
(or thread) that allocated it, then this simple partitioning approach works
extremely well.

be grounds for some pessimism. However, the eventu-
ally consistent algorithm presented in Section 5.2.3 pro-
vides an interesting hint. Recall that this algorithm kept
two sets of books, a per-thread counter variable for up-
daters and a global_count variable for readers, with an
eventual() thread that periodically updated global_
count to be eventually consistent with the values of the
per-thread counter. The per-thread counter perfectly
partitioned the counter value, while global_count kept
the full value.

For limit counters, we can use a variation on this theme,
in that we partially partition the counter. For example,
each of four threads could have a per-thread counter, but
each could also have a per-thread maximum value (call it
countermax).

But then what happens if a given thread needs to
increment its counter, but counter is equal to its
countermax? The trick here is to move half of that
thread’s counter value to a globalcount, then incre-
ment counter. For example, if a given thread’s counter
and countermax variables were both equal to 10, we do
the following:

1. Acquire a global lock.

2. Add five to globalcount.

3. To balance out the addition, subtract five from this
thread’s counter.

4. Release the global lock.

5. Increment this thread’s counter, resulting in a value
of six.

Although this procedure still requires a global lock,
that lock need only be acquired once for every five in-
crement operations, greatly reducing that lock’s level
of contention. We can reduce this contention as low as
we wish by increasing the value of countermax. How-
ever, the corresponding penalty for increasing the value of
countermax is reduced accuracy of globalcount. To
see this, note that on a four-CPU system, if countermax
is equal to ten, globalcount will be in error by at most
40 counts. In contrast, if countermax is increased to
100, globalcount might be in error by as much as 400
counts.

This raises the question of just how much we care
about globalcount’s deviation from the aggregate value
of the counter, where this aggregate value is the sum
of globalcount and each thread’s counter variable.

52 CHAPTER 5. COUNTING

Listing 5.6: Simple Limit Counter Variables
1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);

The answer to this question depends on how far the
aggregate value is from the counter’s limit (call it
globalcountmax). The larger the difference between
these two values, the larger countermax can be with-
out risk of exceeding the globalcountmax limit. This
means that the value of a given thread’s countermax vari-
able can be set based on this difference. When far from
the limit, the countermax per-thread variables are set to
large values to optimize for performance and scalability,
while when close to the limit, these same variables are set
to small values to minimize the error in the checks against
the globalcountmax limit.

This design is an example of parallel fastpath, which is
an important design pattern in which the common case ex-
ecutes with no expensive instructions and no interactions
between threads, but where occasional use is also made
of a more conservatively designed (and higher overhead)
global algorithm. This design pattern is covered in more
detail in Section 6.4.

5.3.2 Simple Limit Counter Implementa-
tion

Listing 5.6 shows both the per-thread and global
variables used by this implementation. The per-thread
counter and countermax variables are the correspond-
ing thread’s local counter and the upper bound on that
counter, respectively. The globalcountmax variable on
line 3 contains the upper bound for the aggregate counter,
and the globalcount variable on line 4 is the global
counter. The sum of globalcount and each thread’s
counter gives the aggregate value of the overall counter.
The globalreserve variable on line 5 is the sum of all
of the per-thread countermax variables. The relationship
among these variables is shown by Figure 5.5:

1. The sum of globalcount and globalreserve
must be less than or equal to globalcountmax.

2. The sum of all threads’ countermax values must be
less than or equal to globalreserve.

counter 3countermax 3

g
l
o
b
a
l
c
o
u
n
t
m
a
x

counter 0countermax 0

countermax 1 counter 1

g
l
o
b
a
l
c
o
u
n
t

g
l
o
b
a
l
r
e
s
e
r
v
e

countermax 2 counter 2

Figure 5.5: Simple Limit Counter Variable Relationships

3. Each thread’s counter must be less than or equal to
that thread’s countermax.

Each element of the counterp[] array references the
corresponding thread’s counter variable, and, finally,
the gblcnt_mutex spinlock guards all of the global vari-
ables, in other words, no thread is permitted to access or
modify any of the global variables unless it has acquired
gblcnt_mutex.

Listing 5.7 shows the add_count(), sub_count(),
and read_count() functions (count_lim.c).

Quick Quiz 5.28: Why does Listing 5.7 provide add_
count() and sub_count() instead of the inc_count()
and dec_count() interfaces show in Section 5.2?

Lines 1-18 show add_count(), which adds the speci-
fied value delta to the counter. Line 3 checks to see if
there is room for delta on this thread’s counter, and, if
so, line 4 adds it and line 5 returns success. This is the
add_counter() fastpath, and it does no atomic opera-
tions, references only per-thread variables, and should not
incur any cache misses.

Quick Quiz 5.29: What is with the strange form of the
condition on line 3 of Listing 5.7? Why not the following
more intuitive form of the fastpath?

3 if (counter + delta <= countermax) {
4 counter += delta;
5 return 1;
6 }

5.3. APPROXIMATE LIMIT COUNTERS 53

Listing 5.7: Simple Limit Counter Add, Subtract, and Read
1 static __inline__ int add_count(unsigned long delta)
2 {
3 if (countermax - counter >= delta) {
4 WRITE_ONCE(counter, counter + delta);
5 return 1;
6 }
7 spin_lock(&gblcnt_mutex);
8 globalize_count();
9 if (globalcountmax -

10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex);
12 return 0;
13 }
14 globalcount += delta;
15 balance_count();
16 spin_unlock(&gblcnt_mutex);
17 return 1;
18 }
19

20 static __inline__ int sub_count(unsigned long delta)
21 {
22 if (counter >= delta) {
23 WRITE_ONCE(counter, counter - delta);
24 return 1;
25 }
26 spin_lock(&gblcnt_mutex);
27 globalize_count();
28 if (globalcount < delta) {
29 spin_unlock(&gblcnt_mutex);
30 return 0;
31 }
32 globalcount -= delta;
33 balance_count();
34 spin_unlock(&gblcnt_mutex);
35 return 1;
36 }
37

38 static __inline__ unsigned long read_count(void)
39 {
40 int t;
41 unsigned long sum;
42

43 spin_lock(&gblcnt_mutex);
44 sum = globalcount;
45 for_each_thread(t)
46 if (counterp[t] != NULL)
47 sum += READ_ONCE(*counterp[t]);
48 spin_unlock(&gblcnt_mutex);
49 return sum;
50 }

If the test on line 3 fails, we must access global vari-
ables, and thus must acquire gblcnt_mutex on line 7,
which we release on line 11 in the failure case or on
line 16 in the success case. Line 8 invokes globalize_
count(), shown in Listing 5.8, which clears the thread-
local variables, adjusting the global variables as needed,
thus simplifying global processing. (But don’t take my
word for it, try coding it yourself!) Lines 9 and 10 check
to see if addition of delta can be accommodated, with
the meaning of the expression preceding the less-than
sign shown in Figure 5.5 as the difference in height of the
two red (leftmost) bars. If the addition of delta cannot
be accommodated, then line 11 (as noted earlier) releases

gblcnt_mutex and line 12 returns indicating failure.
Otherwise, we take the slowpath. Line 14 adds delta

to globalcount, and then line 15 invokes balance_
count() (shown in Listing 5.8) in order to update
both the global and the per-thread variables. This
call to balance_count() will usually set this thread’s
countermax to re-enable the fastpath. Line 16 then re-
leases gblcnt_mutex (again, as noted earlier), and, fi-
nally, line 17 returns indicating success.

Quick Quiz 5.30: Why does globalize_count()
zero the per-thread variables, only to later call balance_
count() to refill them in Listing 5.7? Why not just leave
the per-thread variables non-zero?

Lines 20-36 show sub_count(), which subtracts the
specified delta from the counter. Line 22 checks to see if
the per-thread counter can accommodate this subtraction,
and, if so, line 23 does the subtraction and line 24 returns
success. These lines form sub_count()’s fastpath, and,
as with add_count(), this fastpath executes no costly
operations.

If the fastpath cannot accommodate subtraction of
delta, execution proceeds to the slowpath on lines 26-35.
Because the slowpath must access global state, line 26 ac-
quires gblcnt_mutex, which is released either by line 29
(in case of failure) or by line 34 (in case of success).
Line 27 invokes globalize_count(), shown in List-
ing 5.8, which again clears the thread-local variables,
adjusting the global variables as needed. Line 28 checks
to see if the counter can accommodate subtracting delta,
and, if not, line 29 releases gblcnt_mutex (as noted
earlier) and line 30 returns failure.

Quick Quiz 5.31: Given that globalreserve
counted against us in add_count(), why doesn’t it count
for us in sub_count() in Listing 5.7?

Quick Quiz 5.32: Suppose that one thread invokes
add_count() shown in Listing 5.7, and then another
thread invokes sub_count(). Won’t sub_count() re-
turn failure even though the value of the counter is non-
zero?

If, on the other hand, line 28 finds that the counter
can accommodate subtracting delta, we complete the
slowpath. Line 32 does the subtraction and then line 33 in-
vokes balance_count() (shown in Listing 5.8) in order
to update both global and per-thread variables (hopefully
re-enabling the fastpath). Then line 34 releases gblcnt_
mutex, and line 35 returns success.

Quick Quiz 5.33: Why have both add_count() and
sub_count() in Listing 5.7? Why not simply pass a
negative number to add_count()?

54 CHAPTER 5. COUNTING

Listing 5.8: Simple Limit Counter Utility Functions
1 static __inline__ void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8

9 static __inline__ void balance_count(void)
10 {
11 countermax = globalcountmax -
12 globalcount - globalreserve;
13 countermax /= num_online_threads();
14 globalreserve += countermax;
15 counter = countermax / 2;
16 if (counter > globalcount)
17 counter = globalcount;
18 globalcount -= counter;
19 }
20

21 void count_register_thread(void)
22 {
23 int idx = smp_thread_id();
24

25 spin_lock(&gblcnt_mutex);
26 counterp[idx] = &counter;
27 spin_unlock(&gblcnt_mutex);
28 }
29

30 void count_unregister_thread(int nthreadsexpected)
31 {
32 int idx = smp_thread_id();
33

34 spin_lock(&gblcnt_mutex);
35 globalize_count();
36 counterp[idx] = NULL;
37 spin_unlock(&gblcnt_mutex);
38 }

Lines 38-50 show read_count(), which returns the
aggregate value of the counter. It acquires gblcnt_
mutex on line 43 and releases it on line 48, excluding
global operations from add_count() and sub_count(),
and, as we will see, also excluding thread creation and
exit. Line 44 initializes local variable sum to the value
of globalcount, and then the loop spanning lines 45-47
sums the per-thread counter variables. Line 49 then
returns the sum.

Listing 5.8 shows a number of utility functions used by
the add_count(), sub_count(), and read_count()
primitives shown in Listing 5.7.

Lines 1-7 show globalize_count(), which zeros
the current thread’s per-thread counters, adjusting the
global variables appropriately. It is important to note that
this function does not change the aggregate value of the
counter, but instead changes how the counter’s current
value is represented. Line 3 adds the thread’s counter
variable to globalcount, and line 4 zeroes counter.
Similarly, line 5 subtracts the per-thread countermax
from globalreserve, and line 6 zeroes countermax. It

is helpful to refer to Figure 5.5 when reading both this
function and balance_count(), which is next.

Lines 9-19 show balance_count(), which is roughly
speaking the inverse of globalize_count(). This func-
tion’s job is to set the current thread’s countermax vari-
able to the largest value that avoids the risk of the counter
exceeding the globalcountmax limit. Changing the cur-
rent thread’s countermax variable of course requires
corresponding adjustments to counter, globalcount
and globalreserve, as can be seen by referring back
to Figure 5.5. By doing this, balance_count() maxi-
mizes use of add_count()’s and sub_count()’s low-
overhead fastpaths. As with globalize_count(),
balance_count() is not permitted to change the ag-
gregate value of the counter.

Lines 11-13 compute this thread’s share of that por-
tion of globalcountmax that is not already covered by
either globalcount or globalreserve, and assign the
computed quantity to this thread’s countermax. Line 14
makes the corresponding adjustment to globalreserve.
Line 15 sets this thread’s counter to the middle of the
range from zero to countermax. Line 16 checks to
see whether globalcount can in fact accommodate this
value of counter, and, if not, line 17 decreases counter
accordingly. Finally, in either case, line 18 makes the
corresponding adjustment to globalcount.

Quick Quiz 5.34: Why set counter to countermax
/ 2 in line 15 of Listing 5.8? Wouldn’t it be simpler to
just take countermax counts?

It is helpful to look at a schematic depicting how the
relationship of the counters changes with the execution
of first globalize_count() and then balance_count,
as shown in Figure 5.6. Time advances from left to
right, with the leftmost configuration roughly that of
Figure 5.5. The center configuration shows the relation-
ship of these same counters after globalize_count()
is executed by thread 0. As can be seen from the fig-
ure, thread 0’s counter (“c 0” in the figure) is added
to globalcount, while the value of globalreserve is
reduced by this same amount. Both thread 0’s counter
and its countermax (“cm 0” in the figure) are reduced
to zero. The other three threads’ counters are unchanged.
Note that this change did not affect the overall value
of the counter, as indicated by the bottommost dotted
line connecting the leftmost and center configurations.
In other words, the sum of globalcount and the four
threads’ counter variables is the same in both configu-
rations. Similarly, this change did not affect the sum of
globalcount and globalreserve, as indicated by the

5.3. APPROXIMATE LIMIT COUNTERS 55

g
l
o
b
a
l
c
o
u
n
t

g
l
o
b
a
l
r
e
s
e
r
v
e

cm 0 c 0

cm 3

cm 2

cm 1

c 3

c 1

c 2
g
l
o
b
a
l
c
o
u
n
t

g
l
o
b
a
l
r
e
s
e
r
v
e

cm 3

cm 2

cm 1

c 3

c 1

c 2

g
l
o
b
a
l
c
o
u
n
t

cm 3

cm 2

cm 1

c 3

c 1

c 2

g
l
o
b
a
l
r
e
s
e
r
v
e

cm 0 c 0

globalize_count() balance_count()

Figure 5.6: Schematic of Globalization and Balancing

upper dotted line.

The rightmost configuration shows the relationship
of these counters after balance_count() is executed,
again by thread 0. One-quarter of the remaining count,
denoted by the vertical line extending up from all three
configurations, is added to thread 0’s countermax and
half of that to thread 0’s counter. The amount added to
thread 0’s counter is also subtracted from globalcount
in order to avoid changing the overall value of the counter
(which is again the sum of globalcount and the three
threads’ counter variables), again as indicated by the
lowermost of the two dotted lines connecting the center
and rightmost configurations. The globalreserve vari-
able is also adjusted so that this variable remains equal
to the sum of the four threads’ countermax variables.
Because thread 0’s counter is less than its countermax,
thread 0 can once again increment the counter locally.

Quick Quiz 5.35: In Figure 5.6, even though a quar-
ter of the remaining count up to the limit is assigned to
thread 0, only an eighth of the remaining count is con-
sumed, as indicated by the uppermost dotted line connect-
ing the center and the rightmost configurations. Why is
that?

Lines 21-28 show count_register_thread(),
which sets up state for newly created threads. This

function simply installs a pointer to the newly created
thread’s counter variable into the corresponding entry of
the counterp[] array under the protection of gblcnt_
mutex.

Finally, lines 30-38 show count_unregister_
thread(), which tears down state for a soon-to-be-
exiting thread. Line 34 acquires gblcnt_mutex and
line 37 releases it. Line 35 invokes globalize_count()
to clear out this thread’s counter state, and line 36 clears
this thread’s entry in the counterp[] array.

5.3.3 Simple Limit Counter Discussion
This type of counter is quite fast when aggregate val-
ues are near zero, with some overhead due to the com-
parison and branch in both add_count()’s and sub_
count()’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count() can fail
even when the aggregate value of the counter is nowhere
near globalcountmax. Similarly, sub_count() can
fail even when the aggregate value of the counter is
nowhere near zero.

In many cases, this is unacceptable. Even if the
globalcountmax is intended to be an approximate limit,
there is usually a limit to exactly how much approxima-
tion can be tolerated. One way to limit the degree of

56 CHAPTER 5. COUNTING

Listing 5.9: Approximate Limit Counter Variables
1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);
8 #define MAX_COUNTERMAX 100

Listing 5.10: Approximate Limit Counter Balancing
1 static void balance_count(void)
2 {
3 countermax = globalcountmax -
4 globalcount - globalreserve;
5 countermax /= num_online_threads();
6 if (countermax > MAX_COUNTERMAX)
7 countermax = MAX_COUNTERMAX;
8 globalreserve += countermax;
9 counter = countermax / 2;

10 if (counter > globalcount)
11 counter = globalcount;
12 globalcount -= counter;
13 }

approximation is to impose an upper limit on the value
of the per-thread countermax instances. This task is
undertaken in the next section.

5.3.4 Approximate Limit Counter Imple-
mentation

Because this implementation (count_lim_app.c) is
quite similar to that in the previous section (Listings 5.6,
5.7, and 5.8), only the changes are shown here. List-
ing 5.9 is identical to Listing 5.6, with the addition of
MAX_COUNTERMAX, which sets the maximum permissible
value of the per-thread countermax variable.

Similarly, Listing 5.10 is identical to the balance_
count() function in Listing 5.8, with the addition of
lines 6 and 7, which enforce the MAX_COUNTERMAX limit
on the per-thread countermax variable.

5.3.5 Approximate Limit Counter Discus-
sion

These changes greatly reduce the limit inaccuracy seen
in the previous version, but present another problem: any
given value of MAX_COUNTERMAX will cause a workload-
dependent fraction of accesses to fall off the fastpath. As
the number of threads increase, non-fastpath execution
will become both a performance and a scalability problem.
However, we will defer this problem and turn instead to
counters with exact limits.

5.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted
in Quick Quiz 5.4, we need a limit counter that can tell
exactly when its limits are exceeded. One way of imple-
menting such a limit counter is to cause threads that have
reserved counts to give them up. One way to do this is to
use atomic instructions. Of course, atomic instructions
will slow down the fastpath, but on the other hand, it
would be silly not to at least give them a try.

5.4.1 Atomic Limit Counter Implementa-
tion

Unfortunately, if one thread is to safely remove counts
from another thread, both threads will need to atomi-
cally manipulate that thread’s counter and countermax
variables. The usual way to do this is to combine these
two variables into a single variable, for example, given
a 32-bit variable, using the high-order 16 bits to rep-
resent counter and the low-order 16 bits to represent
countermax.

Quick Quiz 5.36: Why is it necessary to atomically
manipulate the thread’s counter and countermax vari-
ables as a unit? Wouldn’t it be good enough to atomically
manipulate them individually?

The variables and access functions for a simple atomic
limit counter are shown in Listing 5.11 (count_lim_
atomic.c). The counter and countermax variables
in earlier algorithms are combined into the single vari-
able counterandmax shown on line 1, with counter in
the upper half and countermax in the lower half. This
variable is of type atomic_t, which has an underlying
representation of int.

Lines 2-6 show the definitions for globalcountmax,
globalcount, globalreserve, counterp, and
gblcnt_mutex, all of which take on roles similar
to their counterparts in Listing 5.9. Line 7 defines
CM_BITS, which gives the number of bits in each half of
counterandmax, and line 8 defines MAX_COUNTERMAX,
which gives the maximum value that may be held in
either half of counterandmax.

Quick Quiz 5.37: In what way does line 7 of List-
ing 5.11 violate the C standard?

Lines 10-15 show the split_counterandmax_
int() function, which, when given the underlying int
from the atomic_t counterandmax variable, splits it
into its counter (c) and countermax (cm) components.
Line 13 isolates the most-significant half of this int, plac-

5.4. EXACT LIMIT COUNTERS 57

Listing 5.11: Atomic Limit Counter Variables and Access Func-
tions

1 atomic_t __thread counterandmax = ATOMIC_INIT(0);
2 unsigned long globalcountmax = 1 << 25;
3 unsigned long globalcount = 0;
4 unsigned long globalreserve = 0;
5 atomic_t *counterp[NR_THREADS] = { NULL };
6 DEFINE_SPINLOCK(gblcnt_mutex);
7 #define CM_BITS (sizeof(atomic_t) * 4)
8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)
9

10 static __inline__ void
11 split_counterandmax_int(int cami, int *c, int *cm)
12 {
13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;
14 *cm = cami & MAX_COUNTERMAX;
15 }
16

17 static __inline__ void
18 split_counterandmax(atomic_t *cam, int *old, int *c, int *cm)
19 {
20 unsigned int cami = atomic_read(cam);
21

22 *old = cami;
23 split_counterandmax_int(cami, c, cm);
24 }
25

26 static __inline__ int merge_counterandmax(int c, int cm)
27 {
28 unsigned int cami;
29

30 cami = (c << CM_BITS) | cm;
31 return ((int)cami);
32 }

ing the result as specified by argument c, and line 14
isolates the least-significant half of this int, placing the
result as specified by argument cm.

Lines 17-24 show the split_counterandmax() func-
tion, which picks up the underlying int from the spec-
ified variable on line 20, stores it as specified by the
old argument on line 22, and then invokes split_
counterandmax_int() to split it on line 23.

Quick Quiz 5.38: Given that there is only one
counterandmax variable, why bother passing in a
pointer to it on line 18 of Listing 5.11?

Lines 26-32 show the merge_counterandmax() func-
tion, which can be thought of as the inverse of split_
counterandmax(). Line 30 merges the counter and
countermax values passed in c and cm, respectively, and
returns the result.

Quick Quiz 5.39: Why does merge_
counterandmax() in Listing 5.11 return an int
rather than storing directly into an atomic_t?

Listing 5.12 shows the add_count() and sub_
count() functions.

Lines 1-32 show add_count(), whose fastpath spans
lines 8-15, with the remainder of the function being the
slowpath. Lines 8-14 of the fastpath form a compare-and-

Listing 5.12: Atomic Limit Counter Add and Subtract
1 int add_count(unsigned long delta)
2 {
3 int c;
4 int cm;
5 int old;
6 int new;
7

8 do {
9 split_counterandmax(&counterandmax, &old, &c, &cm);

10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;
12 new = merge_counterandmax(c + delta, cm);
13 } while (atomic_cmpxchg(&counterandmax,
14 old, new) != old);
15 return 1;
16 slowpath:
17 spin_lock(&gblcnt_mutex);
18 globalize_count();
19 if (globalcountmax - globalcount -
20 globalreserve < delta) {
21 flush_local_count();
22 if (globalcountmax - globalcount -
23 globalreserve < delta) {
24 spin_unlock(&gblcnt_mutex);
25 return 0;
26 }
27 }
28 globalcount += delta;
29 balance_count();
30 spin_unlock(&gblcnt_mutex);
31 return 1;
32 }
33

34 int sub_count(unsigned long delta)
35 {
36 int c;
37 int cm;
38 int old;
39 int new;
40

41 do {
42 split_counterandmax(&counterandmax, &old, &c, &cm);
43 if (delta > c)
44 goto slowpath;
45 new = merge_counterandmax(c - delta, cm);
46 } while (atomic_cmpxchg(&counterandmax,
47 old, new) != old);
48 return 1;
49 slowpath:
50 spin_lock(&gblcnt_mutex);
51 globalize_count();
52 if (globalcount < delta) {
53 flush_local_count();
54 if (globalcount < delta) {
55 spin_unlock(&gblcnt_mutex);
56 return 0;
57 }
58 }
59 globalcount -= delta;
60 balance_count();
61 spin_unlock(&gblcnt_mutex);
62 return 1;
63 }

58 CHAPTER 5. COUNTING

swap (CAS) loop, with the atomic_cmpxchg() primi-
tives on lines 13-14 performing the actual CAS. Line 9
splits the current thread’s counterandmax variable into
its counter (in c) and countermax (in cm) components,
while placing the underlying int into old. Line 10
checks whether the amount delta can be accommodated
locally (taking care to avoid integer overflow), and if
not, line 11 transfers to the slowpath. Otherwise, line 12
combines an updated counter value with the original
countermax value into new. The atomic_cmpxchg()
primitive on lines 13-14 then atomically compares this
thread’s counterandmax variable to old, updating its
value to new if the comparison succeeds. If the compari-
son succeeds, line 15 returns success, otherwise, execu-
tion continues in the loop at line 8.

Quick Quiz 5.40: Yecch! Why the ugly goto on
line 11 of Listing 5.12? Haven’t you heard of the break
statement???

Quick Quiz 5.41: Why would the atomic_
cmpxchg() primitive at lines 13-14 of Listing 5.12 ever
fail? After all, we picked up its old value on line 9 and
have not changed it!

Lines 16-31 of Listing 5.12 show add_count()’s slow-
path, which is protected by gblcnt_mutex, which is ac-
quired on line 17 and released on lines 24 and 30. Line 18
invokes globalize_count(), which moves this thread’s
state to the global counters. Lines 19-20 check whether
the delta value can be accommodated by the current
global state, and, if not, line 21 invokes flush_local_
count() to flush all threads’ local state to the global
counters, and then lines 22-23 recheck whether delta
can be accommodated. If, after all that, the addition of
delta still cannot be accommodated, then line 24 re-
leases gblcnt_mutex (as noted earlier), and then line 25
returns failure.

Otherwise, line 28 adds delta to the global counter,
line 29 spreads counts to the local state if appropriate,
line 30 releases gblcnt_mutex (again, as noted earlier),
and finally, line 31 returns success.

Lines 34-63 of Listing 5.12 show sub_count(), which
is structured similarly to add_count(), having a fastpath
on lines 41-48 and a slowpath on lines 49-62. A line-by-
line analysis of this function is left as an exercise to the
reader.

Listing 5.13 shows read_count(). Line 9 acquires
gblcnt_mutex and line 16 releases it. Line 10 initializes
local variable sum to the value of globalcount, and the
loop spanning lines 11-15 adds the per-thread counters to
this sum, isolating each per-thread counter using split_

Listing 5.13: Atomic Limit Counter Read
1 unsigned long read_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6 int t;
7 unsigned long sum;
8

9 spin_lock(&gblcnt_mutex);
10 sum = globalcount;
11 for_each_thread(t)
12 if (counterp[t] != NULL) {
13 split_counterandmax(counterp[t], &old, &c, &cm);
14 sum += c;
15 }
16 spin_unlock(&gblcnt_mutex);
17 return sum;
18 }

counterandmax on line 13. Finally, line 17 returns the
sum.

Listings 5.14 and 5.15 shows the utility func-
tions globalize_count(), flush_local_count(),
balance_count(), count_register_thread(),
and count_unregister_thread(). The code for
globalize_count() is shown on lines 1-12, of
Listing 5.14 and is similar to that of previous algorithms,
with the addition of line 7, which is now required to split
out counter and countermax from counterandmax.

The code for flush_local_count(), which moves
all threads’ local counter state to the global counter, is
shown on lines 14-32. Line 22 checks to see if the value
of globalreserve permits any per-thread counts, and,
if not, line 23 returns. Otherwise, line 24 initializes lo-
cal variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25-31 sequences
through each thread. Line 26 checks to see if the current
thread has counter state, and, if so, lines 27-30 move that
state to the global counters. Line 27 atomically fetches
the current thread’s state while replacing it with zero.
Line 28 splits this state into its counter (in local variable
c) and countermax (in local variable cm) components.
Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 5.42: What stops a thread from simply
refilling its counterandmax variable immediately after
flush_local_count() on line 14 of Listing 5.14 emp-
ties it?

Quick Quiz 5.43: What prevents concurrent execution
of the fastpath of either add_count() or sub_count()
from interfering with the counterandmax variable while
flush_local_count() is accessing it on line 27 of List-

5.4. EXACT LIMIT COUNTERS 59

Listing 5.14: Atomic Limit Counter Utility Functions 1
1 static void globalize_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6

7 split_counterandmax(&counterandmax, &old, &c, &cm);
8 globalcount += c;
9 globalreserve -= cm;

10 old = merge_counterandmax(0, 0);
11 atomic_set(&counterandmax, old);
12 }
13

14 static void flush_local_count(void)
15 {
16 int c;
17 int cm;
18 int old;
19 int t;
20 int zero;
21

22 if (globalreserve == 0)
23 return;
24 zero = merge_counterandmax(0, 0);
25 for_each_thread(t)
26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int(old, &c, &cm);
29 globalcount += c;
30 globalreserve -= cm;
31 }
32 }

ing 5.14 empties it?
Lines 1-22 on Listing 5.15 show the code for

balance_count(), which refills the calling thread’s lo-
cal counterandmax variable. This function is quite sim-
ilar to that of the preceding algorithms, with changes
required to handle the merged counterandmax variable.
Detailed analysis of the code is left as an exercise for
the reader, as it is with the count_register_thread()
function starting on line 24 and the count_unregister_
thread() function starting on line 33.

Quick Quiz 5.44: Given that the atomic_set() prim-
itive does a simple store to the specified atomic_t, how
can line 21 of balance_count() in Listing 5.15 work
correctly in face of concurrent flush_local_count()
updates to this variable?

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the
counter to be run all the way to either of its limits, but it
does so at the expense of adding atomic operations to the
fastpaths, which slow down the fastpaths significantly on
some systems. Although some workloads might tolerate
this slowdown, it is worthwhile looking for algorithms

Listing 5.15: Atomic Limit Counter Utility Functions 2
1 static void balance_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6 unsigned long limit;
7

8 limit = globalcountmax - globalcount -
9 globalreserve;

10 limit /= num_online_threads();
11 if (limit > MAX_COUNTERMAX)
12 cm = MAX_COUNTERMAX;
13 else
14 cm = limit;
15 globalreserve += cm;
16 c = cm / 2;
17 if (c > globalcount)
18 c = globalcount;
19 globalcount -= c;
20 old = merge_counterandmax(c, cm);
21 atomic_set(&counterandmax, old);
22 }
23

24 void count_register_thread(void)
25 {
26 int idx = smp_thread_id();
27

28 spin_lock(&gblcnt_mutex);
29 counterp[idx] = &counterandmax;
30 spin_unlock(&gblcnt_mutex);
31 }
32

33 void count_unregister_thread(int nthreadsexpected)
34 {
35 int idx = smp_thread_id();
36

37 spin_lock(&gblcnt_mutex);
38 globalize_count();
39 counterp[idx] = NULL;
40 spin_unlock(&gblcnt_mutex);
41 }

with better read-side performance. One such algorithm
uses a signal handler to steal counts from other threads.
Because signal handlers run in the context of the signaled
thread, atomic operations are not necessary, as shown in
the next section.

Quick Quiz 5.45: But signal handlers can be migrated
to some other CPU while running. Doesn’t this possibility
require that atomic instructions and memory barriers are
required to reliably communicate between a thread and a
signal handler that interrupts that thread?

5.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated
only by the corresponding thread, there will still need to
be synchronization with the signal handlers. This syn-
chronization is provided by the state machine shown in
Figure 5.7. The state machine starts out in the IDLE
state, and when add_count() or sub_count() find that

60 CHAPTER 5. COUNTING

IDLE

REQ

need
flush

READY

no
count

!counting

ACK

counting

flushed

done
counting

Figure 5.7: Signal-Theft State Machine

the combination of the local thread’s count and the global
count cannot accommodate the request, the corresponding
slowpath sets each thread’s theft state to REQ (unless
that thread has no count, in which case it transitions di-
rectly to READY). Only the slowpath, which holds the
gblcnt_mutex lock, is permitted to transition from the
IDLE state, as indicated by the green color.3 The slowpath
then sends a signal to each thread, and the corresponding
signal handler checks the corresponding thread’s theft
and counting variables. If the theft state is not REQ,
then the signal handler is not permitted to change the state,
and therefore simply returns. Otherwise, if the counting
variable is set, indicating that the current thread’s fastpath
is in progress, the signal handler sets the theft state to
ACK, otherwise to READY.

If the theft state is ACK, only the fastpath is permitted
to change the theft state, as indicated by the blue color.
When the fastpath completes, it sets the theft state to
READY.

Once the slowpath sees a thread’s theft state is
READY, the slowpath is permitted to steal that thread’s
count. The slowpath then sets that thread’s theft state
to IDLE.

Quick Quiz 5.46: In Figure 5.7, why is the REQ
theft state colored red?

Quick Quiz 5.47: In Figure 5.7, what is the point of
having separate REQ and ACK theft states? Why not
simplify the state machine by collapsing them into a single

3 For those with black-and-white versions of this book, IDLE and
READY are green, REQ is red, and ACK is blue.

Listing 5.16: Signal-Theft Limit Counter Data
1 #define THEFT_IDLE 0
2 #define THEFT_REQ 1
3 #define THEFT_ACK 2
4 #define THEFT_READY 3
5

6 int __thread theft = THEFT_IDLE;
7 int __thread counting = 0;
8 unsigned long __thread counter = 0;
9 unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;
11 unsigned long globalcount = 0;
12 unsigned long globalreserve = 0;
13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };
16 DEFINE_SPINLOCK(gblcnt_mutex);
17 #define MAX_COUNTERMAX 100

REQACK state? Then whichever of the signal handler or
the fastpath gets there first could set the state to READY.

5.4.4 Signal-Theft Limit Counter Imple-
mentation

Listing 5.16 (count_lim_sig.c) shows the data struc-
tures used by the signal-theft based counter implemen-
tation. Lines 1-7 define the states and values for the
per-thread theft state machine described in the preceding
section. Lines 8-17 are similar to earlier implementa-
tions, with the addition of lines 14 and 15 to allow remote
access to a thread’s countermax and theft variables,
respectively.

Listing 5.17 shows the functions responsible for migrat-
ing counts between per-thread variables and the global
variables. Lines 1-7 shows globalize_count(), which
is identical to earlier implementations. Lines 9-19 shows
flush_local_count_sig(), which is the signal han-
dler used in the theft process. Lines 11 and 12 check to
see if the theft state is REQ, and, if not returns without
change. Line 13 executes a memory barrier to ensure
that the sampling of the theft variable happens before any
change to that variable. Line 14 sets the theft state to
ACK, and, if line 15 sees that this thread’s fastpaths are
not running, line 16 sets the theft state to READY.

Quick Quiz 5.48: In Listing 5.17 function flush_
local_count_sig(), why are there READ_ONCE() and
WRITE_ONCE() wrappers around the uses of the theft
per-thread variable?

Lines 21-49 shows flush_local_count(), which is
called from the slowpath to flush all threads’ local counts.
The loop spanning lines 26-34 advances the theft state
for each thread that has local count, and also sends that

5.4. EXACT LIMIT COUNTERS 61

Listing 5.17: Signal-Theft Limit Counter Value-Migration
Functions

1 static void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8

9 static void flush_local_count_sig(int unused)
10 {
11 if (READ_ONCE(theft) != THEFT_REQ)
12 return;
13 smp_mb();
14 WRITE_ONCE(theft, THEFT_ACK);
15 if (!counting) {
16 WRITE_ONCE(theft, THEFT_READY);
17 }
18 smp_mb();
19 }
20

21 static void flush_local_count(void)
22 {
23 int t;
24 thread_id_t tid;
25

26 for_each_tid(t, tid)
27 if (theftp[t] != NULL) {
28 if (*countermaxp[t] == 0) {
29 WRITE_ONCE(*theftp[t], THEFT_READY);
30 continue;
31 }
32 WRITE_ONCE(*theftp[t], THEFT_REQ);
33 pthread_kill(tid, SIGUSR1);
34 }
35 for_each_tid(t, tid) {
36 if (theftp[t] == NULL)
37 continue;
38 while (READ_ONCE(*theftp[t]) != THEFT_READY) {
39 poll(NULL, 0, 1);
40 if (READ_ONCE(*theftp[t]) == THEFT_REQ)
41 pthread_kill(tid, SIGUSR1);
42 }
43 globalcount += *counterp[t];
44 *counterp[t] = 0;
45 globalreserve -= *countermaxp[t];
46 *countermaxp[t] = 0;
47 WRITE_ONCE(*theftp[t], THEFT_IDLE);
48 }
49 }
50

51 static void balance_count(void)
52 {
53 countermax = globalcountmax - globalcount -
54 globalreserve;
55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)
57 countermax = MAX_COUNTERMAX;
58 globalreserve += countermax;
59 counter = countermax / 2;
60 if (counter > globalcount)
61 counter = globalcount;
62 globalcount -= counter;
63 }

thread a signal. Line 27 skips any non-existent threads.
Otherwise, line 28 checks to see if the current thread
holds any local count, and, if not, line 29 sets the thread’s
theft state to READY and line 30 skips to the next
thread. Otherwise, line 32 sets the thread’s theft state
to REQ and line 33 sends the thread a signal.

Quick Quiz 5.49: In Listing 5.17, why is it safe for
line 28 to directly access the other thread’s countermax
variable?

Quick Quiz 5.50: In Listing 5.17, why doesn’t line 33
check for the current thread sending itself a signal?

Quick Quiz 5.51: The code in Listing 5.17, works
with GCC and POSIX. What would be required to make
it also conform to the ISO C standard?

The loop spanning lines 35-48 waits until each thread
reaches READY state, then steals that thread’s count.
Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38-42 wait until the current thread’s theft
state becomes READY. Line 39 blocks for a millisecond
to avoid priority-inversion problems, and if line 40 deter-
mines that the thread’s signal has not yet arrived, line 41
resends the signal. Execution reaches line 43 when the
thread’s theft state becomes READY, so lines 43-46 do
the thieving. Line 47 then sets the thread’s theft state
back to IDLE.

Quick Quiz 5.52: In Listing 5.17, why does line 41
resend the signal?

Lines 51-63 show balance_count(), which is similar
to that of earlier examples.

Listing 5.18 shows the add_count() function. The
fastpath spans lines 5-20, and the slowpath lines 21-35.
Line 5 sets the per-thread counting variable to 1 so that
any subsequent signal handlers interrupting this thread
will set the theft state to ACK rather than READY, al-
lowing this fastpath to complete properly. Line 6 prevents
the compiler from reordering any of the fastpath body to
precede the setting of counting. Lines 7 and 8 check
to see if the per-thread data can accommodate the add_
count() and if there is no ongoing theft in progress, and
if so line 9 does the fastpath addition and line 10 notes
that the fastpath was taken.

In either case, line 12 prevents the compiler from re-
ordering the fastpath body to follow line 13, which per-
mits any subsequent signal handlers to undertake theft.
Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the
theft state-change to READY, and, if so, line 16 exe-
cutes a memory barrier to ensure that any CPU that sees
line 17 setting state to READY also sees the effects of

62 CHAPTER 5. COUNTING

Listing 5.18: Signal-Theft Limit Counter Add Function
1 int add_count(unsigned long delta)
2 {
3 int fastpath = 0;
4

5 WRITE_ONCE(counting, 1);
6 barrier();
7 if (READ_ONCE(theft) <= THEFT_REQ &&
8 countermax - counter >= delta) {
9 WRITE_ONCE(counter, counter + delta);

10 fastpath = 1;
11 }
12 barrier();
13 WRITE_ONCE(counting, 0);
14 barrier();
15 if (READ_ONCE(theft) == THEFT_ACK) {
16 smp_mb();
17 WRITE_ONCE(theft, THEFT_READY);
18 }
19 if (fastpath)
20 return 1;
21 spin_lock(&gblcnt_mutex);
22 globalize_count();
23 if (globalcountmax - globalcount -
24 globalreserve < delta) {
25 flush_local_count();
26 if (globalcountmax - globalcount -
27 globalreserve < delta) {
28 spin_unlock(&gblcnt_mutex);
29 return 0;
30 }
31 }
32 globalcount += delta;
33 balance_count();
34 spin_unlock(&gblcnt_mutex);
35 return 1;
36 }

line 9. If the fastpath addition at line 9 was executed, then
line 20 returns success.

Otherwise, we fall through to the slowpath starting at
line 21. The structure of the slowpath is similar to those
of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count()
on Listing 5.19 is the same as that of add_count(), so
the analysis of sub_count() is also left as an exercise
for the reader, as is the analysis of read_count() in
Listing 5.20.

Lines 1-12 of Listing 5.21 show count_init(),
which set up flush_local_count_sig() as the sig-
nal handler for SIGUSR1, enabling the pthread_kill()
calls in flush_local_count() to invoke flush_
local_count_sig(). The code for thread registry and
unregistry is similar to that of earlier examples, so its
analysis is left as an exercise for the reader.

Listing 5.19: Signal-Theft Limit Counter Subtract Function
1 int sub_count(unsigned long delta)
2 {
3 int fastpath = 0;
4

5 WRITE_ONCE(counting, 1);
6 barrier();
7 if (READ_ONCE(theft) <= THEFT_REQ &&
8 counter >= delta) {
9 WRITE_ONCE(counter, counter - delta);

10 fastpath = 1;
11 }
12 barrier();
13 WRITE_ONCE(counting, 0);
14 barrier();
15 if (READ_ONCE(theft) == THEFT_ACK) {
16 smp_mb();
17 WRITE_ONCE(theft, THEFT_READY);
18 }
19 if (fastpath)
20 return 1;
21 spin_lock(&gblcnt_mutex);
22 globalize_count();
23 if (globalcount < delta) {
24 flush_local_count();
25 if (globalcount < delta) {
26 spin_unlock(&gblcnt_mutex);
27 return 0;
28 }
29 }
30 globalcount -= delta;
31 balance_count();
32 spin_unlock(&gblcnt_mutex);
33 return 1;
34 }

Listing 5.20: Signal-Theft Limit Counter Read Function
1 unsigned long read_count(void)
2 {
3 int t;
4 unsigned long sum;
5

6 spin_lock(&gblcnt_mutex);
7 sum = globalcount;
8 for_each_thread(t)
9 if (counterp[t] != NULL)

10 sum += READ_ONCE(*counterp[t]);
11 spin_unlock(&gblcnt_mutex);
12 return sum;
13 }

5.4.5 Signal-Theft Limit Counter Discus-
sion

The signal-theft implementation runs more than twice as
fast as the atomic implementation on my Intel Core Duo
laptop. Is it always preferable?

The signal-theft implementation would be vastly prefer-
able on Pentium-4 systems, given their slow atomic in-
structions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length
of the atomic implementation. However, this increased
update-side performance comes at the prices of higher
read-side overhead: Those POSIX signals are not free. If

5.5. APPLYING SPECIALIZED PARALLEL COUNTERS 63

Listing 5.21: Signal-Theft Limit Counter Initialization Func-
tions

1 void count_init(void)
2 {
3 struct sigaction sa;
4

5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset(&sa.sa_mask);
7 sa.sa_flags = 0;
8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror("sigaction");

10 exit(EXIT_FAILURE);
11 }
12 }
13

14 void count_register_thread(void)
15 {
16 int idx = smp_thread_id();
17

18 spin_lock(&gblcnt_mutex);
19 counterp[idx] = &counter;
20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;
22 spin_unlock(&gblcnt_mutex);
23 }
24

25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();
28

29 spin_lock(&gblcnt_mutex);
30 globalize_count();
31 counterp[idx] = NULL;
32 countermaxp[idx] = NULL;
33 theftp[idx] = NULL;
34 spin_unlock(&gblcnt_mutex);
35 }

ultimate performance is of the essence, you will need to
measure them both on the system that your application is
to be deployed on.

Quick Quiz 5.53: Not only are POSIX signals slow,
sending one to each thread simply does not scale. What
would you do if you had (say) 10,000 threads and needed
the read side to be fast?

This is but one reason why high-quality APIs are so
important: they permit implementations to be changed as
required by ever-changing hardware performance charac-
teristics.

Quick Quiz 5.54: What if you want an exact limit
counter to be exact only for its lower limit, but to allow
the upper limit to be inexact?

5.5 Applying Specialized Parallel
Counters

Although the exact limit counter implementations in Sec-
tion 5.4 can be very useful, they are not much help if the
counter’s value remains near zero at all times, as it might

when counting the number of outstanding accesses to an
I/O device. The high overhead of such near-zero counting
is especially painful given that we normally don’t care
how many references there are. As noted in the remov-
able I/O device access-count problem posed by Quick
Quiz 5.5, the number of accesses is irrelevant except in
those rare cases when someone is actually trying to re-
move the device.

One simple solution to this problem is to add a large
“bias” (for example, one billion) to the counter in order
to ensure that the value is far enough from zero that the
counter can operate efficiently. When someone wants
to remove the device, this bias is subtracted from the
counter value. Counting the last few accesses will be
quite inefficient, but the important point is that the many
prior accesses will have been counted at full speed.

Quick Quiz 5.55: What else had you better have done
when using a biased counter?

Although a biased counter can be quite helpful and
useful, it is only a partial solution to the removable I/O
device access-count problem called out on page 45. When
attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need
to prevent any future accesses from starting. One way
to accomplish this is to read-acquire a reader-writer lock
when updating the counter, and to write-acquire that same
reader-writer lock when checking the counter. Code for
doing I/O might be as follows:

1 read_lock(&mylock);
2 if (removing) {
3 read_unlock(&mylock);
4 cancel_io();
5 } else {
6 add_count(1);
7 read_unlock(&mylock);
8 do_io();
9 sub_count(1);

10 }

Line 1 read-acquires the lock, and either line 3 or 7
releases it. Line 2 checks to see if the device is being
removed, and, if so, line 3 releases the lock and line 4
cancels the I/O, or takes whatever action is appropriate
given that the device is to be removed. Otherwise, line 6
increments the access count, line 7 releases the lock, line 8
performs the I/O, and line 9 decrements the access count.

Quick Quiz 5.56: This is ridiculous! We are read-
acquiring a reader-writer lock to update the counter?
What are you playing at???

The code to remove the device might be as follows:

1 write_lock(&mylock);
2 removing = 1;

64 CHAPTER 5. COUNTING

3 sub_count(mybias);
4 write_unlock(&mylock);
5 while (read_count() != 0) {
6 poll(NULL, 0, 1);
7 }
8 remove_device();

Line 1 write-acquires the lock and line 4 releases it.
Line 2 notes that the device is being removed, and the
loop spanning lines 5-7 wait for any I/O operations to
complete. Finally, line 8 does any additional processing
needed to prepare for device removal.

Quick Quiz 5.57: What other issues would need to be
accounted for in a real system?

5.6 Parallel Counting Discussion
This chapter has presented the reliability, performance,
and scalability problems with traditional counting prim-
itives. The C-language ++ operator is not guaranteed to
function reliably in multithreaded code, and atomic oper-
ations to a single variable neither perform nor scale well.
This chapter therefore presented a number of counting al-
gorithms that perform and scale extremely well in certain
special cases.

It is well worth reviewing the lessons from these count-
ing algorithms. To that end, Section 5.6.1 summarizes
performance and scalability, Section 5.6.2 discusses the
need for specialization, and finally, Section 5.6.3 enumer-
ates lessons learned and calls attention to later chapters
that will expand on these lessons.

5.6.1 Parallel Counting Performance
Table 5.1 shows the performance of the four parallel sta-
tistical counting algorithms. All four algorithms provide
near-perfect linear scalability for updates. The per-thread-
variable implementation (count_end.c) is significantly
faster on updates than the array-based implementation
(count_stat.c), but is slower at reads on large num-
bers of core, and suffers severe lock contention when
there are many parallel readers. This contention can be
addressed using the deferred-processing techniques intro-
duced in Chapter 9, as shown on the count_end_rcu.c
row of Table 5.1. Deferred processing also shines on
the count_stat_eventual.c row, courtesy of eventual
consistency.

Quick Quiz 5.58: On the count_stat.c row of Ta-
ble 5.1, we see that the read-side scales linearly with the
number of threads. How is that possible given that the

more threads there are, the more per-thread counters must
be summed up?

Quick Quiz 5.59: Even on the last row of Table 5.1,
the read-side performance of these statistical counter im-
plementations is pretty horrible. So why bother with
them?

Table 5.2 shows the performance of the parallel limit-
counting algorithms. Exact enforcement of the limits
incurs a substantial performance penalty, although on this
4.7 GHz POWER6 system that penalty can be reduced by
substituting signals for atomic operations. All of these
implementations suffer from read-side lock contention in
the face of concurrent readers.

Quick Quiz 5.60: Given the performance data shown
in Table 5.2, we should always prefer signals over atomic
operations, right?

Quick Quiz 5.61: Can advanced techniques be ap-
plied to address the lock contention for readers seen in
Table 5.2?

In short, this chapter has demonstrated a number of
counting algorithms that perform and scale extremely
well in a number of special cases. But must our parallel
counting be confined to special cases? Wouldn’t it be
better to have a general algorithm that operated efficiently
in all cases? The next section looks at these questions.

5.6.2 Parallel Counting Specializations

The fact that these algorithms only work well in their re-
spective special cases might be considered a major prob-
lem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded
code, and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but
is in essence misguided. The problem is not parallelism
as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of
numbers. If you need to deal with 1,000-digit decimal
numbers, the C-language ++ operator will not work for
you.

Quick Quiz 5.62: The ++ operator works just fine
for 1,000-digit numbers! Haven’t you heard of operator
overloading???

This problem is not specific to arithmetic. Suppose you
need to store and query data. Should you use an ASCII
file? XML? A relational database? A linked list? A dense
array? A B-tree? A radix tree? Or one of the plethora of
other data structures and environments that permit data to

5.6. PARALLEL COUNTING DISCUSSION 65

Table 5.1: Statistical Counter Performance on POWER6

Reads (ns)

Algorithm Section Updates (ns) 1 Core 32 Cores

count_stat.c 5.2.2 11.5 408 409
count_stat_eventual.c 5.2.3 11.6 1 1
count_end.c 5.2.4 6.3 389 51,200
count_end_rcu.c 13.3.1 5.7 354 501

Table 5.2: Limit Counter Performance on POWER6

Reads (ns)

Algorithm Section Exact? Updates (ns) 1 Core 64 Cores

count_lim.c 5.3.2 N 3.6 375 50,700
count_lim_app.c 5.3.4 N 11.7 369 51,000
count_lim_atomic.c 5.4.1 Y 51.4 427 49,400
count_lim_sig.c 5.4.4 Y 10.2 370 54,000

be stored and queried? It depends on what you need to
do, how fast you need it done, and how large your data
set is—even on sequential systems.

Similarly, if you need to count, your solution will de-
pend on how large of numbers you need to work with,
how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what
level of performance and scalability you will need.

Nor is this problem specific to software. The design
for a bridge meant to allow people to walk across a small
brook might be a simple as a single wooden plank. But
you would probably not use a plank to span the kilometers-
wide mouth of the Columbia River, nor would such a
design be advisable for bridges carrying concrete trucks.
In short, just as bridge design must change with increas-
ing span and load, so must software design change as
the number of CPUs increases. That said, it would be
good to automate this process, so that the software adapts
to changes in hardware configuration and in workload.
There has in fact been some research into this sort of au-
tomation [AHS+03, SAH+03], and the Linux kernel does
some boot-time reconfiguration, including limited binary
rewriting. This sort of adaptation will become increas-
ingly important as the number of CPUs on mainstream
systems continues to increase.

In short, as discussed in Chapter 3, the laws of physics
constrain parallel software just as surely as they constrain
mechanical artifacts such as bridges. These constraints
force specialization, though in the case of software it

might be possible to automate the choice of specialization
to fit the hardware and workload in question.

Of course, even generalized counting is quite special-
ized. We need to do a great number of other things with
computers. The next section relates what we have learned
from counters to topics taken up later in this book.

5.6.3 Parallel Counting Lessons

The opening paragraph of this chapter promised that our
study of counting would provide an excellent introduction
to parallel programming. This section makes explicit
connections between the lessons from this chapter and
the material presented in a number of later chapters.

The examples in this chapter have shown that an impor-
tant scalability and performance tool is partitioning. The
counters might be fully partitioned, as in the statistical
counters discussed in Section 5.2, or partially partitioned
as in the limit counters discussed in Sections 5.3 and
5.4. Partitioning will be considered in far greater depth
in Chapter 6, and partial parallelization in particular in
Section 6.4, where it is called parallel fastpath.

Quick Quiz 5.63: But if we are going to have to parti-
tion everything, why bother with shared-memory multi-
threading? Why not just partition the problem completely
and run as multiple processes, each in its own address
space?

The partially partitioned counting algorithms used lock-
ing to guard the global data, and locking is the subject

66 CHAPTER 5. COUNTING

of Chapter 7. In contrast, the partitioned data tended to
be fully under the control of the corresponding thread, so
that no synchronization whatsoever was required. This
data ownership will be introduced in Section 6.3.4 and
discussed in more detail in Chapter 8.

Because integer addition and subtraction are extremely
cheap operations compared to typical synchronization
operations, achieving reasonable scalability requires syn-
chronization operations be used sparingly. One way of
achieving this is to batch the addition and subtraction op-
erations, so that a great many of these cheap operations
are handled by a single synchronization operation. Batch-
ing optimizations of one sort or another are used by each
of the counting algorithms listed in Tables 5.1 and 5.2.

Finally, the eventually consistent statistical counter dis-
cussed in Section 5.2.3 showed how deferring activity
(in that case, updating the global counter) can provide
substantial performance and scalability benefits. This ap-
proach allows common case code to use much cheaper
synchronization operations than would otherwise be pos-
sible. Chapter 9 will examine a number of additional
ways that deferral can improve performance, scalability,
and even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only
to common code paths, works almost as well.

3. Partial partitioning can be applied to code (as in Sec-
tion 5.2’s statistical counters’ partitioned updates
and non-partitioned reads), but also across time (as
in Section 5.3’s and Section 5.4’s limit counters run-
ning fast when far from the limit, but slowly when
close to the limit).

4. Partitioning across time often batches updates locally
in order to reduce the number of expensive global
operations, thereby decreasing synchronization over-
head, in turn improving performance and scalability.
All the algorithms shown in Tables 5.1 and 5.2 make
heavy use of batching.

5. Read-only code paths should remain read-only: Spu-
rious synchronization writes to shared memory kill
performance and scalability, as seen in the count_
end.c row of Table 5.1.

6. Judicious use of delay promotes performance and
scalability, as seen in Section 5.2.3.

Partitioning

Work

Access Control

Parallel

With Hardware

Interacting

Resource
Partitioning and

Replication

PartitionWeaken

BatchBatch

Figure 5.8: Optimization and the Four Parallel-
Programming Tasks

7. Parallel performance and scalability is usually a bal-
ancing act: Beyond a certain point, optimizing some
code paths will degrade others. The count_stat.c
and count_end_rcu.c rows of Table 5.1 illustrate
this point.

8. Different levels of performance and scalability will
affect algorithm and data-structure design, as do a
large number of other factors. Figure 5.1 illustrates
this point: Atomic increment might be completely
acceptable for a two-CPU system, but be completely
inadequate for an eight-CPU system.

Summarizing still further, we have the “big three” meth-
ods of increasing performance and scalability, namely
(1) partitioning over CPUs or threads, (2) batching so
that more work can be done by each expensive synchro-
nization operations, and (3) weakening synchronization
operations where feasible. As a rough rule of thumb, you
should apply these methods in this order, as was noted ear-
lier in the discussion of Figure 2.6 on page 15. The parti-
tioning optimization applies to the “Resource Partitioning
and Replication” bubble, the batching optimization to the
“Work Partitioning” bubble, and the weakening optimiza-
tion to the “Parallel Access Control” bubble, as shown in
Figure 5.8. Of course, if you are using special-purpose
hardware such as digital signal processors (DSPs), field-
programmable gate arrays (FPGAs), or general-purpose
graphical processing units (GPGPUs), you may need to
pay close attention to the “Interacting With Hardware”
bubble throughout the design process. For example, the
structure of a GPGPU’s hardware threads and memory
connectivity might richly reward very careful partitioning
and batching design decisions.

5.6. PARALLEL COUNTING DISCUSSION 67

In short, as noted at the beginning of this chapter, the
simplicity of counting have allowed us to explore many
fundamental concurrency issues without the distraction
of complex synchronization primitives or elaborate data
structures. Such synchronization primitives and data struc-
tures are covered in later chapters.

68 CHAPTER 5. COUNTING

Divide and rule.

Philip II of MacedonChapter 6

Partitioning and Synchronization Design

This chapter describes how to design software to take ad-
vantage of the multiple CPUs that are increasingly appear-
ing in commodity systems. It does this by presenting a
number of idioms, or “design patterns” [Ale79, GHJV95,
SSRB00] that can help you balance performance, scala-
bility, and response time. As noted in earlier chapters,
the most important decision you will make when creat-
ing parallel software is how to carry out the partitioning.
Correctly partitioned problems lead to simple, scalable,
and high-performance solutions, while poorly partitioned
problems result in slow and complex solutions. This
chapter will help you design partitioning into your code,
with some discussion of batching and weakening as well.
The word “design” is very important: You should parti-
tion first, batch second, weaken third, and code fourth.
Changing this order often leads to poor performance and
scalability along with great frustration.

To this end, Section 6.1 presents partitioning exercises,
Section 6.2 reviews partitionability design criteria, Sec-
tion 6.3 discusses selecting an appropriate synchroniza-
tion granularity, Section 6.4 gives an overview of im-
portant parallel-fastpath designs that provide speed and
scalability in the common case with a simpler but less-
scalable fallback “slow path” for unusual situations, and
finally Section 6.5 takes a brief look beyond partitioning.

6.1 Partitioning Exercises
This section uses a pair of exercises (the classic Din-
ing Philosophers problem and a double-ended queue) to
demonstrate the value of partitioning.

6.1.1 Dining Philosophers Problem
Figure 6.1 shows a diagram of the classic Dining Philoso-
phers problem [Dij71]. This problem features five philoso-

P1

P2

P3P4

P5

Figure 6.1: Dining Philosophers Problem

phers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat. A
given philosopher is permitted to use only the forks to his
or her immediate right and left, and once a philosopher
picks up a fork, he or she will not put it down until sated.1

The object is to construct an algorithm that, quite liter-
ally, prevents starvation. One starvation scenario would
be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down
their fork until after they ate, and because none of them
may pick up their second fork until at least one has fin-
ished eating, they all starve. Please note that it is not
sufficient to allow at least one philosopher to eat. As Fig-
ure 6.2 shows, starvation of even a few of the philosophers
is to be avoided.

Dijkstra’s solution used a global semaphore, which

1 Readers who have difficulty imagining a food that requires two
forks are invited to instead think in terms of chopsticks.

69

70 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.2: Partial Starvation Is Also Bad

P1

1

P2

2

P3

3

P4

4

P5

5

Figure 6.3: Dining Philosophers Problem, Textbook So-
lution

works fine assuming negligible communications delays,
an assumption that became invalid in the late 1980s or
early 1990s.2 Therefore, recent solutions number the
forks as shown in Figure 6.3. Each philosopher picks up
the lowest-numbered fork next to his or her plate, then
picks up the highest-numbered fork. The philosopher
sitting in the uppermost position in the diagram thus picks
up the leftmost fork first, then the rightmost fork, while
the rest of the philosophers instead pick up their rightmost
fork first. Because two of the philosophers will attempt
to pick up fork 1 first, and because only one of those

2 It is all too easy to denigrate Dijkstra from the viewpoint of the
year 2012, more than 40 years after the fact. If you still feel the need
to denigrate Dijkstra, my advice is to publish something, wait 40 years,
and then see how your words stood the test of time.

two philosophers will succeed, there will be five forks
available to four philosophers. At least one of these four
will be guaranteed to have two forks, and thus be able to
proceed eating.

This general technique of numbering resources and
acquiring them in numerical order is heavily used as a
deadlock-prevention technique. However, it is easy to
imagine a sequence of events that will result in only one
philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.

2. P3 picks up fork 2.

3. P4 picks up fork 3.

4. P5 picks up fork 4.

5. P5 picks up fork 5 and eats.

6. P5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philoso-
pher eating at a given time, even when all five philoso-
phers are hungry, despite the fact that there are more than
enough forks for two philosophers to eat concurrently.

Please think about ways of partitioning the Dining
Philosophers Problem before reading further.

6.1. PARTITIONING EXERCISES 71

(Intentional blank page)

72 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

6.1. PARTITIONING EXERCISES 73

P1

P2

P3

P4

Figure 6.4: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 6.4, which includes
four philosophers rather than five to better illustrate the
partition technique. Here the upper and rightmost philoso-
phers share a pair of forks, while the lower and leftmost
philosophers share another pair of forks. If all philoso-
phers are simultaneously hungry, at least two will always
be able to eat concurrently. In addition, as shown in the
figure, the forks can now be bundled so that the pair are
picked up and put down simultaneously, simplifying the
acquisition and release algorithms.

Quick Quiz 6.1: Is there a better solution to the Dining
Philosophers Problem?

This is an example of “horizontal parallelism” [Inm85]
or “data parallelism”, so named because there is no de-
pendency among the pairs of philosophers. In a horizon-
tally parallel data-processing system, a given item of data
would be processed by only one of a replicated set of
software components.

Quick Quiz 6.2: And in just what sense can this “hori-
zontal parallelism” be said to be “horizontal”?

6.1.2 Double-Ended Queue
A double-ended queue is a data structure containing a
list of elements that may be inserted or removed from
either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both
ends of the double-ended queue is difficult [Gro07]. This
section shows how a partitioning design strategy can result
in a reasonably simple implementation, looking at three
general approaches in the following sections.

Header L

Lock L

0 Header R

Lock R

Header L

Lock L

Header L

Lock L

0 1 Header R

Lock R

Header R

Lock R

Header L

Lock L

0 1 2 Header R

Lock R

Header L

Lock L

0 1 2 Header R

Lock R

3

Figure 6.5: Double-Ended Queue With Left- and Right-
Hand Locks

6.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to
use a doubly linked list with a left-hand lock for left-
hand-end enqueue and dequeue operations along with a
right-hand lock for right-hand-end operations, as shown
in Figure 6.5. However, the problem with this approach is
that the two locks’ domains must overlap when there are
fewer than four elements on the list. This overlap is due to
the fact that removing any given element affects not only
that element, but also its left- and right-hand neighbors.
These domains are indicated by color in the figure, with
blue with downward stripes indicating the domain of the
left-hand lock, red with upward stripes indicating the
domain of the right-hand lock, and purple (with no stripes)
indicating overlapping domains. Although it is possible
to create an algorithm that works this way, the fact that it
has no fewer than five special cases should raise a big red
flag, especially given that concurrent activity at the other
end of the list can shift the queue from one special case
to another at any time. It is far better to consider other
designs.

6.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is
shown in Figure 6.6. Two separate double-ended queues

74 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Lock L

DEQ L

Lock R

DEQ R

Figure 6.6: Compound Double-Ended Queue

are run in tandem, each protected by its own lock. This
means that elements must occasionally be shuttled from
one of the double-ended queues to the other, in which case
both locks must be held. A simple lock hierarchy may
be used to avoid deadlock, for example, always acquiring
the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to
the same double-ended queue, as we can unconditionally
left-enqueue elements to the left-hand queue and right-
enqueue elements to the right-hand queue. The main com-
plication arises when dequeuing from an empty queue, in
which case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock.

2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.

4. Remove the required element if there is one.

5. Release both locks.

Quick Quiz 6.3: In this compound double-ended
queue implementation, what should be done if the queue
has become non-empty while releasing and reacquiring
the lock?

The resulting code (locktdeq.c) is quite straightfor-
ward. The rebalancing operation might well shuttle a
given element back and forth between the two queues,
wasting time and possibly requiring workload-dependent
heuristics to obtain optimal performance. Although this
might well be the best approach in some cases, it is inter-
esting to try for an algorithm with greater determinism.

6.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deter-
ministically partition a data structure is to hash it. It is
possible to trivially hash a double-ended queue by assign-
ing each element a sequence number based on its position
in the list, so that the first element left-enqueued into
an empty queue is numbered zero and the first element
right-enqueued into an empty queue is numbered one. A

Lock 0

DEQ 0 DEQ 1

Lock 1

DEQ 2

Lock 2

DEQ 3

Lock 3

Index R

Lock RLock L

Index L

Figure 6.7: Hashed Double-Ended Queue

series of elements left-enqueued into an otherwise-idle
queue would be assigned decreasing numbers (−1, −2,
−3, . . .), while a series of elements right-enqueued into an
otherwise-idle queue would be assigned increasing num-
bers (2, 3, 4, . . .). A key point is that it is not necessary
to actually represent a given element’s number, as this
number will be implied by its position in the queue.

Given this approach, we assign one lock to guard the
left-hand index, one to guard the right-hand index, and
one lock for each hash chain. Figure 6.7 shows the result-
ing data structure given four hash chains. Note that the
lock domains do not overlap, and that deadlock is avoided
by acquiring the index locks before the chain locks, and
by never acquiring more than one lock of each type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and in
this example, each holds every fourth element. The upper-
most portion of Figure 6.8 shows the state after a single
element (“R1”) has been right-enqueued, with the right-
hand index having been incremented to reference hash
chain 2. The middle portion of this same figure shows the
state after three more elements have been right-enqueued.
As you can see, the indexes are back to their initial states
(see Figure 6.7), however, each hash chain is now non-
empty. The lower portion of this figure shows the state
after three additional elements have been left-enqueued
and an additional element has been right-enqueued.

From the last state shown in Figure 6.8, a left-dequeue
operation would return element “L−2” and leave the left-
hand index referencing hash chain 2, which would then
contain only a single element (“R2”). In this state, a
left-enqueue running concurrently with a right-enqueue
would result in lock contention, but the probability of
such contention can be reduced to arbitrarily low levels
by using a larger hash table.

Figure 6.9 shows how 16 elements would be organized
in a four-hash-bucket parallel double-ended queue. Each
underlying single-lock double-ended queue holds a one-

6.1. PARTITIONING EXERCISES 75

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

Enq 3R

R1

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

Enq 3L1R

R1 R2 R3R4

L0 L −1

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

R1

R2 R3R4 R5

L −2

Figure 6.8: Hashed Double-Ended Queue After Inser-
tions

quarter slice of the full parallel double-ended queue.
Listing 6.1 shows the corresponding C-language data

structure, assuming an existing struct deq that pro-
vides a trivially locked double-ended-queue implementa-
tion. This data structure contains the left-hand lock on
line 2, the left-hand index on line 3, the right-hand lock
on line 4 (which is cache-aligned in the actual implemen-
tation), the right-hand index on line 5, and, finally, the
hashed array of simple lock-based double-ended queues
on line 6. A high-performance implementation would
of course use padding or special alignment directives to
avoid false sharing.

Listing 6.1: Lock-Based Parallel Double-Ended Queue Data
Structure

1 struct pdeq {
2 spinlock_t llock;
3 int lidx;
4 spinlock_t rlock;
5 int ridx;
6 struct deq bkt[PDEQ_N_BKTS];
7 };

Listing 6.2: Lock-Based Parallel Double-Ended Queue Imple-
mentation

1 struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {
3 struct cds_list_head *e;
4 int i;
5

6 spin_lock(&d->llock);
7 i = moveright(d->lidx);
8 e = deq_pop_l(&d->bkt[i]);
9 if (e != NULL)

10 d->lidx = i;
11 spin_unlock(&d->llock);
12 return e;
13 }
14

15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {
17 struct cds_list_head *e;
18 int i;
19

20 spin_lock(&d->rlock);
21 i = moveleft(d->ridx);
22 e = deq_pop_r(&d->bkt[i]);
23 if (e != NULL)
24 d->ridx = i;
25 spin_unlock(&d->rlock);
26 return e;
27 }
28

29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
30 {
31 int i;
32

33 spin_lock(&d->llock);
34 i = d->lidx;
35 deq_push_l(e, &d->bkt[i]);
36 d->lidx = moveleft(d->lidx);
37 spin_unlock(&d->llock);
38 }
39

40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
41 {
42 int i;
43

44 spin_lock(&d->rlock);
45 i = d->ridx;
46 deq_push_r(e, &d->bkt[i]);
47 d->ridx = moveright(d->ridx);
48 spin_unlock(&d->rlock);
49 }

76 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

L0 R1 R2 R3

L−1L−2L−3L−4

L−8 L−7 L−6

R4 R5 R6 R7

L−5

Figure 6.9: Hashed Double-Ended Queue With 16 Ele-
ments

Listing 6.2 (lockhdeq.c) shows the implementation
of the enqueue and dequeue functions.3 Discussion will
focus on the left-hand operations, as the right-hand opera-
tions are trivially derived from them.

Lines 1-13 show pdeq_pop_l(), which left-dequeues
and returns an element if possible, returning NULL other-
wise. Line 6 acquires the left-hand spinlock, and line 7
computes the index to be dequeued from. Line 8 de-
queues the element, and, if line 9 finds the result to be
non-NULL, line 10 records the new left-hand index. Either
way, line 11 releases the lock, and, finally, line 12 returns
the element if there was one, or NULL otherwise.

Lines 29-38 shows pdeq_push_l(), which left-
enqueues the specified element. Line 33 acquires the
left-hand lock, and line 34 picks up the left-hand in-
dex. Line 35 left-enqueues the specified element onto
the double-ended queue indexed by the left-hand index.
Line 36 then updates the left-hand index and line 37 re-
leases the lock.

As noted earlier, the right-hand operations are com-
pletely analogous to their left-handed counterparts, so
their analysis is left as an exercise for the reader.

Quick Quiz 6.4: Is the hashed double-ended queue a
good solution? Why or why not?

6.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue,
using a trivial rebalancing scheme that moves all the ele-
ments from the non-empty queue to the now-empty queue.

Quick Quiz 6.5: Move all the elements to the queue
that became empty? In what possible universe is this
brain-dead solution in any way optimal???

In contrast to the hashed implementation presented in
the previous section, the compound implementation will
build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

3 One could easily create a polymorphic implementation in any
number of languages, but doing so is left as an exercise for the reader.

Listing 6.3: Compound Parallel Double-Ended Queue Imple-
mentation

1 struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {
3 struct cds_list_head *e;
4

5 spin_lock(&d->llock);
6 e = deq_pop_l(&d->ldeq);
7 if (e == NULL) {
8 spin_lock(&d->rlock);
9 e = deq_pop_l(&d->rdeq);

10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
11 CDS_INIT_LIST_HEAD(&d->rdeq.chain);
12 spin_unlock(&d->rlock);
13 }
14 spin_unlock(&d->llock);
15 return e;
16 }
17

18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
19 {
20 struct cds_list_head *e;
21

22 spin_lock(&d->rlock);
23 e = deq_pop_r(&d->rdeq);
24 if (e == NULL) {
25 spin_unlock(&d->rlock);
26 spin_lock(&d->llock);
27 spin_lock(&d->rlock);
28 e = deq_pop_r(&d->rdeq);
29 if (e == NULL) {
30 e = deq_pop_r(&d->ldeq);
31 cds_list_splice(&d->ldeq.chain, &d->rdeq.chain);
32 CDS_INIT_LIST_HEAD(&d->ldeq.chain);
33 }
34 spin_unlock(&d->llock);
35 }
36 spin_unlock(&d->rlock);
37 return e;
38 }
39

40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
41 {
42 spin_lock(&d->llock);
43 deq_push_l(e, &d->ldeq);
44 spin_unlock(&d->llock);
45 }
46

47 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
48 {
49 spin_lock(&d->rlock);
50 deq_push_r(e, &d->rdeq);
51 spin_unlock(&d->rlock);
52 }

Listing 6.3 shows the implementation. Unlike the
hashed implementation, this compound implementation is
asymmetric, so that we must consider the pdeq_pop_l()
and pdeq_pop_r() implementations separately.

Quick Quiz 6.6: Why can’t the compound parallel
double-ended queue implementation be symmetric?

The pdeq_pop_l() implementation is shown on
lines 1-16 of the figure. Line 5 acquires the left-hand lock,
which line 14 releases. Line 6 attempts to left-dequeue
an element from the left-hand underlying double-ended
queue, and, if successful, skips lines 8-13 to simply return

6.1. PARTITIONING EXERCISES 77

this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand
queue, and line 10 moves any remaining elements on the
right-hand queue to the left-hand queue, line 11 initializes
the right-hand queue, and line 12 releases the right-hand
lock. The element, if any, that was dequeued on line 9
will be returned.

The pdeq_pop_r() implementation is shown on
lines 18-38 of the figure. As before, line 22 acquires
the right-hand lock (and line 36 releases it), and line 23
attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 25-35 to simply re-
turn this element. However, if line 24 determines that
there was no element to dequeue, line 25 releases the
right-hand lock and lines 26-27 acquire both locks in
the proper order. Line 28 then attempts to right-dequeue
an element from the right-hand list again, and if line 29
determines that this second attempt has failed, line 30
right-dequeues an element from the left-hand queue (if
there is one available), line 31 moves any remaining ele-
ments from the left-hand queue to the right-hand queue,
and line 32 initializes the left-hand queue. Either way,
line 34 releases the left-hand lock.

Quick Quiz 6.7: Why is it necessary to retry the right-
dequeue operation on line 28 of Listing 6.3?

Quick Quiz 6.8: Surely the left-hand lock must some-
times be available!!! So why is it necessary that line 25 of
Listing 6.3 unconditionally release the right-hand lock?

The pdeq_push_l() implementation is shown on
lines 40-45 of Listing 6.3. Line 42 acquires the left-hand
spinlock, line 43 left-enqueues the element onto the left-
hand queue, and finally line 44 releases the lock. The
pdeq_push_r() implementation (shown on lines 47-52)
is quite similar.

Quick Quiz 6.9: But in the case where data is flow-
ing in only one direction, the algorithm shown in List-
ing 6.3 will have both ends attempting to acquire the same
lock whenever the consuming end empties its underlying
double-ended queue. Doesn’t that mean that sometimes
this algorithm fails to provide concurrent access to both
ends of the queue even when the queue contains an arbi-
trarily large number of elements?

6.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more com-
plex than the hashed variant presented in Section 6.1.2.3,
but is still reasonably simple. Of course, a more intel-
ligent rebalancing scheme could be arbitrarily complex,

but the simple scheme shown here has been shown to per-
form well compared to software alternatives [DCW+11]
and even compared to algorithms using hardware as-
sist [DLM+10]. Nevertheless, the best we can hope for
from such a scheme is 2x scalability, as at most two
threads can be holding the dequeue’s locks concurrently.
This limitation also applies to algorithms based on non-
blocking synchronization, such as the compare-and-swap-
based dequeue algorithm of Michael [Mic03].4

Quick Quiz 6.10: Why are there not one but two solu-
tions to the double-ended queue problem?

In fact, as noted by Dice et al. [DLM+10], an unsyn-
chronized single-threaded double-ended queue signifi-
cantly outperforms any of the parallel implementations
they studied. Therefore, the key point is that there can be
significant overhead enqueuing to or dequeuing from a
shared queue, regardless of implementation. This should
come as no surprise given the material in Chapter 3, given
the strict FIFO nature of these queues.

Furthermore, these strict FIFO queues are strictly FIFO
only with respect to linearization points [HW90]5 that
are not visible to the caller, in fact, in these examples, the
linearization points are buried in the lock-based critical
sections. These queues are not strictly FIFO with re-
spect to (say) the times at which the individual operations
started [HKLP12]. This indicates that the strict FIFO
property is not all that valuable in concurrent programs,
and in fact, Kirsch et al. present less-strict queues that
provide improved performance and scalability [KLP12].6

All that said, if you are pushing all the data used by your
concurrent program through a single queue, you really
need to rethink your overall design.

6.1.3 Partitioning Example Discussion
The optimal solution to the dining philosophers problem
given in the answer to the Quick Quiz in Section 6.1.1 is
an excellent example of “horizontal parallelism” or “data

4 This paper is interesting in that it showed that special double-
compare-and-swap (DCAS) instructions are not needed for lock-free im-
plementations of double-ended queues. Instead, the common compare-
and-swap (e.g., x86 cmpxchg) suffices.

5 In short, a linearization point is a single point within a given
function where that function can be said to have taken effect. In this
lock-based implementation, the linearization points can be said to be
anywhere within the critical section that does the work.

6 Nir Shavit produced relaxed stacks for roughly the same rea-
sons [Sha11]. This situation leads some to believe that the linearization
points are useful to theorists rather than developers, and leads others
to wonder to what extent the designers of such data structures and
algorithms were considering the needs of their users.

78 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

parallelism”. The synchronization overhead in this case
is nearly (or even exactly) zero. In contrast, the double-
ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from
one thread to another. The tighter coordination required
for pipelining in turn requires larger units of work to
obtain a given level of efficiency.

Quick Quiz 6.11: The tandem double-ended queue
runs about twice as fast as the hashed double-ended queue,
even when I increase the size of the hash table to an
insanely large number. Why is that?

Quick Quiz 6.12: Is there a significantly better way of
handling concurrency for double-ended queues?

These two examples show just how powerful partition-
ing can be in devising parallel algorithms. Section 6.3.5
looks briefly at a third example, matrix multiply. How-
ever, all three of these examples beg for more and better
design criteria for parallel programs, a topic taken up in
the next section.

6.2 Design Criteria

One way to obtain the best performance and scalability
is to simply hack away until you converge on the best
possible parallel program. Unfortunately, if your program
is other than microscopically tiny, the space of possi-
ble parallel programs is so huge that convergence is not
guaranteed in the lifetime of the universe. Besides, what
exactly is the “best possible parallel program”? After
all, Section 2.2 called out no fewer than three parallel-
programming goals of performance, productivity, and
generality, and the best possible performance will likely
come at a cost in terms of productivity and generality.
We clearly need to be able to make higher-level choices
at design time in order to arrive at an acceptably good
parallel program before that program becomes obsolete.

However, more detailed design criteria are required to
actually produce a real-world design, a task taken up in
this section. This being the real world, these criteria often
conflict to a greater or lesser degree, requiring that the
designer carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the
“forces” acting on the design, with particularly good
tradeoffs between these forces being called “design pat-
terns” [Ale79, GHJV95].

The design criteria for attaining the three parallel-
programming goals are speedup, contention, overhead,
read-to-write ratio, and complexity:

Speedup: As noted in Section 2.2, increased perfor-
mance is the major reason to go to all of the time and
trouble required to parallelize it. Speedup is defined
to be the ratio of the time required to run a sequential
version of the program to the time required to run a
parallel version.

Contention: If more CPUs are applied to a parallel pro-
gram than can be kept busy by that program, the
excess CPUs are prevented from doing useful work
by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor, sin-
gle-threaded, non-preemptible, and non-interrupt-
ible7 version of a given parallel program would not
need any synchronization primitives. Therefore, any
time consumed by these primitives (including com-
munication cache misses as well as message latency,
locking primitives, atomic instructions, and memory
barriers) is overhead that does not contribute directly
to the useful work that the program is intended to ac-
complish. Note that the important measure is the re-
lationship between the synchronization overhead and
the overhead of the code in the critical section, with
larger critical sections able to tolerate greater syn-
chronization overhead. The work-to-synchronization
ratio is related to the notion of synchronization effi-
ciency.

Read-to-Write Ratio: A data structure that is rarely up-
dated may often be replicated rather than partitioned,
and furthermore may be protected with asymmet-
ric synchronization primitives that reduce readers’
synchronization overhead at the expense of that of
writers, thereby reducing overall synchronization
overhead. Corresponding optimizations are possible
for frequently updated data structures, as discussed
in Chapter 5.

Complexity: A parallel program is more complex than
an equivalent sequential program because the paral-
lel program has a much larger state space than does
the sequential program, although these larger state
spaces can in some cases be easily understood given
sufficient regularity and structure. A parallel pro-
grammer must consider synchronization primitives,
messaging, locking design, critical-section identifi-
cation, and deadlock in the context of this larger state
space.

7 Either by masking interrupts or by being oblivious to them.

6.3. SYNCHRONIZATION GRANULARITY 79

This greater complexity often translates to higher
development and maintenance costs. Therefore, bud-
getary constraints can limit the number and types
of modifications made to an existing program, since
a given degree of speedup is worth only so much
time and trouble. Worse yet, added complexity can
actually reduce performance and scalability.

Therefore, beyond a certain point, there may be po-
tential sequential optimizations that are cheaper and
more effective than parallelization. As noted in Sec-
tion 2.2.1, parallelization is but one performance
optimization of many, and is furthermore an opti-
mization that applies most readily to CPU-based
bottlenecks.

These criteria will act together to enforce a maximum
speedup. The first three criteria are deeply interrelated, so
the remainder of this section analyzes these interrelation-
ships.8

Note that these criteria may also appear as part of the
requirements specification. For example, speedup may act
as a relative desideratum (“the faster, the better”) or as an
absolute requirement of the workload (“the system must
support at least 1,000,000 web hits per second”). Classic
design pattern languages describe relative desiderata as
forces and absolute requirements as context.

An understanding of the relationships between these
design criteria can be very helpful when identifying ap-
propriate design tradeoffs for a parallel program.

1. The less time a program spends in critical sections,
the greater the potential speedup. This is a conse-
quence of Amdahl’s Law [Amd67] and of the fact
that only one CPU may execute within a given criti-
cal section at a given time.

More specifically, the fraction of time that the pro-
gram spends in a given exclusive critical section
must be much less than the reciprocal of the num-
ber of CPUs for the actual speedup to approach the
number of CPUs. For example, a program running
on 10 CPUs must spend much less than one tenth of
its time in the most-restrictive critical section if it is
to scale at all well.

2. Contention effects will consume the excess CPU
and/or wallclock time should the actual speedup be
less than the number of available CPUs. The larger

8 A real-world parallel system will be subject to many additional
design criteria, such as data-structure layout, memory size, memory-
hierarchy latencies, bandwidth limitations, and I/O issues.

the gap between the number of CPUs and the ac-
tual speedup, the less efficiently the CPUs will be
used. Similarly, the greater the desired efficiency,
the smaller the achievable speedup.

3. If the available synchronization primitives have high
overhead compared to the critical sections that they
guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked
(perhaps by batching critical sections, using data
ownership, using asymmetric primitives (see Sec-
tion 9), or by moving toward a more coarse-grained
design such as code locking).

4. If the critical sections have high overhead compared
to the primitives guarding them, the best way to im-
prove speedup is to increase parallelism by moving
to reader/writer locking, data locking, asymmetric,
or data ownership.

5. If the critical sections have high overhead compared
to the primitives guarding them and the data structure
being guarded is read much more often than modi-
fied, the best way to increase parallelism is to move
to reader/writer locking or asymmetric primitives.

6. Many changes that improve SMP performance, for
example, reducing lock contention, also improve
real-time latencies [McK05c].

Quick Quiz 6.13: Don’t all these problems with crit-
ical sections mean that we should just always use non-
blocking synchronization [Her90], which don’t have criti-
cal sections?

6.3 Synchronization Granularity
Figure 6.10 gives a pictorial view of different levels of
synchronization granularity, each of which is described
in one of the following sections. These sections focus
primarily on locking, but similar granularity issues arise
with all forms of synchronization.

6.3.1 Sequential Program
If the program runs fast enough on a single processor, and
has no interactions with other processes, threads, or in-
terrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complex-
ity. Some years back, there were those who would argue
that Moore’s Law would eventually force all programs

80 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Program
Sequential
Program

Sequential

Ownership
Data

Locking
Data

Locking
Code

Batch

Disown

Batch

Own

Partition

Partition

Figure 6.10: Design Patterns and Lock Granularity

into this category. However, as can be seen in Figure 6.11,
the exponential increase in single-threaded performance
halted in about 2003. Therefore, increasing performance
will increasingly require parallelism.9 The debate as to
whether this new trend will result in single chips with
thousands of CPUs will not be settled soon, but given that
Paul is typing this sentence on a dual-core laptop, the age
of SMP does seem to be upon us. It is also important to
note that Ethernet bandwidth is continuing to grow, as
shown in Figure 6.12. This growth will motivate multi-
threaded servers in order to handle the communications
load.

Please note that this does not mean that you should
code each and every program in a multi-threaded manner.
Again, if a program runs quickly enough on a single
processor, spare yourself the overhead and complexity of
SMP synchronization primitives. The simplicity of the
hash-table lookup code in Listing 6.4 underscores this
point.10 A key point is that speedups due to parallelism
are normally limited to the number of CPUs. In contrast,
speedups due to sequential optimizations, for example,
careful choice of data structure, can be arbitrarily large.

On the other hand, if you are not in this happy situation,
read on!

9 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.

10 The examples in this section are taken from Hart et al. [HMB06],
adapted for clarity by gathering related code from multiple files.

 0.1

 1

 10

 100

 1000

 10000

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

C
P

U
 C

lo
ck

 F
re

qu
en

cy
 /

M
IP

S

Year

Figure 6.11: MIPS/Clock-Frequency Trend for Intel
CPUs

6.3.2 Code Locking
Code locking is quite simple due to the fact that is uses
only global locks.11 It is especially easy to retrofit an ex-
isting program to use code locking in order to run it on a
multiprocessor. If the program has only a single shared re-
source, code locking will even give optimal performance.
However, many of the larger and more complex programs
require much of the execution to occur in critical sections,
which in turn causes code locking to sharply limits their
scalability.

Therefore, you should use code locking on programs
that spend only a small fraction of their execution time
in critical sections or from which only modest scaling
is required. In these cases, code locking will provide a
relatively simple program that is very similar to its se-
quential counterpart, as can be seen in Listing 6.5. How-
ever, note that the simple return of the comparison in
hash_search() in Listing 6.4 has now become three
statements due to the need to release the lock before re-
turning.

Unfortunately, code locking is particularly prone to
“lock contention”, where multiple CPUs need to acquire
the lock concurrently. SMP programmers who have taken
care of groups of small children (or groups of older people
who are acting like children) will immediately recognize
the danger of having only one of something, as illustrated

11 If your program instead has locks in data structures, or, in the
case of Java, uses classes with synchronized instances, you are instead
using “data locking”, described in Section 6.3.3.

6.3. SYNCHRONIZATION GRANULARITY 81

Listing 6.4: Sequential-Program Hash Table Search
1 struct hash_table
2 {
3 long nbuckets;
4 struct node **buckets;
5 };
6

7 typedef struct node {
8 unsigned long key;
9 struct node *next;

10 } node_t;
11

12 int hash_search(struct hash_table *h, long key)
13 {
14 struct node *cur;
15

16 cur = h->bucketskey % h->nbuckets;
17 while (cur != NULL) {
18 if (cur->key >= key) {
19 return (cur->key == key);
20 }
21 cur = cur->next;
22 }
23 return 0;
24 }

Listing 6.5: Code-Locking Hash Table Search
1 spinlock_t hash_lock;
2

3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8

9 typedef struct node {
10 unsigned long key;
11 struct node *next;
12 } node_t;
13

14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18

19 spin_lock(&hash_lock);
20 cur = h->bucketskey % h->nbuckets;
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 spin_unlock(&hash_lock);
30 return 0;
31 }

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1
97

0

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

R
el

at
iv

e
P

er
fo

rm
an

ce
Year

Ethernet

x86 CPUs

Figure 6.12: Ethernet Bandwidth vs. Intel x86 CPU
Performance

in Figure 6.13.
One solution to this problem, named “data locking”, is

described in the next section.

toy

Figure 6.13: Lock Contention

6.3.3 Data Locking
Many data structures may be partitioned, with each par-
tition of the data structure having its own lock. Then
the critical sections for each part of the data structure
can execute in parallel, although only one instance of the
critical section for a given part could be executing at a

82 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.6: Data-Locking Hash Table Search
1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6

7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;

10 };
11

12 typedef struct node {
13 unsigned long key;
14 struct node *next;
15 } node_t;
16

17 int hash_search(struct hash_table *h, long key)
18 {
19 struct bucket *bp;
20 struct node *cur;
21 int retval;
22

23 bp = h->buckets[key % h->nbuckets];
24 spin_lock(&bp->bucket_lock);
25 cur = bp->list_head;
26 while (cur != NULL) {
27 if (cur->key >= key) {
28 retval = (cur->key == key);
29 spin_unlock(&bp->bucket_lock);
30 return retval;
31 }
32 cur = cur->next;
33 }
34 spin_unlock(&bp->bucket_lock);
35 return 0;
36 }

given time. You should use data locking when contention
must be reduced, and where synchronization overhead is
not limiting speedups. Data locking reduces contention
by distributing the instances of the overly-large critical
section across multiple data structures, for example, main-
taining per-hash-bucket critical sections in a hash table,
as shown in Listing 6.6. The increased scalability again
results in a slight increase in complexity in the form of an
additional data structure, the struct bucket.

In contrast with the contentious situation shown in
Figure 6.13, data locking helps promote harmony, as il-
lustrated by Figure 6.14—and in parallel programs, this
almost always translates into increased performance and
scalability. For this reason, data locking was heavily used
by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK85, Inm85, Gar90, Dov90, MD92, MG92,
MS93].

However, as those who have taken care of small chil-
dren can again attest, even providing enough to go around
is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux
kernel maintains a cache of files and directories (called

toy

toy

toy

Figure 6.14: Data Locking

“dcache”). Each entry in this cache has its own lock, but
the entries corresponding to the root directory and its di-
rect descendants are much more likely to be traversed than
are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting
in a situation not unlike that shown in Figure 6.15.

toy

toy

toy toy

Figure 6.15: Data Locking and Skew

In many cases, algorithms can be designed to reduce
the instance of data skew, and in some cases eliminate it
entirely (as appears to be possible with the Linux kernel’s
dcache [MSS04]). Data locking is often used for parti-
tionable data structures such as hash tables, as well as
in situations where multiple entities are each represented
by an instance of a given data structure. The task list in

6.3. SYNCHRONIZATION GRANULARITY 83

version 2.6.17 of the Linux kernel is an example of the
latter, each task structure having its own proc_lock.

A key challenge with data locking on dynamically al-
located structures is ensuring that the structure remains
in existence while the lock is being acquired. The code
in Listing 6.6 finesses this challenge by placing the locks
in the statically allocated hash buckets, which are never
freed. However, this trick would not work if the hash
table were resizeable, so that the locks were now dynami-
cally allocated. In this case, there would need to be some
means to prevent the hash bucket from being freed during
the time that its lock was being acquired.

Quick Quiz 6.14: What are some ways of prevent-
ing a structure from being freed while its lock is being
acquired?

6.3.4 Data Ownership
Data ownership partitions a given data structure over the
threads or CPUs, so that each thread/CPU accesses its
subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to
access some other thread’s data, the first thread is unable
to do so directly. Instead, the first thread must commu-
nicate with the second thread, so that the second thread
performs the operation on behalf of the first, or, alterna-
tively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very
frequently:

1. Any variables accessible by only one CPU or thread
(such as auto variables in C and C++) are owned
by that CPU or process.

2. An instance of a user interface owns the correspond-
ing user’s context. It is very common for applica-
tions interacting with parallel database engines to be
written as if they were entirely sequential programs.
Such applications own the user interface and his cur-
rent action. Explicit parallelism is thus confined to
the database engine itself.

3. Parametric simulations are often trivially parallelized
by granting each thread ownership of a particular
region of the parameter space. There are also com-
puting frameworks designed for this type of prob-
lem [Uni08a].

If there is significant sharing, communication between
the threads or CPUs can result in significant complexity
and overhead. Furthermore, if the most-heavily used data

happens to be that owned by a single CPU, that CPU will
be a “hot spot”, sometimes with results resembling that
shown in Figure 6.15. However, in situations where no
sharing is required, data ownership achieves ideal per-
formance, and with code that can be as simple as the
sequential-program case shown in Listing 6.4. Such situ-
ations are often referred to as “embarrassingly parallel”,
and, in the best case, resemble the situation previously
shown in Figure 6.14.

Another important instance of data ownership occurs
when the data is read-only, in which case, all threads can
“own” it via replication.

Data ownership will be presented in more detail in
Chapter 8.

6.3.5 Locking Granularity and Perfor-
mance

This section looks at locking granularity and performance
from a mathematical synchronization-efficiency view-
point. Readers who are uninspired by mathematics might
choose to skip this section.

The approach is to use a crude queueing model for the
efficiency of synchronization mechanism that operate on
a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially
distributed “inter-arrival rate” λ and an exponentially dis-
tributed “service rate” µ. The inter-arrival rate λ can be
thought of as the average number of synchronization op-
erations per second that the system would process if the
synchronization were free, in other words, λ is an inverse
measure of the overhead of each non-synchronization
unit of work. For example, if each unit of work was a
transaction, and if each transaction took one millisecond
to process, excluding synchronization overhead, then λ
would be 1,000 transactions per second.

The service rate µ is defined similarly, but for the av-
erage number of synchronization operations per second
that the system would process if the overhead of each
transaction was zero, and ignoring the fact that CPUs
must wait on each other to complete their synchronization
operations, in other words, µ can be roughly thought of
as the synchronization overhead in absence of contention.
For example, suppose that each synchronization opera-
tion involves an atomic increment instruction, and that a
computer system is able to do an atomic increment every
25 nanoseconds on each CPU to a private variable.12 The

12 Of course, if there are 8 CPUs all incrementing the same shared
variable, then each CPU must wait at least 175 nanoseconds for each of

84 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

value of µ is therefore about 40,000,000 atomic incre-
ments per second.

Of course, the value of λ increases with increasing
numbers of CPUs, as each CPU is capable of processing
transactions independently (again, ignoring synchroniza-
tion):

λ = nλ0 (6.1)

where n is the number of CPUs and λ0 is the
transaction-processing capability of a single CPU. Note
that the expected time for a single CPU to execute a single
transaction is 1/λ0.

Because the CPUs have to “wait in line” behind each
other to get their chance to increment the single shared
variable, we can use the M/M/1 queueing-model expres-
sion for the expected total waiting time:

T =
1

µ − λ
(6.2)

Substituting the above value of λ:

T =
1

µ − nλ0
(6.3)

Now, the efficiency is just the ratio of the time required
to process a transaction in absence of synchronization
(1/λ0) to the time required including synchronization
(T + 1/λ0):

e =
1/λ0

T + 1/λ0
(6.4)

Substituting the above value for T and simplifying:

e =

µ
λ0
− n

µ
λ0
− (n − 1)

(6.5)

But the value of µ/λ0 is just the ratio of the time re-
quired to process the transaction (absent synchronization
overhead) to that of the synchronization overhead itself
(absent contention). If we call this ratio f , we have:

e =
f − n

f − (n − 1)
(6.6)

Figure 6.16 plots the synchronization efficiency e as
a function of the number of CPUs/threads n for a few
values of the overhead ratio f . For example, again using
the 25-nanosecond atomic increment, the f = 10 line

the other CPUs to do its increment before consuming an additional 25
nanoseconds doing its own increment. In actual fact, the wait will be
longer due to the need to move the variable from one CPU to another.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

S
yn

ch
ro

ni
za

tio
n

E
ffi

ci
en

cy

Number of CPUs (Threads)

10
25

50
75

100

Figure 6.16: Synchronization Efficiency

corresponds to each CPU attempting an atomic increment
every 250 nanoseconds, and the f = 100 line corresponds
to each CPU attempting an atomic increment every 2.5
microseconds, which in turn corresponds to several thou-
sand instructions. Given that each trace drops off sharply
with increasing numbers of CPUs or threads, we can con-
clude that synchronization mechanisms based on atomic
manipulation of a single global shared variable will not
scale well if used heavily on current commodity hardware.
This is a mathematical depiction of the forces leading to
the parallel counting algorithms that were discussed in
Chapter 5.

The concept of efficiency is useful even in cases having
little or no formal synchronization. Consider for example
a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another,
resulting in an entry in a third matrix. Because none of
these operations conflict, it is possible to partition the col-
umns of the first matrix among a group of threads, with
each thread computing the corresponding columns of the
result matrix. The threads can therefore operate entirely
independently, with no synchronization overhead whatso-
ever, as is done in matmul.c. One might therefore expect
a parallel matrix multiply to have a perfect efficiency of
1.0.

However, Figure 6.17 tells a different story, especially
for a 64-by-64 matrix multiply, which never gets above
an efficiency of about 0.7, even when running single-
threaded. The 512-by-512 matrix multiply’s efficiency
is measurably less than 1.0 on as few as 10 threads, and
even the 1024-by-1024 matrix multiply deviates notice-
ably from perfection at a few tens of threads. Neverthe-

6.4. PARALLEL FASTPATH 85

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

M
at

rix
 M

ul
tip

ly
 E

ffi
ci

en
cy

Number of CPUs (Threads)

64

128 256
512

1024

Figure 6.17: Matrix Multiply Efficiency

less, this figure clearly demonstrates the performance and
scalability benefits of batching: If you must incur syn-
chronization overhead, you may as well get your money’s
worth.

Quick Quiz 6.15: How can a single-threaded 64-by-
64 matrix multiple possibly have an efficiency of less
than 1.0? Shouldn’t all of the traces in Figure 6.17 have
efficiency of exactly 1.0 when running on only one thread?

Given these inefficiencies, it is worthwhile to look into
more-scalable approaches such as the data locking de-
scribed in Section 6.3.3 or the parallel-fastpath approach
discussed in the next section.

Quick Quiz 6.16: How are data-parallel techniques
going to help with matrix multiply? It is already data
parallel!!!

6.4 Parallel Fastpath

Fine-grained (and therefore usually higher-performance)
designs are typically more complex than are coarser-
grained designs. In many cases, most of the overhead
is incurred by a small fraction of the code [Knu73]. So
why not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design pat-
tern, to aggressively parallelize the common-case code
path without incurring the complexity that would be re-
quired to aggressively parallelize the entire algorithm.
You must understand not only the specific algorithm you
wish to parallelize, but also the workload that the algo-
rithm will be subjected to. Great creativity and design
effort is often required to construct a parallel fastpath.

Fastpath
Parallel

Caches
Allocator

Locking
Hierarchical

Locking
Reader/Writer

RCU

Figure 6.18: Parallel-Fastpath Design Patterns

Parallel fastpath combines different patterns (one for
the fastpath, one elsewhere) and is therefore a template
pattern. The following instances of parallel fastpath occur
often enough to warrant their own patterns, as depicted in
Figure 6.18:

1. Reader/Writer Locking (described below in Sec-
tion 6.4.1).

2. Read-copy update (RCU), which may be used as
a high-performance replacement for reader/writer
locking, is introduced in Section 9.5, and will not be
discussed further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched
upon in Section 6.4.2.

4. Resource Allocator Caches ([McK96a, MS93]). See
Section 6.4.3 for more detail.

6.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if
the program uses coarse-grained parallelism with large
critical sections), and if only a small fraction of the critical
sections modify data, then allowing multiple readers to
proceed in parallel can greatly increase scalability. Writ-
ers exclude both readers and each other. There are many
implementations of reader-writer locking, including the
POSIX implementation described in Section 4.2.4. List-
ing 6.7 shows how the hash search might be implemented
using reader-writer locking.

86 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.7: Reader-Writer-Locking Hash Table Search
1 rwlock_t hash_lock;
2

3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8

9 typedef struct node {
10 unsigned long key;
11 struct node *next;
12 } node_t;
13

14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18

19 read_lock(&hash_lock);
20 cur = h->bucketskey % h->nbuckets;
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 read_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 read_unlock(&hash_lock);
30 return 0;
31 }

Reader/writer locking is a simple instance of asymmet-
ric locking. Snaman [ST87] describes a more ornate six-
mode asymmetric locking design used in several clustered
systems. Locking in general and reader-writer locking in
particular is described extensively in Chapter 7.

6.4.2 Hierarchical Locking
The idea behind hierarchical locking is to have a coarse-
grained lock that is held only long enough to work out
which fine-grained lock to acquire. Listing 6.8 shows
how our hash-table search might be adapted to do hier-
archical locking, but also shows the great weakness of
this approach: we have paid the overhead of acquiring a
second lock, but we only hold it for a short time. In this
case, the simpler data-locking approach would be simpler
and likely perform better.

Quick Quiz 6.17: In what situation would hierarchical
locking work well?

6.4.3 Resource Allocator Caches
This section presents a simplified schematic of a parallel
fixed-block-size memory allocator. More detailed descrip-
tions may be found in the literature [MG92, MS93, BA01,
MSK01] or in the Linux kernel [Tor03].

Listing 6.8: Hierarchical-Locking Hash Table Search
1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6

7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;

10 };
11

12 typedef struct node {
13 spinlock_t node_lock;
14 unsigned long key;
15 struct node *next;
16 } node_t;
17

18 int hash_search(struct hash_table *h, long key)
19 {
20 struct bucket *bp;
21 struct node *cur;
22 int retval;
23

24 bp = h->bucketskey % h->nbuckets;
25 spin_lock(&bp->bucket_lock);
26 cur = bp->list_head;
27 while (cur != NULL) {
28 if (cur->key >= key) {
29 spin_lock(&cur->node_lock);
30 spin_unlock(&bp->bucket_lock);
31 retval = (cur->key == key);
32 spin_unlock(&cur->node_lock);
33 return retval;
34 }
35 cur = cur->next;
36 }
37 spin_unlock(&bp->bucket_lock);
38 return 0;
39 }

6.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is
the tension between the need to provide extremely fast
memory allocation and freeing in the common case and
the need to efficiently distribute memory in face of unfa-
vorable allocation and freeing patterns.

To see this tension, consider a straightforward applica-
tion of data ownership to this problem—simply carve up
memory so that each CPU owns its share. For example,
suppose that a system with two CPUs has two gigabytes
of memory (such as the one that I am typing on right
now). We could simply assign each CPU one gigabyte
of memory, and allow each CPU to allocate from its own
gigabyte, without the need for locking and its complexi-
ties and overheads. Unfortunately, this scheme fails when
CPU 0 only allocates memory and CPU 1 only frees it, as
happens in simple producer-consumer workloads.

The other extreme, code locking, suffers from excessive
lock contention and overhead [MS93].

6.4. PARALLEL FASTPATH 87

CPU 0 Pool

(Owned by CPU 0)

CPU 1 Pool

(Owned by CPU 1)

Global Pool

(Code Locked)

Allocate/Free

O
ve

rfl
ow

E
m

pt
y O
ve

rfl
ow

E
m

pt
y

Figure 6.19: Allocator Cache Schematic

6.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with
each CPU owning a modest cache of blocks, and with a
large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory
blocks, we place a limit on the number of blocks that can
be in each CPU’s cache. In a two-CPU system, the flow
of memory blocks will be as shown in Figure 6.19: when
a given CPU is trying to free a block when its pool is full,
it sends blocks to the global pool, and, similarly, when
that CPU is trying to allocate a block when its pool is
empty, it retrieves blocks from the global pool.

6.4.3.3 Data Structures

The actual data structures for a “toy” implementation of
allocator caches are shown in Listing 6.9. The “Global
Pool” of Figure 6.19 is implemented by globalmem
of type struct globalmempool, and the two CPU
pools by the per-thread variable perthreadmem of type
struct perthreadmempool. Both of these data struc-
tures have arrays of pointers to blocks in their pool
fields, which are filled from index zero upwards. Thus,
if globalmem.pool[3] is NULL, then the remainder of
the array from index 4 up must also be NULL. The cur
fields contain the index of the highest-numbered full
element of the pool array, or −1 if all elements are
empty. All elements from globalmem.pool[0] through
globalmem.pool[globalmem.cur] must be full, and

Listing 6.9: Allocator-Cache Data Structures
1 #define TARGET_POOL_SIZE 3
2 #define GLOBAL_POOL_SIZE 40
3

4 struct globalmempool {
5 spinlock_t mutex;
6 int cur;
7 struct memblock *pool[GLOBAL_POOL_SIZE];
8 } globalmem;
9

10 struct perthreadmempool {
11 int cur;
12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };
14

15 DEFINE_PER_THREAD(struct perthreadmempool, perthreadmem);

−1(Empty)

0

1

2

3

4

5

Figure 6.20: Allocator Pool Schematic

all the rest must be empty.13

The operation of the pool data structures is illustrated
by Figure 6.20, with the six boxes representing the array
of pointers making up the pool field, and the number pre-
ceding them representing the cur field. The shaded boxes
represent non-NULL pointers, while the empty boxes rep-
resent NULL pointers. An important, though potentially
confusing, invariant of this data structure is that the cur
field is always one smaller than the number of non-NULL
pointers.

6.4.3.4 Allocation Function

The allocation function memblock_alloc() may be seen
in Listing 6.10. Line 7 picks up the current thread’s per-
thread pool, and line 8 checks to see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool
under the spinlock acquired on line 9 and released on

13 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_SIZE)
are unrealistically small, but this small size makes it easier to single-step
the program in order to get a feel for its operation.

88 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.10: Allocator-Cache Allocator Function
1 struct memblock *memblock_alloc(void)
2 {
3 int i;
4 struct memblock *p;
5 struct perthreadmempool *pcpp;
6

7 pcpp = &__get_thread_var(perthreadmem);
8 if (pcpp->cur < 0) {
9 spin_lock(&globalmem.mutex);

10 for (i = 0; i < TARGET_POOL_SIZE &&
11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool[globalmem.cur];
13 globalmem.pool[globalmem.cur--] = NULL;
14 }
15 pcpp->cur = i - 1;
16 spin_unlock(&globalmem.mutex);
17 }
18 if (pcpp->cur >= 0) {
19 p = pcpp->pool[pcpp->cur];
20 pcpp->pool[pcpp->cur--] = NULL;
21 return p;
22 }
23 return NULL;
24 }

line 16. Lines 10-14 move blocks from the global to the
per-thread pool until either the local pool reaches its target
size (half full) or the global pool is exhausted, and line 15
sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool
still being empty, and if not, lines 19-21 remove a block
and return it. Otherwise, line 23 tells the sad tale of
memory exhaustion.

6.4.3.5 Free Function

Listing 6.11 shows the memory-block free function.
Line 6 gets a pointer to this thread’s pool, and line 7
checks to see if this per-thread pool is full.

If so, lines 8-15 empty half of the per-thread pool into
the global pool, with lines 8 and 14 acquiring and releas-
ing the spinlock. Lines 9-12 implement the loop moving
blocks from the local to the global pool, and line 13 sets
the per-thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block
into the per-thread pool.

Quick Quiz 6.18: Doesn’t this resource-allocator de-
sign resemble that of the approximate limit counters cov-
ered in Section 5.3?

Listing 6.11: Allocator-Cache Free Function
1 void memblock_free(struct memblock *p)
2 {
3 int i;
4 struct perthreadmempool *pcpp;
5

6 pcpp = &__get_thread_var(perthreadmem);
7 if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {
8 spin_lock(&globalmem.mutex);
9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {

10 globalmem.pool[++globalmem.cur] = pcpp->pool[i];
11 pcpp->pool[i] = NULL;
12 }
13 pcpp->cur = i;
14 spin_unlock(&globalmem.mutex);
15 }
16 pcpp->pool[++pcpp->cur] = p;
17 }

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

A
llo

ca
tio

ns
/F

re
es

 P
er

 M
ic

ro
se

co
nd

Allocation Run Length

Figure 6.21: Allocator Cache Performance

6.4.3.6 Performance

Rough performance results14 are shown in Figure 6.21,
running on a dual-core Intel x86 running at 1 GHz (4300
bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread
repeatedly allocates a group of blocks and then frees all
the blocks in that group, with the number of blocks in
the group being the “allocation run length” displayed on
the x-axis. The y-axis shows the number of successful
allocation/free pairs per microsecond—failed allocations
are not counted. The “X”s are from a two-thread run,
while the “+”s are from a single-threaded run.

Note that run lengths up to six scale linearly and give

14 This data was not collected in a statistically meaningful way, and
therefore should be viewed with great skepticism and suspicion. Good
data-collection and -reduction practice is discussed in Chapter 11. That
said, repeated runs gave similar results, and these results match more
careful evaluations of similar algorithms.

6.5. BEYOND PARTITIONING 89

excellent performance, while run lengths greater than six
show poor performance and almost always also show
negative scaling. It is therefore quite important to size
TARGET_POOL_SIZE sufficiently large, which fortunately
is usually quite easy to do in actual practice [MSK01],
especially given today’s large memories. For example,
in most systems, it is quite reasonable to set TARGET_
POOL_SIZE to 100, in which case allocations and frees
are guaranteed to be confined to per-thread pools at least
99 % of the time.

As can be seen from the figure, the situations where
the common-case data-ownership applies (run lengths up
to six) provide greatly improved performance compared
to the cases where locks must be acquired. Avoiding
synchronization in the common case will be a recurring
theme through this book.

Quick Quiz 6.19: In Figure 6.21, there is a pattern of
performance rising with increasing run length in groups
of three samples, for example, for run lengths 10, 11, and
12. Why?

Quick Quiz 6.20: Allocation failures were observed
in the two-thread tests at run lengths of 19 and greater.
Given the global-pool size of 40 and the per-thread target
pool size s of three, number of threads n equal to two, and
assuming that the per-thread pools are initially empty with
none of the memory in use, what is the smallest allocation
run length m at which failures can occur? (Recall that
each thread repeatedly allocates m block of memory, and
then frees the m blocks of memory.) Alternatively, given
n threads each with pool size s, and where each thread
repeatedly first allocates m blocks of memory and then
frees those m blocks, how large must the global pool size
be? Note: Obtaining the correct answer will require you
to examine the smpalloc.c source code, and very likely
single-step it as well. You have been warned!

6.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but
real-world designs expand on this approach in a number
of ways.

First, real-world allocators are required to handle a
wide range of allocation sizes, as opposed to the single
size shown in this toy example. One popular way to do
this is to offer a fixed set of sizes, spaced so as to balance
external and internal fragmentation, such as in the late-
1980s BSD memory allocator [MK88]. Doing this would
mean that the “globalmem” variable would need to be
replicated on a per-size basis, and that the associated lock

Table 6.1: Schematic of Real-World Parallel Allocator

Level Locking Purpose

Per-thread pool Data ownership High-speed
allocation

Global block pool Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks
into pages

System memory Code locking Memory from/to
system

would similarly be replicated, resulting in data locking
rather than the toy program’s code locking.

Second, production-quality systems must be able to
repurpose memory, meaning that they must be able to coa-
lesce blocks into larger structures, such as pages [MS93].
This coalescing will also need to be protected by a lock,
which again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the un-
derlying memory system, and pages of memory must also
be allocated from the underlying memory system. The
locking required at this level will depend on that of the un-
derlying memory system, but could well be code locking.
Code locking can often be tolerated at this level, because
this level is so infrequently reached in well-designed sys-
tems [MSK01].

Despite this real-world design’s greater complexity,
the underlying idea is the same—repeated application of
parallel fastpath, as shown in Table 6.1.

6.5 Beyond Partitioning

This chapter has discussed how data partitioning can be
used to design simple linearly scalable parallel programs.
Section 6.3.4 hinted at the possibilities of data replication,
which will be used to great effect in Section 9.5.

The main goal of applying partitioning and replication
is to achieve linear speedups, in other words, to ensure
that the total amount of work required does not increase
significantly as the number of CPUs or threads increases.
A problem that can be solved via partitioning and/or repli-
cation, resulting in linear speedups, is embarrassingly
parallel. But can we do better?

To answer this question, let us examine the solution of
labyrinths and mazes. Of course, labyrinths and mazes
have been objects of fascination for millennia [Wik12],

90 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.12: SEQ Pseudocode
1 int maze_solve(maze *mp, cell sc, cell ec)
2 {
3 cell c = sc;
4 cell n;
5 int vi = 0;
6

7 maze_try_visit_cell(mp, c, c, &n, 1);
8 for (;;) {
9 while (!maze_find_any_next_cell(mp, c, &n)) {

10 if (++vi >= mp->vi)
11 return 0;
12 c = mp->visited[vi].c;
13 }
14 do {
15 if (n == ec) {
16 return 1;
17 }
18 c = n;
19 } while (maze_find_any_next_cell(mp, c, &n));
20 c = mp->visited[vi].c;
21 }
22 }

so it should come as no surprise that they are generated
and solved using computers, including biological com-
puters [Ada11], GPGPUs [Eri08], and even discrete hard-
ware [KFC11]. Parallel solution of mazes is sometimes
used as a class project in universities [ETH11, Uni10]
and as a vehicle to demonstrate the benefits of parallel-
programming frameworks [Fos10].

Common advice is to use a parallel work-queue algo-
rithm (PWQ) [ETH11, Fos10]. This section evaluates this
advice by comparing PWQ against a sequential algorithm
(SEQ) and also against an alternative parallel algorithm,
in all cases solving randomly generated square mazes.
Section 6.5.1 discusses PWQ, Section 6.5.2 discusses
an alternative parallel algorithm, Section 6.5.3 analyzes
its anomalous performance, Section 6.5.4 derives an im-
proved sequential algorithm from the alternative paral-
lel algorithm, Section 6.5.5 makes further performance
comparisons, and finally Section 6.5.6 presents future
directions and concluding remarks.

6.5.1 Work-Queue Parallel Maze Solver
PWQ is based on SEQ, which is shown in Listing 6.12

(pseudocode for maze_seq.c). The maze is represented
by a 2D array of cells and a linear-array-based work queue
named ->visited.

Line 7 visits the initial cell, and each iteration of the
loop spanning lines 8-21 traverses passages headed by
one cell. The loop spanning lines 9-13 scans the ->
visited[] array for a visited cell with an unvisited
neighbor, and the loop spanning lines 14-19 traverses
one fork of the submaze headed by that neighbor. Line 20

Listing 6.13: SEQ Helper Pseudocode
1 int maze_try_visit_cell(struct maze *mp, cell c, cell t,
2 cell *n, int d)
3 {
4 if (!maze_cells_connected(mp, c, t) ||
5 (*celladdr(mp, t) & VISITED))
6 return 0;
7 *n = t;
8 mp->visited[mp->vi] = t;
9 mp->vi++;

10 *celladdr(mp, t) |= VISITED | d;
11 return 1;
12 }
13

14 int maze_find_any_next_cell(struct maze *mp, cell c,
15 cell *n)
16 {
17 int d = (*celladdr(mp, c) & DISTANCE) + 1;
18

19 if (maze_try_visit_cell(mp, c, prevcol(c), n, d))
20 return 1;
21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))
22 return 1;
23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))
24 return 1;
25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))
26 return 1;
27 return 0;
28 }

initializes for the next pass through the outer loop.
The pseudocode for maze_try_visit_cell() is

shown on lines 1-12 of Listing 6.13 (maze.c). Line 4
checks to see if cells c and t are adjacent and connected,
while line 5 checks to see if cell t has not yet been vis-
ited. The celladdr() function returns the address of the
specified cell. If either check fails, line 6 returns failure.
Line 7 indicates the next cell, line 8 records this cell in
the next slot of the ->visited[] array, line 9 indicates
that this slot is now full, and line 10 marks this cell as
visited and also records the distance from the maze start.
Line 11 then returns success.

The pseudocode for maze_find_any_next_cell()
is shown on lines 14-28 of Listing 6.13 (maze.c). Line 17
picks up the current cell’s distance plus 1, while lines 19,
21, 23, and 25 check the cell in each direction, and
lines 20, 22, 24, and 26 return true if the corresponding
cell is a candidate next cell. The prevcol(), nextcol(),
prevrow(), and nextrow() each do the specified array-
index-conversion operation. If none of the cells is a can-
didate, line 27 returns false.

The path is recorded in the maze by counting the num-
ber of cells from the starting point, as shown in Fig-
ure 6.22, where the starting cell is in the upper left and
the ending cell is in the lower right. Starting at the ending
cell and following consecutively decreasing cell numbers
traverses the solution.

The parallel work-queue solver is a straightforward

6.5. BEYOND PARTITIONING 91

2

2

3

1 3

3

4 5

4

Figure 6.22: Cell-Number Solution Tracking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

CDF of Solution Time (ms)

SEQ

PWQ

Figure 6.23: CDF of Solution Times For SEQ and PWQ

parallelization of the algorithm shown in Listings 6.12
and 6.13. Line 10 of Listing 6.12 must use fetch-and-
add, and the local variable vi must be shared among the
various threads. Lines 5 and 10 of Listing 6.13 must be
combined into a CAS loop, with CAS failure indicating
a loop in the maze. Lines 8-9 of this listing must use
fetch-and-add to arbitrate concurrent attempts to record
cells in the ->visited[] array.

This approach does provide significant speedups on a
dual-CPU Lenovo W500 running at 2.53 GHz, as shown
in Figure 6.23, which shows the cumulative distribution
functions (CDFs) for the solution times of the two al-
gorithms, based on the solution of 500 different square
500-by-500 randomly generated mazes. The substantial
overlap of the projection of the CDFs onto the x-axis will
be addressed in Section 6.5.3.

Interestingly enough, the sequential solution-path track-
ing works unchanged for the parallel algorithm. However,
this uncovers a significant weakness in the parallel algo-
rithm: At most one thread may be making progress along
the solution path at any given time. This weakness is
addressed in the next section.

Listing 6.14: Partitioned Parallel Solver Pseudocode
1 int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {
3 cell c;
4 cell n;
5 int vi = 0;
6

7 myvisited = visited; myvi = &vi;
8 c = visited[vi];
9 do {

10 while (!maze_find_any_next_cell(mp, c, &n)) {
11 if (visited[++vi].row < 0)
12 return 0;
13 if (READ_ONCE(mp->done))
14 return 1;
15 c = visited[vi];
16 }
17 do {
18 if (READ_ONCE(mp->done))
19 return 1;
20 c = n;
21 } while (maze_find_any_next_cell(mp, c, &n));
22 c = visited[vi];
23 } while (!READ_ONCE(mp->done));
24 return 1;
25 }

6.5.2 Alternative Parallel Maze Solver

Youthful maze solvers are often urged to start at both ends,
and this advice has been repeated more recently in the
context of automated maze solving [Uni10]. This advice
amounts to partitioning, which has been a powerful paral-
lelization strategy in the context of parallel programming
for both operating-system kernels [BK85, Inm85] and
applications [Pat10]. This section applies this strategy,
using two child threads that start at opposite ends of the
solution path, and takes a brief look at the performance
and scalability consequences.

The partitioned parallel algorithm (PART), shown in
Listing 6.14 (maze_part.c), is similar to SEQ, but has a
few important differences. First, each child thread has its
own visited array, passed in by the parent as shown on
line 1, which must be initialized to all [−1, −1]. Line 7
stores a pointer to this array into the per-thread variable
myvisited to allow access by helper functions, and sim-
ilarly stores a pointer to the local visit index. Second, the
parent visits the first cell on each child’s behalf, which the
child retrieves on line 8. Third, the maze is solved as soon
as one child locates a cell that has been visited by the other
child. When maze_try_visit_cell() detects this, it
sets a ->done field in the maze structure. Fourth, each
child must therefore periodically check the ->done field,
as shown on lines 13, 18, and 23. The READ_ONCE()
primitive must disable any compiler optimizations that
might combine consecutive loads or that might reload the
value. A C++1x volatile relaxed load suffices [Bec11]. Fi-

92 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.15: Partitioned Parallel Helper Pseudocode
1 int maze_try_visit_cell(struct maze *mp, int c, int t,
2 int *n, int d)
3 {
4 cell_t t;
5 cell_t *tp;
6 int vi;
7

8 if (!maze_cells_connected(mp, c, t))
9 return 0;

10 tp = celladdr(mp, t);
11 do {
12 t = READ_ONCE(*tp);
13 if (t & VISITED) {
14 if ((t & TID) != mytid)
15 mp->done = 1;
16 return 0;
17 }
18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;
20 vi = (*myvi)++;
21 myvisited[vi] = t;
22 return 1;
23 }

nally, the maze_find_any_next_cell() function must
use compare-and-swap to mark a cell as visited, how-
ever no constraints on ordering are required beyond those
provided by thread creation and join.

The pseudocode for maze_find_any_next_cell()
is identical to that shown in Listing 6.13, but the pseu-
docode for maze_try_visit_cell() differs, and is
shown in Listing 6.15. Lines 8-9 check to see if the cells
are connected, returning failure if not. The loop spanning
lines 11-18 attempts to mark the new cell visited. Line 13
checks to see if it has already been visited, in which case
line 16 returns failure, but only after line 14 checks to
see if we have encountered the other thread, in which
case line 15 indicates that the solution has been located.
Line 19 updates to the new cell, lines 20 and 21 update
this thread’s visited array, and line 22 returns success.

Performance testing revealed a surprising anomaly,
shown in Figure 6.24. The median solution time for PART
(17 milliseconds) is more than four times faster than that
of SEQ (79 milliseconds), despite running on only two
threads. The next section analyzes this anomaly.

6.5.3 Performance Comparison I

The first reaction to a performance anomaly is to check
for bugs. Although the algorithms were in fact finding
valid solutions, the plot of CDFs in Figure 6.24 assumes
independent data points. This is not the case: The per-
formance tests randomly generate a maze, and then run
all solvers on that maze. It therefore makes sense to plot
the CDF of the ratios of solution times for each gener-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

CDF of Solution Time (ms)

SEQ

PWQ

PART

Figure 6.24: CDF of Solution Times For SEQ, PWQ,
and PART

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

P
ro

ba
bi

lit
y

CDF of Speedup Relative to SEQ

SEQ/PWQ SEQ/PART

Figure 6.25: CDF of SEQ/PWQ and SEQ/PART
Solution-Time Ratios

ated maze, as shown in Figure 6.25, greatly reducing the
CDFs’ overlap. This plot reveals that for some mazes,
PART is more than forty times faster than SEQ. In con-
trast, PWQ is never more than about two times faster
than SEQ. A forty-times speedup on two threads demands
explanation. After all, this is not merely embarrassingly
parallel, where partitionability means that adding threads
does not increase the overall computational cost. It is in-
stead humiliatingly parallel: Adding threads significantly
reduces the overall computational cost, resulting in large
algorithmic superlinear speedups.

Further investigation showed that PART sometimes vis-
ited fewer than 2 % of the maze’s cells, while SEQ and
PWQ never visited fewer than about 9 %. The reason
for this difference is shown by Figure 6.26. If the thread
traversing the solution from the upper left reaches the cir-
cle, the other thread cannot reach the upper-right portion

6.5. BEYOND PARTITIONING 93

Figure 6.26: Reason for Small Visit Percentages

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

S
ol

ut
io

n
Ti

m
e

(m
s)

Percent of Maze Cells Visited

SEQ

PART

PWQ

Figure 6.27: Correlation Between Visit Percentage and
Solution Time

of the maze. Similarly, if the other thread reaches the
square, the first thread cannot reach the lower-left portion
of the maze. Therefore, PART will likely visit a small
fraction of the non-solution-path cells. In short, the super-
linear speedups are due to threads getting in each others’
way. This is a sharp contrast with decades of experience
with parallel programming, where workers have struggled
to keep threads out of each others’ way.

Figure 6.27 confirms a strong correlation between cells
visited and solution time for all three methods. The slope
of PART’s scatterplot is smaller than that of SEQ, indi-
cating that PART’s pair of threads visits a given fraction
of the maze faster than can SEQ’s single thread. PART’s
scatterplot is also weighted toward small visit percent-
ages, confirming that PART does less total work, hence
the observed humiliating parallelism.

The fraction of cells visited by PWQ is similar to that
of SEQ. In addition, PWQ’s solution time is greater than
that of PART, even for equal visit fractions. The reason
for this is shown in Figure 6.28, which has a red circle on
each cell with more than two neighbors. Each such cell
can result in contention in PWQ, because one thread can

Figure 6.28: PWQ Potential Contention Points

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

P
ro

ba
bi

lit
y

CDF of Speedup Relative to SEQ

PWQ

PART

SEQ -O3

Figure 6.29: Effect of Compiler Optimization (-O3)

enter but two threads can exit, which hurts performance,
as noted earlier in this chapter. In contrast, PART can
incur such contention but once, namely when the solution
is located. Of course, SEQ never contends.

Although PART’s speedup is impressive, we should
not neglect sequential optimizations. Figure 6.29 shows
that SEQ, when compiled with -O3, is about twice as
fast as unoptimized PWQ, approaching the performance
of unoptimized PART. Compiling all three algorithms
with -O3 gives results similar to (albeit faster than) those
shown in Figure 6.25, except that PWQ provides almost
no speedup compared to SEQ, in keeping with Amdahl’s
Law [Amd67]. However, if the goal is to double per-
formance compared to unoptimized SEQ, as opposed to
achieving optimality, compiler optimizations are quite
attractive.

Cache alignment and padding often improves perfor-
mance by reducing false sharing. However, for these
maze-solution algorithms, aligning and padding the maze-
cell array degrades performance by up to 42 % for
1000x1000 mazes. Cache locality is more important than
avoiding false sharing, especially for large mazes. For
smaller 20-by-20 or 50-by-50 mazes, aligning and pad-

94 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

P
ro

ba
bi

lit
y

CDF of Speedup Relative to SEQ (-O3)

PWQ
PART

COPART

Figure 6.30: Partitioned Coroutines

ding can produce up to a 40 % performance improvement
for PART, but for these small sizes, SEQ performs better
anyway because there is insufficient time for PART to
make up for the overhead of thread creation and destruc-
tion.

In short, the partitioned parallel maze solver is an inter-
esting example of an algorithmic superlinear speedup. If
“algorithmic superlinear speedup” causes cognitive disso-
nance, please proceed to the next section.

6.5.4 Alternative Sequential Maze Solver
The presence of algorithmic superlinear speedups sug-
gests simulating parallelism via co-routines, for example,
manually switching context between threads on each pass
through the main do-while loop in Listing 6.14. This
context switching is straightforward because the context
consists only of the variables c and vi: Of the numer-
ous ways to achieve the effect, this is a good tradeoff

between context-switch overhead and visit percentage.
As can be seen in Figure 6.30, this coroutine algorithm
(COPART) is quite effective, with the performance on one
thread being within about 30 % of PART on two threads
(maze_2seq.c).

6.5.5 Performance Comparison II
Figures 6.31 and 6.32 show the effects of varying maze
size, comparing both PWQ and PART running on two
threads against either SEQ or COPART, respectively,
with 90-percent-confidence error bars. PART shows su-
perlinear scalability against SEQ and modest scalability
against COPART for 100-by-100 and larger mazes. PART
exceeds theoretical energy-efficiency breakeven against

 0

 2

 4

 6

 8

 10

 12

 10 100 1000

S
pe

ed
up

 R
el

at
iv

e
to

 S
E

Q
 (-

O
3)

Maze Size

PWQPART

Figure 6.31: Varying Maze Size vs. SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 100 1000

S
pe

ed
up

 R
el

at
iv

e
to

 C
O

P
A

R
T

(-
O

3)

Maze Size

PWQ

PART

Figure 6.32: Varying Maze Size vs. COPART

COPART at roughly the 200-by-200 maze size, given
that power consumption rises as roughly the square of the
frequency for high frequencies [Mud01], so that 1.4x scal-
ing on two threads consumes the same energy as a single
thread at equal solution speeds. In contrast, PWQ shows
poor scalability against both SEQ and COPART unless
unoptimized: Figures 6.31 and 6.32 were generated using
-O3.

Figure 6.33 shows the performance of PWQ and PART
relative to COPART. For PART runs with more than two
threads, the additional threads were started evenly spaced
along the diagonal connecting the starting and ending
cells. Simplified link-state routing [BG87] was used to
detect early termination on PART runs with more than
two threads (the solution is flagged when a thread is con-
nected to both beginning and end). PWQ performs quite
poorly, but PART hits breakeven at two threads and again
at five threads, achieving modest speedups beyond five
threads. Theoretical energy efficiency breakeven is within

6.6. PARTITIONING, PARALLELISM, AND OPTIMIZATION 95

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

M
ea

n
S

pe
ed

up
 R

el
at

iv
e

to
 C

O
P

A
R

T
(-

O
3)

Number of Threads

PWQ

PART

Figure 6.33: Mean Speedup vs. Number of Threads,
1000x1000 Maze

the 90-percent-confidence interval for seven and eight
threads. The reasons for the peak at two threads are (1)
the lower complexity of termination detection in the two-
thread case and (2) the fact that there is a lower probability
of the third and subsequent threads making useful forward
progress: Only the first two threads are guaranteed to start
on the solution line. This disappointing performance com-
pared to results in Figure 6.32 is due to the less-tightly
integrated hardware available in the larger and older Xeon
system running at 2.66 GHz.

6.5.6 Future Directions and Conclusions
Much future work remains. First, this section applied
only one technique used by human maze solvers. Oth-
ers include following walls to exclude portions of the
maze and choosing internal starting points based on the
locations of previously traversed paths. Second, different
choices of starting and ending points might favor different
algorithms. Third, although placement of the PART algo-
rithm’s first two threads is straightforward, there are any
number of placement schemes for the remaining threads.
Optimal placement might well depend on the starting
and ending points. Fourth, study of unsolvable mazes
and cyclic mazes is likely to produce interesting results.
Fifth, the lightweight C++11 atomic operations might
improve performance. Sixth, it would be interesting to
compare the speedups for three-dimensional mazes (or of
even higher-order mazes). Finally, for mazes, humiliating
parallelism indicated a more-efficient sequential imple-
mentation using coroutines. Do humiliatingly parallel
algorithms always lead to more-efficient sequential imple-
mentations, or are there inherently humiliatingly parallel

algorithms for which coroutine context-switch overhead
overwhelms the speedups?

This section demonstrated and analyzed parallelization
of maze-solution algorithms. A conventional work-queue-
based algorithm did well only when compiler optimiza-
tions were disabled, suggesting that some prior results
obtained using high-level/overhead languages will be in-
validated by advances in optimization.

This section gave a clear example where approaching
parallelism as a first-class optimization technique rather
than as a derivative of a sequential algorithm paves the
way for an improved sequential algorithm. High-level
design-time application of parallelism is likely to be a
fruitful field of study. This section took the problem of
solving mazes from mildly scalable to humiliatingly par-
allel and back again. It is hoped that this experience will
motivate work on parallelism as a first-class design-time
whole-application optimization technique, rather than as
a grossly suboptimal after-the-fact micro-optimization to
be retrofitted into existing programs.

6.6 Partitioning, Parallelism, and
Optimization

Most important, although this chapter has demonstrated
that applying parallelism at the design level gives excel-
lent results, this final section shows that this is not enough.
For search problems such as maze solution, this section
has shown that search strategy is even more important
than parallel design. Yes, for this particular type of maze,
intelligently applying parallelism identified a superior
search strategy, but this sort of luck is no substitute for a
clear focus on search strategy itself.

As noted back in Section 2.2, parallelism is but one po-
tential optimization of many. A successful design needs to
focus on the most important optimization. Much though I
might wish to claim otherwise, that optimization might or
might not be parallelism.

However, for the many cases where parallelism is the
right optimization, the next section covers that synchro-
nization workhorse, locking.

96 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Locking is the worst general-purpose
synchronization mechanism except for all those other
mechanisms that have been tried from time to time.

With apologies to the memory of Winston Churchill
and to whoever he was quoting

Chapter 7

Locking

In recent concurrency research, the role of villain is often
played by locking. In many papers and presentations,
locking stands accused of promoting deadlocks, convoy-
ing, starvation, unfairness, data races, and all manner of
other concurrency sins. Interestingly enough, the role of
workhorse in production-quality shared-memory parallel
software is played by, you guessed it, locking. This chap-
ter will look into this dichotomy between villain and hero,
as fancifully depicted in Figures 7.1 and 7.2.

There are a number of reasons behind this Jekyll-and-
Hyde dichotomy:

1. Many of locking’s sins have pragmatic design solu-
tions that work well in most cases, for example:

(a) Use of lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the
Linux kernel’s lockdep facility [Cor06a].

(c) Locking-friendly data structures, such as ar-
rays, hash tables, and radix trees, which will
be covered in Chapter 10.

2. Some of locking’s sins are problems only at high
levels of contention, levels reached only by poorly
designed programs.

3. Some of locking’s sins are avoided by using other
synchronization mechanisms in concert with locking.
These other mechanisms include statistical counters
(see Chapter 5), reference counters (see Section 9.2),
hazard pointers (see Section 9.3), sequence-locking
readers (see Section 9.4), RCU (see Section 9.5),
and simple non-blocking data structures (see Sec-
tion 14.2).

4. Until quite recently, almost all large shared-memory
parallel programs were developed in secret, so that

it was difficult for most researchers to learn of these
pragmatic solutions.

5. Locking works extremely well for some software
artifacts and extremely poorly for others. Develop-
ers who have worked on artifacts for which locking
works well can be expected to have a much more pos-
itive opinion of locking than those who have worked
on artifacts for which locking works poorly, as will
be discussed in Section 7.5.

6. All good stories need a villain, and locking has a long
and honorable history serving as a research-paper
whipping boy.

Quick Quiz 7.1: Just how can serving as a whipping
boy be considered to be in any way honorable???

This chapter will give an overview of a number of ways
to avoid locking’s more serious sins.

7.1 Staying Alive
Given that locking stands accused of deadlock and starva-
tion, one important concern for shared-memory parallel
developers is simply staying alive. The following sections
therefore cover deadlock, livelock, starvation, unfairness,
and inefficiency.

7.1.1 Deadlock
Deadlock occurs when each of a group of threads is hold-
ing at least one lock while at the same time waiting on a
lock held by a member of that same group.

Without some sort of external intervention, deadlock
is forever. No thread can acquire the lock it is waiting on
until that lock is released by the thread holding it, but the

97

98 CHAPTER 7. LOCKING

XXXX

Figure 7.1: Locking: Villain or Slob?

Figure 7.2: Locking: Workhorse or Hero?

thread holding it cannot release it until the holding thread
acquires the lock that it is waiting on.

We can create a directed-graph representation of a dead-
lock scenario with nodes for threads and locks, as shown
in Figure 7.3. An arrow from a lock to a thread indicates
that the thread holds the lock, for example, Thread B
holds Locks 2 and 4. An arrow from a thread to a lock in-
dicates that the thread is waiting on the lock, for example,
Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one
deadlock cycle. In Figure 7.3, this cycle is Thread B,
Lock 3, Thread C, Lock 4, and back to Thread B.

Quick Quiz 7.2: But the definition of deadlock only

Lock 1

Thread A Lock 2

Thread BLock 3

Thread C Lock 4

Figure 7.3: Deadlock Cycle

said that each thread was holding at least one lock and
waiting on another lock that was held by some thread.
How do you know that there is a cycle?

Although there are some software environments such
as database systems that can repair an existing deadlock,
this approach requires either that one of the threads be
killed or that a lock be forcibly stolen from one of the
threads. This killing and forcible stealing can be appro-
priate for transactions, but is often problematic for kernel
and application-level use of locking: dealing with the
resulting partially updated structures can be extremely
complex, hazardous, and error-prone.

Kernels and applications therefore work to avoid dead-
locks rather than to recover from them. There are
a number of deadlock-avoidance strategies, including
locking hierarchies (Section 7.1.1.1), local locking hi-
erarchies (Section 7.1.1.2), layered locking hierarchies
(Section 7.1.1.3), strategies for dealing with APIs con-
taining pointers to locks (Section 7.1.1.4), conditional
locking (Section 7.1.1.5), acquiring all needed locks
first (Section 7.1.1.6), single-lock-at-a-time designs (Sec-
tion 7.1.1.7), and strategies for signal/interrupt han-
dlers (Section 7.1.1.8). Although there is no deadlock-
avoidance strategy that works perfectly for all situations,
there is a good selection of deadlock-avoidance tools to
choose from.

7.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring
locks out of order. In Figure 7.3, we might order the
locks numerically, so that a thread was forbidden from
acquiring a given lock if it already held a lock with the
same or a higher number. Thread B has violated this

7.1. STAYING ALIVE 99

hierarchy because it is attempting to acquire Lock 3 while
holding Lock 4, which permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks
and prohibit out-of-order lock acquisition. In large pro-
gram, it is wise to use tools to enforce your locking hier-
archy [Cor06a].

7.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies make
them difficult to apply to library functions. After all,
the program using a given library function has not even
been written yet, so how can the poor library-function
implementor possibly hope to adhere to the yet-to-be-
written program’s locking hierarchy?

One special case that is fortunately the common case
is when the library function does not invoke any of the
caller’s code. In this case, the caller’s locks will never be
acquired while holding any of the library’s locks, so that
there cannot be a deadlock cycle containing locks from
both the library and the caller.

Quick Quiz 7.3: Are there any exceptions to this rule,
so that there really could be a deadlock cycle containing
locks from both the library and the caller, even given
that the library code never invokes any of the caller’s
functions?

But suppose that a library function does invoke the
caller’s code. For example, the qsort() function in-
vokes a caller-provided comparison function. A con-
current implementation of qsort() likely uses locking,
which might result in deadlock in the perhaps-unlikely
case where the comparison function is a complicated func-
tion involving also locking. How can the library function
avoid deadlock?

The golden rule in this case is “Release all locks be-
fore invoking unknown code.” To follow this rule, the
qsort() function must release all locks before invoking
the comparison function.

Quick Quiz 7.4: But if qsort() releases all its locks
before invoking the comparison function, how can it pro-
tect against races with other qsort() threads?

To see the benefits of local locking hierarchies, com-
pare Figures 7.4 and 7.5. In both figures, application func-
tions foo() and bar() invoke qsort() while holding
Locks A and B, respectively. Because this is a parallel im-
plementation of qsort(), it acquires Lock C. Function
foo() passes function cmp() to qsort(), and cmp()
acquires Lock B. Function bar() passes a simple integer-
comparison function (not shown) to qsort(), and this
simple function does not acquire any locks.

qsort()

foo() bar() cmp()

Lock B Lock BLock A

Lock C

Application

Library

Figure 7.4: Without Local Locking Hierarchy for
qsort()

Lock C

qsort()

foo() bar() cmp()

Lock B Lock BLock A

Application

Library

Figure 7.5: Local Locking Hierarchy for qsort()

Now, if qsort() holds Lock C while calling cmp()
in violation of the golden release-all-locks rule above, as
shown in Figure 7.4, deadlock can occur. To see this,
suppose that one thread invokes foo() while a second
thread concurrently invokes bar(). The first thread will
acquire Lock A and the second thread will acquire Lock B.
If the first thread’s call to qsort() acquires Lock C, then
it will be unable to acquire Lock B when it calls cmp().
But the first thread holds Lock C, so the second thread’s
call to qsort() will be unable to acquire it, and thus
unable to release Lock B, resulting in deadlock.

In contrast, if qsort() releases Lock C before invok-
ing the comparison function, which is unknown code

100 CHAPTER 7. LOCKING

qsort()

Lock C

cmp()

Lock D

bar()

Lock B

foo()

Lock A

Application

Library

Figure 7.6: Layered Locking Hierarchy for qsort()

from qsort()’s perspective, then deadlock is avoided as
shown in Figure 7.5.

If each module releases all locks before invoking un-
known code, then deadlock is avoided if each module
separately avoids deadlock. This rule therefore greatly
simplifies deadlock analysis and greatly improves modu-
larity.

7.1.1.3 Layered Locking Hierarchies

Unfortunately, it might not be possible for qsort() to
release all of its locks before invoking the comparison
function. In this case, we cannot construct a local locking
hierarchy by releasing all locks before invoking unknown
code. However, we can instead construct a layered lock-
ing hierarchy, as shown in Figure 7.6. here, the cmp()
function uses a new Lock D that is acquired after all of
Locks A, B, and C, avoiding deadlock. we therefore have
three layers to the global deadlock hierarchy, the first con-
taining Locks A and B, the second containing Lock C,
and the third containing Lock D.

Please note that it is not typically possible to mechan-
ically change cmp() to use the new Lock D. Quite the
opposite: It is often necessary to make profound design-
level modifications. Nevertheless, the effort required for

Listing 7.1: Concurrent List Iterator
1 struct locked_list {
2 spinlock_t s;
3 struct cds_list_head h;
4 };
5

6 struct cds_list_head *list_start(struct locked_list *lp)
7 {
8 spin_lock(&lp->s);
9 return list_next(lp, &lp->h);

10 }
11

12 struct cds_list_head *list_next(struct locked_list *lp,
13 struct cds_list_head *np)
14 {
15 struct cds_list_head *ret;
16

17 ret = np->next;
18 if (ret == &lp->h) {
19 spin_unlock(&lp->s);
20 ret = NULL;
21 }
22 return ret;
23 }

Listing 7.2: Concurrent List Iterator Usage
1 struct list_ints {
2 struct cds_list_head n;
3 int a;
4 };
5

6 void list_print(struct locked_list *lp)
7 {
8 struct cds_list_head *np;
9 struct list_ints *ip;

10

11 np = list_start(lp);
12 while (np != NULL) {
13 ip = cds_list_entry(np, struct list_ints, n);
14 printf("\t%d\n", ip->a);
15 np = list_next(lp, np);
16 }
17 }

such modifications is normally a small price to pay in
order to avoid deadlock.

For another example where releasing all locks before
invoking unknown code is impractical, imagine an iterator
over a linked list, as shown in Listing 7.1 (locked_list.
c). The list_start() function acquires a lock on the
list and returns the first element (if there is one), and
list_next() either returns a pointer to the next element
in the list or releases the lock and returns NULL if the end
of the list has been reached.

Listing 7.2 shows how this list iterator may be used.
Lines 1-4 define the list_ints element containing a
single integer, and lines 6-17 show how to iterate over
the list. Line 11 locks the list and fetches a pointer to the
first element, line 13 provides a pointer to our enclosing
list_ints structure, line 14 prints the corresponding
integer, and line 15 moves to the next element. This is

7.1. STAYING ALIVE 101

quite simple, and hides all of the locking.
That is, the locking remains hidden as long as the code

processing each list element does not itself acquire a lock
that is held across some other call to list_start() or
list_next(), which results in deadlock. We can avoid
the deadlock by layering the locking hierarchy to take the
list-iterator locking into account.

This layered approach can be extended to an arbitrarily
large number of layers, but each added layer increases
the complexity of the locking design. Such increases in
complexity are particularly inconvenient for some types of
object-oriented designs, in which control passes back and
forth among a large group of objects in an undisciplined
manner.1 This mismatch between the habits of object-
oriented design and the need to avoid deadlock is an
important reason why parallel programming is perceived
by some to be so difficult.

Some alternatives to highly layered locking hierarchies
are covered in Chapter 9.

7.1.1.4 Locking Hierarchies and Pointers to Locks

Although there are some exceptions, an external API con-
taining a pointer to a lock is very often a misdesigned
API. Handing an internal lock to some other software
component is after all the antithesis of information hiding,
which is in turn a key design principle.

Quick Quiz 7.5: Name one common exception where
it is perfectly reasonable to pass a pointer to a lock into a
function.

One exception is functions that hand off some entity,
where the caller’s lock must be held until the handoff is
complete, but where the lock must be released before the
function returns. One example of such a function is the
POSIX pthread_cond_wait() function, where passing
an pointer to a pthread_mutex_t prevents hangs due to
lost wakeups.

Quick Quiz 7.6: Doesn’t the fact that pthread_
cond_wait() first releases the mutex and then re-
acquires it eliminate the possibility of deadlock?

In short, if you find yourself exporting an API with a
pointer to a lock as an argument or the return value, do
yourself a favor and carefully reconsider your API design.
It might well be the right thing to do, but experience
indicates that this is unlikely.

7.1.1.5 Conditional Locking

1 One name for this is “object-oriented spaghetti code.”

Listing 7.3: Protocol Layering and Deadlock
1 spin_lock(&lock2);
2 layer_2_processing(pkt);
3 nextlayer = layer_1(pkt);
4 spin_lock(&nextlayer->lock1);
5 layer_1_processing(pkt);
6 spin_unlock(&lock2);
7 spin_unlock(&nextlayer->lock1);

Listing 7.4: Avoiding Deadlock Via Conditional Locking
1 retry:
2 spin_lock(&lock2);
3 layer_2_processing(pkt);
4 nextlayer = layer_1(pkt);
5 if (!spin_trylock(&nextlayer->lock1)) {
6 spin_unlock(&lock2);
7 spin_lock(&nextlayer->lock1);
8 spin_lock(&lock2);
9 if (layer_1(pkt) != nextlayer) {

10 spin_unlock(&nextlayer->lock1);
11 spin_unlock(&lock2);
12 goto retry;
13 }
14 }
15 layer_1_processing(pkt);
16 spin_unlock(&lock2);
17 spin_unlock(&nextlayer->lock1);

But suppose that there is no reasonable locking hierar-
chy. This can happen in real life, for example, in layered
network protocol stacks where packets flow in both di-
rections. In the networking case, it might be necessary
to hold the locks from both layers when passing a packet
from one layer to another. Given that packets travel both
up and down the protocol stack, this is an excellent recipe
for deadlock, as illustrated in Listing 7.3. Here, a packet
moving down the stack towards the wire must acquire the
next layer’s lock out of order. Given that packets moving
up the stack away from the wire are acquiring the locks
in order, the lock acquisition in line 4 of the listing can
result in deadlock.

One way to avoid deadlocks in this case is to impose
a locking hierarchy, but when it is necessary to acquire
a lock out of order, acquire it conditionally, as shown
in Listing 7.4. Instead of unconditionally acquiring the
layer-1 lock, line 5 conditionally acquires the lock using
the spin_trylock() primitive. This primitive acquires
the lock immediately if the lock is available (returning
non-zero), and otherwise returns zero without acquiring
the lock.

If spin_trylock() was successful, line 15 does the
needed layer-1 processing. Otherwise, line 6 releases
the lock, and lines 7 and 8 acquire them in the correct
order. Unfortunately, there might be multiple networking
devices on the system (e.g., Ethernet and WiFi), so that
the layer_1() function must make a routing decision.

102 CHAPTER 7. LOCKING

This decision might change at any time, especially if the
system is mobile.2 Therefore, line 9 must recheck the
decision, and if it has changed, must release the locks and
start over.

Quick Quiz 7.7: Can the transformation from List-
ing 7.3 to Listing 7.4 be applied universally?

Quick Quiz 7.8: But the complexity in Listing 7.4 is
well worthwhile given that it avoids deadlock, right?

7.1.1.6 Acquire Needed Locks First

In an important special case of conditional locking all
needed locks are acquired before any processing is carried
out. In this case, processing need not be idempotent: if it
turns out to be impossible to acquire a given lock without
first releasing one that was already acquired, just release
all the locks and try again. Only once all needed locks are
held will any processing be carried out.

However, this procedure can result in livelock, which
will be discussed in Section 7.1.2.

Quick Quiz 7.9: When using the “acquire needed
locks first” approach described in Section 7.1.1.6, how
can livelock be avoided?

A related approach, two-phase locking [BHG87], has
seen long production use in transactional database sys-
tems. In the first phase of a two-phase locking transaction,
locks are acquired but not released. Once all needed locks
have been acquired, the transaction enters the second
phase, where locks are released, but not acquired. This
locking approach allows databases to provide serializabil-
ity guarantees for their transactions, in other words, to
guarantee that all values seen and produced by the trans-
actions are consistent with some global ordering of all
the transactions. Many such systems rely on the abil-
ity to abort transactions, although this can be simplified
by avoiding making any changes to shared data until all
needed locks are acquired. Livelock and deadlock are
issues in such systems, but practical solutions may be
found in any of a number of database textbooks.

7.1.1.7 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus
avoiding deadlock. For example, if a problem is perfectly
partitionable, a single lock may be assigned to each par-
tition. Then a thread working on a given partition need
only acquire the one corresponding lock. Because no

2 And, in contrast to the 1900s, mobility is the common case.

thread ever holds more than one lock at a time, deadlock
is impossible.

However, there must be some mechanism to ensure that
the needed data structures remain in existence during the
time that neither lock is held. One such mechanism is
discussed in Section 7.4 and several others are presented
in Chapter 9.

7.1.1.8 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dis-
missed by noting that it is not legal to invoke pthread_
mutex_lock() from within a signal handler [Ope97].
However, it is possible (though almost always unwise) to
hand-craft locking primitives that can be invoked from sig-
nal handlers. Besides which, almost all operating-system
kernels permit locks to be acquired from within interrupt
handlers, which are the kernel analog to signal handlers.

The trick is to block signals (or disable interrupts, as
the case may be) when acquiring any lock that might
be acquired within an interrupt handler. Furthermore, if
holding such a lock, it is illegal to attempt to acquire
any lock that is ever acquired outside of a signal handler
without blocking signals.

Quick Quiz 7.10: Why is it illegal to acquire a Lock A
that is acquired outside of a signal handler without block-
ing signals while holding a Lock B that is acquired within
a signal handler?

If a lock is acquired by the handlers for several signals,
then each and every one of these signals must be blocked
whenever that lock is acquired, even when that lock is
acquired within a signal handler.

Quick Quiz 7.11: How can you legally block signals
within a signal handler?

Unfortunately, blocking and unblocking signals can be
expensive in some operating systems, notably including
Linux, so performance concerns often mean that locks
acquired in signal handlers are only acquired in signal
handlers, and that lockless synchronization mechanisms
are used to communicate between application code and
signal handlers.

Or that signal handlers are avoided completely except
for handling fatal errors.

Quick Quiz 7.12: If acquiring locks in signal handlers
is such a bad idea, why even discuss ways of making it
safe?

7.1. STAYING ALIVE 103

Listing 7.5: Abusing Conditional Locking
1 void thread1(void)
2 {
3 retry:
4 spin_lock(&lock1);
5 do_one_thing();
6 if (!spin_trylock(&lock2)) {
7 spin_unlock(&lock1);
8 goto retry;
9 }

10 do_another_thing();
11 spin_unlock(&lock2);
12 spin_unlock(&lock1);
13 }
14

15 void thread2(void)
16 {
17 retry:
18 spin_lock(&lock2);
19 do_a_third_thing();
20 if (!spin_trylock(&lock1)) {
21 spin_unlock(&lock2);
22 goto retry;
23 }
24 do_a_fourth_thing();
25 spin_unlock(&lock1);
26 spin_unlock(&lock2);
27 }

7.1.1.9 Discussion

There are a large number of deadlock-avoidance strategies
available to the shared-memory parallel programmer, but
there are sequential programs for which none of them is a
good fit. This is one of the reasons that expert program-
mers have more than one tool in their toolbox: locking
is a powerful concurrency tool, but there are jobs better
addressed with other tools.

Quick Quiz 7.13: Given an object-oriented application
that passes control freely among a group of objects such
that there is no straightforward locking hierarchy,3 layered
or otherwise, how can this application be parallelized?

Nevertheless, the strategies described in this section
have proven quite useful in many settings.

7.1.2 Livelock and Starvation
Although conditional locking can be an effective

deadlock-avoidance mechanism, it can be abused. Con-
sider for example the beautifully symmetric example
shown in Listing 7.5. This example’s beauty hides an ugly
livelock. To see this, consider the following sequence of
events:

1. Thread 1 acquires lock1 on line 4, then invokes
do_one_thing().

3 Also known as “object-oriented spaghetti code.”

Listing 7.6: Conditional Locking and Exponential Backoff

1 void thread1(void)
2 {
3 unsigned int wait = 1;
4 retry:
5 spin_lock(&lock1);
6 do_one_thing();
7 if (!spin_trylock(&lock2)) {
8 spin_unlock(&lock1);
9 sleep(wait);

10 wait = wait << 1;
11 goto retry;
12 }
13 do_another_thing();
14 spin_unlock(&lock2);
15 spin_unlock(&lock1);
16 }
17

18 void thread2(void)
19 {
20 unsigned int wait = 1;
21 retry:
22 spin_lock(&lock2);
23 do_a_third_thing();
24 if (!spin_trylock(&lock1)) {
25 spin_unlock(&lock2);
26 sleep(wait);
27 wait = wait << 1;
28 goto retry;
29 }
30 do_a_fourth_thing();
31 spin_unlock(&lock1);
32 spin_unlock(&lock2);
33 }

2. Thread 2 acquires lock2 on line 18, then invokes
do_a_third_thing().

3. Thread 1 attempts to acquire lock2 on line 6, but
fails because Thread 2 holds it.

4. Thread 2 attempts to acquire lock1 on line 20, but
fails because Thread 1 holds it.

5. Thread 1 releases lock1 on line 7, then jumps to
retry at line 3.

6. Thread 2 releases lock2 on line 21, and jumps to
retry at line 17.

7. The livelock dance repeats from the beginning.

Quick Quiz 7.14: How can the livelock shown in List-
ing 7.5 be avoided?

Livelock can be thought of as an extreme form of star-
vation where a group of threads starve, rather than just
one of them.4

4 Try not to get too hung up on the exact definitions of terms like
livelock, starvation, and unfairness. Anything that causes a group of
threads to fail to make adequate forward progress is a problem that
needs to be fixed, regardless of what name you choose for it.

104 CHAPTER 7. LOCKING

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory Memory

Speed−of−Light Round−Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

System Interconnect

Figure 7.7: System Architecture and Lock Unfairness

Livelock and starvation are serious issues in software
transactional memory implementations, and so the con-
cept of contention manager has been introduced to en-
capsulate these issues. In the case of locking, simple
exponential backoff can often address livelock and star-
vation. The idea is to introduce exponentially increasing
delays before each retry, as shown in Listing 7.6.

Quick Quiz 7.15: What problems can you spot in the
code in Listing 7.6?

However, for better results, the backoff should be
bounded, and even better high-contention results have
been obtained via queued locking [And90], which is dis-
cussed more in Section 7.3.2. Of course, best of all is to
use a good parallel design so that lock contention remains
low.

7.1.3 Unfairness

Unfairness can be thought of as a less-severe form of star-
vation, where a subset of threads contending for a given
lock are granted the lion’s share of the acquisitions. This
can happen on machines with shared caches or NUMA
characteristics, for example, as shown in Figure 7.7. If
CPU 0 releases a lock that all the other CPUs are attempt-
ing to acquire, the interconnect shared between CPUs 0
and 1 means that CPU 1 will have an advantage over
CPUs 2-7. Therefore CPU 1 will likely acquire the lock.
If CPU 1 hold the lock long enough for CPU 0 to be
requesting the lock by the time CPU 1 releases it and
vice versa, the lock can shuttle between CPUs 0 and 1,

bypassing CPUs 2-7.
Quick Quiz 7.16: Wouldn’t it be better just to use

a good parallel design so that lock contention was low
enough to avoid unfairness?

7.1.4 Inefficiency

Locks are implemented using atomic instructions and
memory barriers, and often involve cache misses. As we
saw in Chapter 3, these instructions are quite expensive,
roughly two orders of magnitude greater overhead than
simple instructions. This can be a serious problem for
locking: If you protect a single instruction with a lock,
you will increase the overhead by a factor of one hundred.
Even assuming perfect scalability, one hundred CPUs
would be required to keep up with a single CPU executing
the same code without locking.

This situation underscores the synchronization-gran-
ularity tradeoff discussed in Section 6.3, especially Fig-
ure 6.16: Too coarse a granularity will limit scalability,
while too fine a granularity will result in excessive syn-
chronization overhead.

That said, once a lock is held, the data protected by that
lock can be accessed by the lock holder without interfer-
ence. Acquiring a lock might be expensive, but once held,
the CPU’s caches are an effective performance booster, at
least for large critical sections.

Quick Quiz 7.17: How might the lock holder be inter-
fered with?

7.2 Types of Locks

There are a surprising number of types of locks, more
than this short chapter can possibly do justice to. The
following sections discuss exclusive locks (Section 7.2.1),
reader-writer locks (Section 7.2.2), multi-role locks (Sec-
tion 7.2.3), and scoped locking (Section 7.2.4).

7.2.1 Exclusive Locks

Exclusive locks are what they say they are: only one
thread may hold the lock at a time. The holder of such
a lock thus has exclusive access to all data protected by
that lock, hence the name.

Of course, this all assumes that this lock is held across
all accesses to data purportedly protected by the lock. Al-
though there are some tools that can help (see for example
Section 12.3.1), the ultimate responsibility for ensuring

7.2. TYPES OF LOCKS 105

that the lock is acquired in all necessary code paths rests
with the developer.

Quick Quiz 7.18: Does it ever make sense to have
an exclusive lock acquisition immediately followed by a
release of that same lock, that is, an empty critical section?

7.2.2 Reader-Writer Locks
Reader-writer locks [CHP71] permit any number of read-
ers to hold the lock concurrently on the one hand or a
single writer to hold the lock on the other. In theory, then,
reader-writer locks should allow excellent scalability for
data that is read often and written rarely. In practice, the
scalability will depend on the reader-writer lock imple-
mentation.

The classic reader-writer lock implementation involves
a set of counters and flags that are manipulated atomi-
cally. This type of implementation suffers from the same
problem as does exclusive locking for short critical sec-
tions: The overhead of acquiring and releasing the lock is
about two orders of magnitude greater than the overhead
of a simple instruction. Of course, if the critical section
is long enough, the overhead of acquiring and releasing
the lock becomes negligible. However, because only one
thread at a time can be manipulating the lock, the required
critical-section size increases with the number of CPUs.

It is possible to design a reader-writer lock that is
much more favorable to readers through use of per-
thread exclusive locks [HW92]. To read, a thread ac-
quires only its own lock. To write, a thread acquires all
locks. In the absence of writers, each reader incurs only
atomic-instruction and memory-barrier overhead, with no
cache misses, which is quite good for a locking primi-
tive. Unfortunately, writers must incur cache misses as
well as atomic-instruction and memory-barrier overhead—
multiplied by the number of threads.

In short, reader-writer locks can be quite useful in a
number of situations, but each type of implementation
does have its drawbacks. The canonical use case for
reader-writer locking involves very long read-side critical
sections, preferably measured in hundreds of microsec-
onds or even milliseconds.

7.2.3 Beyond Reader-Writer Locks
Reader-writer locks and exclusive locks differ in their
admission policy: exclusive locks allow at most one
holder, while reader-writer locks permit an arbitrary num-
ber of read-holders (but only one write-holder). There is a

Table 7.1: VAX/VMS Distributed Lock Manager Policy

N
ul

l(
N

ot
H

el
d)

C
on

cu
rr

en
tR

ea
d

C
on

cu
rr

en
tW

ri
te

Pr
ot

ec
te

d
R

ea
d

Pr
ot

ec
te

d
W

ri
te

E
xc

lu
si

ve

Null (Not Held)
Concurrent Read X
Concurrent Write X X X
Protected Read X X X
Protected Write X X X X
Exclusive X X X X X

very large number of possible admission policies, one of
which is that of the VAX/VMS distributed lock manager
(DLM) [ST87], which is shown in Table 7.1. Blank cells
indicate compatible modes, while cells containing “X”
indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes
of comparison, exclusive locks use two modes (not held
and held), while reader-writer locks use three modes (not
held, read held, and write held).

The first mode is null, or not held. This mode is com-
patible with all other modes, which is to be expected: If
a thread is not holding a lock, it should not prevent any
other thread from acquiring that lock.

The second mode is concurrent read, which is com-
patible with every other mode except for exclusive. The
concurrent-read mode might be used to accumulate ap-
proximate statistics on a data structure, while permitting
updates to proceed concurrently.

The third mode is concurrent write, which is compati-
ble with null, concurrent read, and concurrent write. The
concurrent-write mode might be used to update approxi-
mate statistics, while still permitting reads and concurrent
updates to proceed concurrently.

The fourth mode is protected read, which is compati-
ble with null, concurrent read, and protected read. The
protected-read mode might be used to obtain a consistent
snapshot of the data structure, while permitting reads but
not updates to proceed concurrently.

The fifth mode is protected write, which is compatible
with null and concurrent read. The protected-write mode
might be used to carry out updates to a data structure that
could interfere with protected readers but which could be
tolerated by concurrent readers.

106 CHAPTER 7. LOCKING

The sixth and final mode is exclusive, which is compat-
ible only with null. The exclusive mode is used when it is
necessary to exclude all other accesses.

It is interesting to note that exclusive locks and reader-
writer locks can be emulated by the VAX/VMS DLM. Ex-
clusive locks would use only the null and exclusive modes,
while reader-writer locks might use the null, protected-
read, and protected-write modes.

Quick Quiz 7.19: Is there any other way for the
VAX/VMS DLM to emulate a reader-writer lock?

Although the VAX/VMS DLM policy has seen wide-
spread production use for distributed databases, it does not
appear to be used much in shared-memory applications.
One possible reason for this is that the greater commu-
nication overheads of distributed databases can hide the
greater overhead of the VAX/VMS DLM’s more-complex
admission policy.

Nevertheless, the VAX/VMS DLM is an interesting
illustration of just how flexible the concepts behind lock-
ing can be. It also serves as a very simple introduction
to the locking schemes used by modern DBMSes, which
can have more than thirty locking modes, compared to
VAX/VMS’s six.

7.2.4 Scoped Locking
The locking primitives discussed thus far require explicit
acquisition and release primitives, for example, spin_
lock() and spin_unlock(), respectively. Another ap-
proach is to use the object-oriented “resource allocation
is initialization” (RAII) pattern [ES90].5 This pattern is
often applied to auto variables in languages like C++,
where the corresponding constructor is invoked upon en-
try to the object’s scope, and the corresponding destructor
is invoked upon exit from that scope. This can be applied
to locking by having the constructor acquire the lock and
the destructor free it.

This approach can be quite useful, in fact in 1990 I was
convinced that it was the only type of locking that was
needed.6 One very nice property of RAII locking is that
you don’t need to carefully release the lock on each and
every code path that exits that scope, a property that can
eliminate a troublesome set of bugs.

However, RAII locking also has a dark side. RAII
makes it quite difficult to encapsulate lock acquisition
and release, for example, in iterators. In many iterator

5 Though more clearly expressed at http://www.stroustrup.
com/bs_faq2.html#finally.

6 My later work with parallelism at Sequent Computer Systems
very quickly disabused me of this misguided notion.

Root rcu_node
Structure

Structure 0
Leaf rcu_node Leaf rcu_node

Structure N

C
P

U
 m

 *
 (N

 −
 1

) +
 1

C
P

U
 m

 *
 N

 −
 1

C
P

U
 m

 *
 (N

 −
 1

)

C
P

U
 m

C
P

U
 1

C
P

U
 0

Figure 7.8: Locking Hierarchy

implementations, you would like to acquire the lock in
the iterator’s “start” function and release it in the iterator’s
“stop” function. RAII locking instead requires that the
lock acquisition and release take place in the same level
of scoping, making such encapsulation difficult or even
impossible.

RAII locking also prohibits overlapping critical sec-
tions, due to the fact that scopes must nest. This prohibi-
tion makes it difficult or impossible to express a number of
useful constructs, for example, locking trees that mediate
between multiple concurrent attempts to assert an event.
Of an arbitrarily large group of concurrent attempts, only
one need succeed, and the best strategy for the remaining
attempts is for them to fail as quickly and painlessly as
possible. Otherwise, lock contention becomes pathologi-
cal on large systems (where “large” is many hundreds of
CPUs).

Example data structures (taken from the Linux ker-
nel’s implementation of RCU) are shown in Figure 7.8.
Here, each CPU is assigned a leaf rcu_node structure,
and each rcu_node structure has a pointer to its parent
(named, oddly enough, ->parent), up to the root rcu_
node structure, which has a NULL ->parent pointer. The
number of child rcu_node structures per parent can vary,
but is typically 32 or 64. Each rcu_node structure also
contains a lock named ->fqslock.

The general approach is a tournament, where a given
CPU conditionally acquires its leaf rcu_node structure’s
->fqslock, and, if successful, attempt to acquire that

http://www.stroustrup.com/bs_faq2.html#finally
http://www.stroustrup.com/bs_faq2.html#finally

7.3. LOCKING IMPLEMENTATION ISSUES 107

Listing 7.7: Conditional Locking to Reduce Contention
1 void force_quiescent_state(struct rcu_node *rnp_leaf)
2 {
3 int ret;
4 struct rcu_node *rnp = rnp_leaf;
5 struct rcu_node *rnp_old = NULL;
6

7 for (; rnp != NULL; rnp = rnp->parent) {
8 ret = (READ_ONCE(gp_flags)) ||
9 !raw_spin_trylock(&rnp->fqslock);

10 if (rnp_old != NULL)
11 raw_spin_unlock(&rnp_old->fqslock);
12 if (ret)
13 return;
14 rnp_old = rnp;
15 }
16 if (!READ_ONCE(gp_flags)) {
17 WRITE_ONCE(gp_flags, 1);
18 do_force_quiescent_state();
19 schedule_timeout_interruptible(HZ / 10);
20 WRITE_ONCE(gp_flags, 0);
21 }
22 raw_spin_unlock(&rnp_old->fqslock);
23 }

of the parent, then release that of the child. In addi-
tion, at each level, the CPU checks a global gp_flags
variable, and if this variable indicates that some other
CPU has asserted the event, the first CPU drops out of
the competition. This acquire-then-release sequence con-
tinues until either the gp_flags variable indicates that
someone else won the tournament, one of the attempts
to acquire an ->fqslock fails, or the root rcu_node
structure’s ->fqslock has been acquired. If the root
rcu_node structure’s ->fqslock is acquired, a func-
tion named do_force_quiescent_state() is invoked,
but this function should be invoked at most once every
100 milliseconds.

Simplified code to implement this is shown in List-
ing 7.7. The purpose of this function is to mediate be-
tween CPUs who have concurrently detected a need to in-
voke the do_force_quiescent_state() function. At
any given time, it only makes sense for one instance
of do_force_quiescent_state() to be active, so if
there are multiple concurrent callers, we need at most
one of them to actually invoke do_force_quiescent_
state(), and we need the rest to (as quickly and pain-
lessly as possible) give up and leave. Furthermore, if do_
force_quiescent_state() has been invoked within
the past 100 milliseconds, there is no need to invoke it
again.

To this end, each pass through the loop spanning lines 7-
15 attempts to advance up one level in the rcu_node hier-
archy. If the gp_flags variable is already set (line 8) or
if the attempt to acquire the current rcu_node structure’s
->fqslock is unsuccessful (line 9), then local variable

ret is set to 1. If line 10 sees that local variable rnp_old
is non-NULL, meaning that we hold rnp_old’s ->fqs_
lock, line 11 releases this lock (but only after the attempt
has been made to acquire the parent rcu_node structure’s
->fqslock). If line 12 sees that either line 8 or 9 saw a
reason to give up, line 13 returns to the caller. Otherwise,
we must have acquired the current rcu_node structure’s
->fqslock, so line 14 saves a pointer to this structure in
local variable rnp_old in preparation for the next pass
through the loop.

If control reaches line 16, we won the tournament, and
now holds the root rcu_node structure’s ->fqslock. If
line 16 still sees that the global variable gp_flags is zero,
line 17 sets gp_flags to one, line 18 invokes do_force_
quiescent_state(), line 19 waits for 100 milliseconds,
and line 20 resets gp_flags back to zero. Either
way, line 22 releases the root rcu_node structure’s ->
fqslock.

Quick Quiz 7.20: The code in Listing 7.7 is ridicu-
lously complicated! Why not conditionally acquire a
single global lock?

Quick Quiz 7.21: Wait a minute! If we “win” the
tournament on line 16 of Listing 7.7, we get to do all the
work of do_force_quiescent_state(). Exactly how
is that a win, really?

This function illustrates the not-uncommon pattern of
hierarchical locking. This pattern is quite difficult to
implement using strict RAII locking, just like the iterator
encapsulation noted earlier, and so explicit lock/unlock
primitives will be needed for the foreseeable future.

7.3 Locking Implementation Issues

Developers are almost always best-served by using what-
ever locking primitives are provided by the system, for
example, the POSIX pthread mutex locks [Ope97, But97].
Nevertheless, studying sample implementations can be
helpful, as can considering the challenges posed by ex-
treme workloads and environments.

7.3.1 Sample Exclusive-Locking Im-
plementation Based on Atomic
Exchange

This section reviews the implementation shown in list-
ing 7.8. The data structure for this lock is just an int,
as shown on line 1, but could be any integral type. The
initial value of this lock is zero, meaning “unlocked”, as

108 CHAPTER 7. LOCKING

Listing 7.8: Sample Lock Based on Atomic Exchange
1 typedef int xchglock_t;
2 #define DEFINE_XCHG_LOCK(n) xchglock_t n = 0
3

4 void xchg_lock(xchglock_t *xp)
5 {
6 while (xchg(xp, 1) == 1) {
7 while (READ_ONCE(*xp) == 1)
8 continue;
9 }

10 }
11

12 void xchg_unlock(xchglock_t *xp)
13 {
14 (void)xchg(xp, 0);
15 }

shown on line 2.
Quick Quiz 7.22: Why not rely on the C language’s

default initialization of zero instead of using the explicit
initializer shown on line 2 of Listing 7.8?

Lock acquisition is carried out by the xchg_lock()
function shown on lines 4-10. This function uses a nested
loop, with the outer loop repeatedly atomically exchang-
ing the value of the lock with the value one (meaning
“locked”). If the old value was already the value one (in
other words, someone else already holds the lock), then
the inner loop (lines 7-8) spins until the lock is available,
at which point the outer loop makes another attempt to
acquire the lock.

Quick Quiz 7.23: Why bother with the inner loop on
lines 7-8 of Listing 7.8? Why not simply repeatedly do
the atomic exchange operation on line 6?

Lock release is carried out by the xchg_unlock()
function shown on lines 12-15. Line 14 atomically ex-
changes the value zero (“unlocked”) into the lock, thus
marking it as having been released.

Quick Quiz 7.24: Why not simply store zero into the
lock word on line 14 of Listing 7.8?

This lock is a simple example of a test-and-set
lock [SR84], but very similar mechanisms have been used
extensively as pure spinlocks in production.

7.3.2 Other Exclusive-Locking Implemen-
tations

There are a great many other possible implementations
of locking based on atomic instructions, many of which
are reviewed by Mellor-Crummey and Scott [MCS91].
These implementations represent different points in a
multi-dimensional design tradeoff [McK96b]. For ex-
ample, the atomic-exchange-based test-and-set lock pre-
sented in the previous section works well when contention

is low and has the advantage of small memory footprint.
It avoids giving the lock to threads that cannot use it, but
as a result can suffer from unfairness or even starvation at
high contention levels.

In contrast, ticket lock [MCS91], which is used in the
Linux kernel, avoids unfairness at high contention levels,
but as a consequence of its first-in-first-out discipline can
grant the lock to a thread that is currently unable to use
it, for example, due to being preempted, interrupted, or
otherwise out of action. However, it is important to avoid
getting too worried about the possibility of preemption
and interruption, given that this preemption and interrup-
tion might just as well happen just after the lock was
acquired.7

All locking implementations where waiters spin on a
single memory location, including both test-and-set locks
and ticket locks, suffer from performance problems at
high contention levels. The problem is that the thread
releasing the lock must update the value of the corre-
sponding memory location. At low contention, this is not
a problem: The corresponding cache line is very likely
still local to and writeable by the thread holding the lock.
In contrast, at high levels of contention, each thread at-
tempting to acquire the lock will have a read-only copy
of the cache line, and the lock holder will need to inval-
idate all such copies before it can carry out the update
that releases the lock. In general, the more CPUs and
threads there are, the greater the overhead incurred when
releasing the lock under conditions of high contention.

This negative scalability has motivated a number of
different queued-lock implementations [And90, GT90,
MCS91, WKS94, Cra93, MLH94, TS93]. Queued locks
avoid high cache-invalidation overhead by assigning each
thread a queue element. These queue elements are linked
together into a queue that governs the order that the lock
will be granted to the waiting threads. The key point is
that each thread spins on its own queue element, so that
the lock holder need only invalidate the first element from
the next thread’s CPU’s cache. This arrangement greatly
reduces the overhead of lock handoff at high levels of
contention.

More recent queued-lock implementations also take the
system’s architecture into account, preferentially grant-
ing locks locally, while also taking steps to avoid starva-
tion [SSVM02, RH03, RH02, JMRR02, MCM02]. Many
of these can be thought of as analogous to the elevator

7 Besides, the best way of handling high lock contention is to avoid
it in the first place! However, there are some situation where high lock
contention is the lesser of the available evils, and in any case, studying
schemes that deal with high levels of contention is good mental exercise.

7.3. LOCKING IMPLEMENTATION ISSUES 109

algorithms traditionally used in scheduling disk I/O.
Unfortunately, the same scheduling logic that improves

the efficiency of queued locks at high contention also in-
creases their overhead at low contention. Beng-Hong Lim
and Anant Agarwal therefore combined a simple test-and-
set lock with a queued lock, using the test-and-set lock
at low levels of contention and switching to the queued
lock at high levels of contention [LA94], thus getting low
overhead at low levels of contention and getting fairness
and high throughput at high levels of contention. Brown-
ing et al. took a similar approach, but avoided the use of
a separate flag, so that the test-and-set fast path uses the
same sequence of instructions that would be used in a
simple test-and-set lock [BMMM05]. This approach has
been used in production.

Another issue that arises at high levels of contention
is when the lock holder is delayed, especially when the
delay is due to preemption, which can result in priority
inversion, where a low-priority thread holds a lock, but
is preempted by a medium priority CPU-bound thread,
which results in a high-priority process blocking while
attempting to acquire the lock. The result is that the
CPU-bound medium-priority process is preventing the
high-priority process from running. One solution is pri-
ority inheritance [LR80], which has been widely used
for real-time computing [SRL90a, Cor06b], despite some
lingering controversy over this practice [Yod04a, Loc02].

Another way to avoid priority inversion is to pre-
vent preemption while a lock is held. Because pre-
venting preemption while locks are held also improves
throughput, most proprietary UNIX kernels offer some
form of scheduler-conscious synchronization mecha-
nism [KWS97], largely due to the efforts of a certain
sizable database vendor. These mechanisms usually
take the form of a hint that preemption would be in-
appropriate. These hints frequently take the form of a
bit set in a particular machine register, which enables
extremely low per-lock-acquisition overhead for these
mechanisms. In contrast, Linux avoids these hints, in-
stead getting similar results from a mechanism called
futexes [FRK02, Mol06, Ros06, Dre11].

Interestingly enough, atomic instructions are not
strictly needed to implement locks [Dij65, Lam74]. An
excellent exposition of the issues surrounding locking
implementations based on simple loads and stores may
be found in Herlihy’s and Shavit’s textbook [HS08]. The
main point echoed here is that such implementations cur-
rently have little practical application, although a careful
study of them can be both entertaining and enlightening.

Nevertheless, with one exception described below, such
study is left as an exercise for the reader.

Gamsa et al. [GKAS99, Section 5.3] describe a token-
based mechanism in which a token circulates among the
CPUs. When the token reaches a given CPU, it has exclu-
sive access to anything protected by that token. There are
any number of schemes that may be used to implement
the token-based mechanism, for example:

1. Maintain a per-CPU flag, which is initially zero for
all but one CPU. When a CPU’s flag is non-zero, it
holds the token. When it finishes with the token, it
zeroes its flag and sets the flag of the next CPU to
one (or to any other non-zero value).

2. Maintain a per-CPU counter, which is initially set to
the corresponding CPU’s number, which we assume
to range from zero to N − 1, where N is the number
of CPUs in the system. When a CPU’s counter is
greater than that of the next CPU (taking counter
wrap into account), the first CPU holds the token.
When it is finished with the token, it sets the next
CPU’s counter to a value one greater than its own
counter.

Quick Quiz 7.25: How can you tell if one counter is
greater than another, while accounting for counter wrap?

Quick Quiz 7.26: Which is better, the counter ap-
proach or the flag approach?

This lock is unusual in that a given CPU cannot nec-
essarily acquire it immediately, even if no other CPU is
using it at the moment. Instead, the CPU must wait un-
til the token comes around to it. This is useful in cases
where CPUs need periodic access to the critical section,
but can tolerate variances in token-circulation rate. Gamsa
et al. [GKAS99] used it to implement a variant of read-
copy update (see Section 9.5), but it could also be used to
protect periodic per-CPU operations such as flushing per-
CPU caches used by memory allocators [MS93], garbage-
collecting per-CPU data structures, or flushing per-CPU
data to shared storage (or to mass storage, for that matter).

As increasing numbers of people gain familiarity with
parallel hardware and parallelize increasing amounts of
code, we can expect more special-purpose locking primi-
tives to appear. Nevertheless, you should carefully con-
sider this important safety tip: Use the standard synchro-
nization primitives whenever humanly possible. The big
advantage of the standard synchronization primitives over

110 CHAPTER 7. LOCKING

Listing 7.9: Per-Element Locking Without Existence Guaran-
tees

1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5

6 b = hashfunction(key);
7 p = hashtable[b];
8 if (p == NULL || p->key != key)
9 return 0;

10 spin_lock(&p->lock);
11 hashtable[b] = NULL;
12 spin_unlock(&p->lock);
13 kfree(p);
14 return 1;
15 }

roll-your-own efforts is that the standard primitives are
typically much less bug-prone.8

7.4 Lock-Based Existence Guaran-
tees

A key challenge in parallel programming is to pro-
vide existence guarantees [GKAS99], so that attempts to
access a given object can rely on that object being in exis-
tence throughout a given access attempt. In some cases,
existence guarantees are implicit:

1. Global variables and static local variables in the base
module will exist as long as the application is run-
ning.

2. Global variables and static local variables in a loaded
module will exist as long as that module remains
loaded.

3. A module will remain loaded as long as at least one
of its functions has an active instance.

4. A given function instance’s on-stack variables will
exist until that instance returns.

5. If you are executing within a given function or have
been called (directly or indirectly) from that function,
then the given function has an active instance.

8 And yes, I have done at least my share of roll-your-own synchro-
nization primitives. However, you will notice that my hair is much
greyer than it was before I started doing that sort of work. Coinci-
dence? Maybe. But are you really willing to risk your own hair turning
prematurely grey?

Listing 7.10: Per-Element Locking With Lock-Based Existence
Guarantees

1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5 spinlock_t *sp;
6

7 b = hashfunction(key);
8 sp = &locktable[b];
9 spin_lock(sp);

10 p = hashtable[b];
11 if (p == NULL || p->key != key) {
12 spin_unlock(sp);
13 return 0;
14 }
15 hashtable[b] = NULL;
16 spin_unlock(sp);
17 kfree(p);
18 return 1;
19 }

These implicit existence guarantees are straightforward,
though bugs involving implicit existence guarantees really
can happen.

Quick Quiz 7.27: How can relying on implicit exis-
tence guarantees result in a bug?

But the more interesting—and troublesome—guarantee
involves heap memory: A dynamically allocated data
structure will exist until it is freed. The problem to be
solved is to synchronize the freeing of the structure with
concurrent accesses to that same structure. One way to
do this is with explicit guarantees, such as locking. If a
given structure may only be freed while holding a given
lock, then holding that lock guarantees that structure’s
existence.

But this guarantee depends on the existence of the lock
itself. One straightforward way to guarantee the lock’s
existence is to place the lock in a global variable, but
global locking has the disadvantage of limiting scalability.
One way of providing scalability that improves as the size
of the data structure increases is to place a lock in each
element of the structure. Unfortunately, putting the lock
that is to protect a data element in the data element itself is
subject to subtle race conditions, as shown in Listing 7.9.

Quick Quiz 7.28: What if the element we need to
delete is not the first element of the list on line 8 of List-
ing 7.9?

Quick Quiz 7.29: What race condition can occur in
Listing 7.9?

One way to fix this example is to use a hashed set of
global locks, so that each hash bucket has its own lock,
as shown in Listing 7.10. This approach allows acquiring
the proper lock (on line 9) before gaining a pointer to
the data element (on line 10). Although this approach

7.5. LOCKING: HERO OR VILLAIN? 111

works quite well for elements contained in a single par-
titionable data structure such as the hash table shown in
the listing, it can be problematic if a given data element
can be a member of multiple hash tables or given more-
complex data structures such as trees or graphs. Not only
can these problems be solved, but the solutions also form
the basis of lock-based software transactional memory
implementations [ST95, DSS06]. However, Chapter 9 de-
scribes simpler—and faster—ways of providing existence
guarantees.

7.5 Locking: Hero or Villain?

As is often the case in real life, locking can be either
hero or villain, depending on how it is used and on the
problem at hand. In my experience, those writing whole
applications are happy with locking, those writing parallel
libraries are less happy, and those parallelizing existing
sequential libraries are extremely unhappy. The following
sections discuss some reasons for these differences in
viewpoints.

7.5.1 Locking For Applications: Hero!

When writing an entire application (or entire kernel), de-
velopers have full control of the design, including the
synchronization design. Assuming that the design makes
good use of partitioning, as discussed in Chapter 6, lock-
ing can be an extremely effective synchronization mech-
anism, as demonstrated by the heavy use of locking in
production-quality parallel software.

Nevertheless, although such software usually bases
most of its synchronization design on locking, such soft-
ware also almost always makes use of other synchro-
nization mechanisms, including special counting algo-
rithms (Chapter 5), data ownership (Chapter 8), ref-
erence counting (Section 9.2), sequence locking (Sec-
tion 9.4), and read-copy update (Section 9.5). In addition,
practitioners use tools for deadlock detection [Cor06a],
lock acquisition/release balancing [Cor04b], cache-
miss analysis [The11], hardware-counter-based profil-
ing [EGMdB11, The12], and many more besides.

Given careful design, use of a good combination of
synchronization mechanisms, and good tooling, locking
works quite well for applications and kernels.

7.5.2 Locking For Parallel Libraries: Just
Another Tool

Unlike applications and kernels, the designer of a library
cannot know the locking design of the code that the library
will be interacting with. In fact, that code might not be
written for years to come. Library designers therefore
have less control and must exercise more care when laying
out their synchronization design.

Deadlock is of course of particular concern, and the
techniques discussed in Section 7.1.1 need to be applied.
One popular deadlock-avoidance strategy is therefore to
ensure that the library’s locks are independent subtrees of
the enclosing program’s locking hierarchy. However, this
can be harder than it looks.

One complication was discussed in Section 7.1.1.2,
namely when library functions call into application code,
with qsort()’s comparison-function argument being a
case in point. Another complication is the interaction
with signal handlers. If an application signal handler is
invoked from a signal received within the library function,
deadlock can ensue just as surely as if the library function
had called the signal handler directly. A final complica-
tion occurs for those library functions that can be used
between a fork()/exec() pair, for example, due to use
of the system() function. In this case, if your library
function was holding a lock at the time of the fork(),
then the child process will begin life with that lock held.
Because the thread that will release the lock is running in
the parent but not the child, if the child calls your library
function, deadlock will ensue.

The following strategies may be used to avoid deadlock
problems in these cases:

1. Don’t use either callbacks or signals.

2. Don’t acquire locks from within callbacks or signal
handlers.

3. Let the caller control synchronization.

4. Parameterize the library API to delegate locking to
caller.

5. Explicitly avoid callback deadlocks.

6. Explicitly avoid signal-handler deadlocks.

Each of these strategies is discussed in one of the fol-
lowing sections.

112 CHAPTER 7. LOCKING

7.5.2.1 Use Neither Callbacks Nor Signals

If a library function avoids callbacks and the application
as a whole avoids signals, then any locks acquired by that
library function will be leaves of the locking-hierarchy
tree. This arrangement avoids deadlock, as discussed in
Section 7.1.1.1. Although this strategy works extremely
well where it applies, there are some applications that
must use signal handlers, and there are some library func-
tions (such as the qsort() function discussed in Sec-
tion 7.1.1.2) that require callbacks.

The strategy described in the next section can often be
used in these cases.

7.5.2.2 Avoid Locking in Callbacks and Signal Han-
dlers

If neither callbacks nor signal handlers acquire locks, then
they cannot be involved in deadlock cycles, which allows
straightforward locking hierarchies to once again consider
library functions to be leaves on the locking-hierarchy tree.
This strategy works very well for most uses of qsort,
whose callbacks usually simply compare the two values
passed in to them. This strategy also works wonderfully
for many signal handlers, especially given that acquiring
locks from within signal handlers is generally frowned
upon [Gro01],9 but can fail if the application needs to
manipulate complex data structures from a signal handler.

Here are some ways to avoid acquiring locks in signal
handlers even if complex data structures must be manipu-
lated:

1. Use simple data structures based on non-blocking
synchronization, as will be discussed in Sec-
tion 14.2.1.

2. If the data structures are too complex for reasonable
use of non-blocking synchronization, create a queue
that allows non-blocking enqueue operations. In the
signal handler, instead of manipulating the complex
data structure, add an element to the queue describ-
ing the required change. A separate thread can then
remove elements from the queue and carry out the
required changes using normal locking. There are
a number of readily available implementations of
concurrent queues [KLP12, Des09b, MS96].

This strategy should be enforced with occasional man-
ual or (preferably) automated inspections of callbacks and

9 But the standard’s words do not stop clever coders from creating
their own home-brew locking primitives from atomic operations.

signal handlers. When carrying out these inspections, be
wary of clever coders who might have (unwisely) created
home-brew locks from atomic operations.

7.5.2.3 Caller Controls Synchronization

Let the caller control synchronization. This works ex-
tremely well when the library functions are operating on
independent caller-visible instances of a data structure,
each of which may be synchronized separately. For ex-
ample, if the library functions operate on a search tree,
and if the application needs a large number of indepen-
dent search trees, then the application can associate a lock
with each tree. The application then acquires and releases
locks as needed, so that the library need not be aware of
parallelism at all. Instead, the application controls the
parallelism, so that locking can work very well, as was
discussed in Section 7.5.1.

However, this strategy fails if the library implements
a data structure that requires internal concurrency, for
example, a hash table or a parallel sort. In this case, the
library absolutely must control its own synchronization.

7.5.2.4 Parameterize Library Synchronization

The idea here is to add arguments to the library’s API
to specify which locks to acquire, how to acquire and
release them, or both. This strategy allows the application
to take on the global task of avoiding deadlock by specify-
ing which locks to acquire (by passing in pointers to the
locks in question) and how to acquire them (by passing
in pointers to lock acquisition and release functions), but
also allows a given library function to control its own con-
currency by deciding where the locks should be acquired
and released.

In particular, this strategy allows the lock acquisition
and release functions to block signals as needed without
the library code needing to be concerned with which sig-
nals need to be blocked by which locks. The separation
of concerns used by this strategy can be quite effective,
but in some cases the strategies laid out in the following
sections can work better.

That said, passing explicit pointers to locks to external
APIs must be very carefully considered, as discussed
in Section 7.1.1.4. Although this practice is sometimes
the right thing to do, you should do yourself a favor by
looking into alternative designs first.

7.5. LOCKING: HERO OR VILLAIN? 113

7.5.2.5 Explicitly Avoid Callback Deadlocks

The basic rule behind this strategy was discussed in Sec-
tion 7.1.1.2: “Release all locks before invoking unknown
code.” This is usually the best approach because it allows
the application to ignore the library’s locking hierarchy:
the library remains a leaf or isolated subtree of the appli-
cation’s overall locking hierarchy.

In cases where it is not possible to release all locks
before invoking unknown code, the layered locking hier-
archies described in Section 7.1.1.3 can work well. For
example, if the unknown code is a signal handler, this
implies that the library function block signals across all
lock acquisitions, which can be complex and slow. There-
fore, in cases where signal handlers (probably unwisely)
acquire locks, the strategies in the next section may prove
helpful.

7.5.2.6 Explicitly Avoid Signal-Handler Deadlocks

Suppose that a given library function is known to acquire
locks, but does not block signals. Suppose further that it
is necessary to invoke that function both from within and
outside of a signal handler, and that it is not permissible
to modify this library function. Of course, if no special
action is taken, then if a signal arrives while that library
function is holding its lock, deadlock can occur when the
signal handler invokes that same library function, which
in turn attempts to re-acquire that same lock.

Such deadlocks can be avoided as follows:

1. If the application invokes the library function from
within a signal handler, then that signal must be
blocked every time that the library function is in-
voked from outside of a signal handler.

2. If the application invokes the library function while
holding a lock acquired within a given signal handler,
then that signal must be blocked every time that the
library function is called outside of a signal handler.

These rules can be enforced by using tools sim-
ilar to the Linux kernel’s lockdep lock dependency
checker [Cor06a]. One of the great strengths of lockdep
is that it is not fooled by human intuition [Ros11].

7.5.2.7 Library Functions Used Between fork()
and exec()

As noted earlier, if a thread executing a library function is
holding a lock at the time that some other thread invokes

fork(), the fact that the parent’s memory is copied to
create the child means that this lock will be born held in
the child’s context. The thread that will release this lock
is running in the parent, but not in the child, which means
that the child’s copy of this lock will never be released.
Therefore, any attempt on the part of the child to invoke
that same library function will result in deadlock.

One approach to this problem would be to have the
library function check to see if the owner of the lock
is still running, and if not, “breaking” the lock by re-
initializing and then acquiring it. However, this approach
has a couple of vulnerabilities:

1. The data structures protected by that lock are likely
to be in some intermediate state, so that naively
breaking the lock might result in arbitrary memory
corruption.

2. If the child creates additional threads, two threads
might break the lock concurrently, with the result
that both threads believe they own the lock. This
could again result in arbitrary memory corruption.

The atfork() function is provided to help deal with
these situations. The idea is to register a triplet of func-
tions, one to be called by the parent before the fork(),
one to be called by the parent after the fork(), and one
to be called by the child after the fork(). Appropriate
cleanups can then be carried out at these three points.

Be warned, however, that coding of atfork() handlers
is quite subtle in general. The cases where atfork()
works best are cases where the data structure in question
can simply be re-initialized by the child.

7.5.2.8 Parallel Libraries: Discussion

Regardless of the strategy used, the description of the
library’s API must include a clear description of that strat-
egy and how the caller should interact with that strategy.
In short, constructing parallel libraries using locking is
possible, but not as easy as constructing a parallel appli-
cation.

7.5.3 Locking For Parallelizing Sequential
Libraries: Villain!

With the advent of readily available low-cost multicore
systems, a common task is parallelizing an existing library
that was designed with only single-threaded use in mind.
This all-too-common disregard for parallelism can result

114 CHAPTER 7. LOCKING

in a library API that is severely flawed from a parallel-
programming viewpoint. Candidate flaws include:

1. Implicit prohibition of partitioning.

2. Callback functions requiring locking.

3. Object-oriented spaghetti code.

These flaws and the consequences for locking are dis-
cussed in the following sections.

7.5.3.1 Partitioning Prohibited

Suppose that you were writing a single-threaded hash-
table implementation. It is easy and fast to maintain an
exact count of the total number of items in the hash table,
and also easy and fast to return this exact count on each
addition and deletion operation. So why not?

One reason is that exact counters do not perform or
scale well on multicore systems, as was seen in Chapter 5.
As a result, the parallelized implementation of the hash
table will not perform or scale well.

So what can be done about this? One approach is to
return an approximate count, using one of the algorithms
from Chapter 5. Another approach is to drop the element
count altogether.

Either way, it will be necessary to inspect uses of the
hash table to see why the addition and deletion operations
need the exact count. Here are a few possibilities:

1. Determining when to resize the hash table. In this
case, an approximate count should work quite well.
It might also be useful to trigger the resizing opera-
tion from the length of the longest chain, which can
be computed and maintained in a nicely partitioned
per-chain manner.

2. Producing an estimate of the time required to tra-
verse the entire hash table. An approximate count
works well in this case, also.

3. For diagnostic purposes, for example, to check for
items being lost when transferring them to and from
the hash table. This clearly requires an exact count.
However, given that this usage is diagnostic in na-
ture, it might suffice to maintain the lengths of the
hash chains, then to infrequently sum them up while
locking out addition and deletion operations.

It turns out that there is now a strong theoretical ba-
sis for some of the constraints that performance and

scalability place on a parallel library’s APIs [AGH+11a,
AGH+11b, McK11b]. Anyone designing a parallel library
needs to pay close attention to those constraints.

Although it is all too easy to blame locking for what
are really problems due to a concurrency-unfriendly API,
doing so is not helpful. On the other hand, one has little
choice but to sympathize with the hapless developer who
made this choice in (say) 1985. It would have been a
rare and courageous developer to anticipate the need for
parallelism at that time, and it would have required an
even more rare combination of brilliance and luck to
actually arrive at a good parallel-friendly API.

Times change, and code must change with them. That
said, there might be a huge number of users of a popular
library, in which case an incompatible change to the API
would be quite foolish. Adding a parallel-friendly API
to complement the existing heavily used sequential-only
API is probably the best course of action in this situation.

Nevertheless, human nature being what it is, we can ex-
pect our hapless developer to be more likely to complain
about locking than about his or her own poor (though
understandable) API design choices.

7.5.3.2 Deadlock-Prone Callbacks

Sections 7.1.1.2, 7.1.1.3, and 7.5.2 described how undisci-
plined use of callbacks can result in locking woes. These
sections also described how to design your library func-
tion to avoid these problems, but it is unrealistic to expect
a 1990s programmer with no experience in parallel pro-
gramming to have followed such a design. Therefore,
someone attempting to parallelize an existing callback-
heavy single-threaded library will likely have many op-
portunities to curse locking’s villainy.

If there are a very large number of uses of a callback-
heavy library, it may be wise to again add a parallel-
friendly API to the library in order to allow existing
users to convert their code incrementally. Alternatively,
some advocate use of transactional memory in these cases.
While the jury is still out on transactional memory, Sec-
tion 17.2 discusses its strengths and weaknesses. It is
important to note that hardware transactional memory
(discussed in Section 17.3) cannot help here unless the
hardware transactional memory implementation provides
forward-progress guarantees, which few do. Other alter-
natives that appear to be quite practical (if less heavily
hyped) include the methods discussed in Sections 7.1.1.5,
and 7.1.1.6, as well as those that will be discussed in
Chapters 8 and 9.

7.6. SUMMARY 115

7.5.3.3 Object-Oriented Spaghetti Code

Object-oriented programming went mainstream sometime
in the 1980s or 1990s, and as a result there is a huge
amount of object-oriented code in production, much of
it single-threaded. Although object orientation can be a
valuable software technique, undisciplined use of objects
can easily result in object-oriented spaghetti code. In
object-oriented spaghetti code, control flits from object
to object in an essentially random manner, making the
code hard to understand and even harder, and perhaps
impossible, to accommodate a locking hierarchy.

Although many might argue that such code should be
cleaned up in any case, such things are much easier to
say than to do. If you are tasked with parallelizing such
a beast, you can reduce the number of opportunities to
curse locking by using the techniques described in Sec-
tions 7.1.1.5, and 7.1.1.6, as well as those that will be
discussed in Chapters 8 and 9. This situation appears to
be the use case that inspired transactional memory, so it
might be worth a try as well. That said, the choice of
synchronization mechanism should be made in light of
the hardware habits discussed in Chapter 3. After all,
if the overhead of the synchronization mechanism is or-
ders of magnitude more than that of the operations being
protected, the results are not going to be pretty.

And that leads to a question well worth asking in these
situations: Should the code remain sequential? For ex-
ample, perhaps parallelism should be introduced at the
process level rather than the thread level. In general, if a
task is proving extremely hard, it is worth some time spent
thinking about not only alternative ways to accomplish
that particular task, but also alternative tasks that might
better solve the problem at hand.

7.6 Summary
Locking is perhaps the most widely used and most gen-
erally useful synchronization tool. However, it works
best when designed into an application or library from
the beginning. Given the large quantity of pre-existing
single-threaded code that might need to one day run in
parallel, locking should therefore not be the only tool in
your parallel-programming toolbox. The next few chap-
ters will discuss other tools, and how they can best be
used in concert with locking and with each other.

116 CHAPTER 7. LOCKING

It is mine, I tell you. My own. My precious. Yes, my
precious.

Gollum in “The Fellowship of the Ring”,
J.R.R. TolkienChapter 8

Data Ownership

One of the simplest ways to avoid the synchronization
overhead that comes with locking is to parcel the data
out among the threads (or, in the case of kernels, CPUs)
so that a given piece of data is accessed and modified
by only one of the threads. Interestingly enough, data
ownership covers each of the “big three” parallel design
techniques: It partitions over threads (or CPUs, as the case
may be), it batches all local operations, and its elimination
of synchronization operations is weakening carried to its
logical extreme. It should therefore be no surprise that
data ownership is used extremely heavily, in fact, it is one
usage pattern that even novices use almost instinctively.
In fact, it is used so heavily that this chapter will not
introduce any new examples, but will instead reference
examples from previous chapters.

Quick Quiz 8.1: What form of data ownership is ex-
tremely difficult to avoid when creating shared-memory
parallel programs (for example, using pthreads) in C or
C++?

There are a number of approaches to data ownership.
Section 8.1 presents the logical extreme in data ownership,
where each thread has its own private address space. Sec-
tion 8.2 looks at the opposite extreme, where the data is
shared, but different threads own different access rights to
the data. Section 8.3 describes function shipping, which is
a way of allowing other threads to have indirect access to
data owned by a particular thread. Section 8.4 describes
how designated threads can be assigned ownership of
a specified function and the related data. Section 8.5
discusses improving performance by transforming algo-
rithms with shared data to instead use data ownership.
Finally, Section 8.6 lists a few software environments that
feature data ownership as a first-class citizen.

8.1 Multiple Processes

A man’s home is his castle

Ancient Laws of England

Section 4.1 introduced the following example:

1 compute_it 1 > compute_it.1.out &
2 compute_it 2 > compute_it.2.out &
3 wait
4 cat compute_it.1.out
5 cat compute_it.2.out

This example runs two instances of the compute_it
program in parallel, as separate processes that do not share
memory. Therefore, all data in a given process is owned
by that process, so that almost the entirety of data in the
above example is owned. This approach almost entirely
eliminates synchronization overhead. The resulting com-
bination of extreme simplicity and optimal performance
is obviously quite attractive.

Quick Quiz 8.2: What synchronization remains in the
example shown in Section 8.1?

Quick Quiz 8.3: Is there any shared data in the exam-
ple shown in Section 8.1?

This same pattern can be written in C as well as in sh,
as illustrated by Listings 4.1 and 4.2.

It bears repeating that these trivial forms of parallelism
are not in any way cheating or ducking responsibility, but
are rather simple and elegant ways to make your code
run faster. It is fast, scales well, is easy to program, easy
to maintain, and gets the job done. In addition, taking
this approach (where applicable) allows the developer
more time to focus on other things whether these things
might involve applying sophisticated single-threaded op-
timizations to compute_it on the one hand, or applying
sophisticated parallel-programming patterns to portions

117

118 CHAPTER 8. DATA OWNERSHIP

of the code where this approach is inapplicable. What is
not to like?

The next section discusses use of data ownership in
shared-memory parallel programs.

8.2 Partial Data Ownership and
pthreads

Give thy mind more to what thou hast than to what
thou hast not.

Marcus Aurelius Antoninus

Chapter 5 makes heavy use of data ownership, but adds a
twist. Threads are not allowed to modify data owned by
other threads, but they are permitted to read it. In short,
the use of shared memory allows more nuanced notions
of ownership and access rights.

For example, consider the per-thread statistical counter
implementation shown in Listing 5.5 on page 50. Here,
inc_count() updates only the corresponding thread’s
instance of counter, while read_count() accesses, but
does not modify, all threads’ instances of counter.

Quick Quiz 8.4: Does it ever make sense to have
partial data ownership where each thread reads only its
own instance of a per-thread variable, but writes to other
threads’ instances?

Pure data ownership is also both common and use-
ful, for example, the per-thread memory-allocator caches
discussed in Section 6.4.3 starting on page 86. In this
algorithm, each thread’s cache is completely private to
that thread.

8.3 Function Shipping

If the mountain will not come to Muhammad, then
Muhammad must go to the mountain.

Essays, Francis Bacon

The previous section described a weak form of data own-
ership where threads reached out to other threads’ data.
This can be thought of as bringing the data to the func-
tions that need it. An alternative approach is to send the
functions to the data.

Such an approach is illustrated in Section 5.4.3 be-
ginning on page 59, in particular the flush_local_
count_sig() and flush_local_count() functions in
Listing 5.17 on page 61.

The flush_local_count_sig() function is a signal
handler that acts as the shipped function. The pthread_
kill() function in flush_local_count() sends the
signal—shipping the function—and then waits until the
shipped function executes. This shipped function has the
not-unusual added complication of needing to interact
with any concurrently executing add_count() or sub_
count() functions (see Listing 5.18 on page 62 and List-
ing 5.19 on page 62).

Quick Quiz 8.5: What mechanisms other than POSIX
signals may be used for function shipping?

8.4 Designated Thread

Let a man practice the profession which he best
knows.

Cicero

The earlier sections describe ways of allowing each thread
to keep its own copy or its own portion of the data. In con-
trast, this section describes a functional-decomposition
approach, where a special designated thread owns the
rights to the data that is required to do its job. The eventu-
ally consistent counter implementation described in Sec-
tion 5.2.3 provides an example. This implementation has
a designated thread that runs the eventual() function
shown on lines 15-32 of Listing 5.4. This eventual()
thread periodically pulls the per-thread counts into the
global counter, so that accesses to the global counter will,
as the name says, eventually converge on the actual value.

Quick Quiz 8.6: But none of the data in the
eventual() function shown on lines 15-32 of Listing 5.4
is actually owned by the eventual() thread! In just what
way is this data ownership???

8.5 Privatization

There is, of course, a difference between what a man
seizes and what he really possesses.

Pearl S. Buck

One way of improving the performance and scalability of
a shared-memory parallel program is to transform it so as
to convert shared data to private data that is owned by a
particular thread.

An excellent example of this is shown in the answer
to one of the Quick Quizzes in Section 6.1.1, which uses

8.6. OTHER USES OF DATA OWNERSHIP 119

privatization to produce a solution to the Dining Philoso-
phers problem with much better performance and scal-
ability than that of the standard textbook solution. The
original problem has five philosophers sitting around the
table with one fork between each adjacent pair of philoso-
phers, which permits at most two philosophers to eat
concurrently.

We can trivially privatize this problem by providing an
additional five forks, so that each philosopher has his or
her own private pair of forks. This allows all five philoso-
phers to eat concurrently, and also offers a considerable
reduction in the spread of certain types of disease.

In other cases, privatization imposes costs. For exam-
ple, consider the simple limit counter shown in Listing 5.7
on page 53. This is an example of an algorithm where
threads can read each others’ data, but are only permitted
to update their own data. A quick review of the algorithm
shows that the only cross-thread accesses are in the sum-
mation loop in read_count(). If this loop is eliminated,
we move to the more-efficient pure data ownership, but at
the cost of a less-accurate result from read_count().

Quick Quiz 8.7: Is it possible to obtain greater accu-
racy while still maintaining full privacy of the per-thread
data?

In short, privatization is a powerful tool in the parallel
programmer’s toolbox, but it must nevertheless be used
with care. Just like every other synchronization prim-
itive, it has the potential to increase complexity while
decreasing performance and scalability.

8.6 Other Uses of Data Ownership

Everything comes to us that belongs to us if we
create the capacity to receive it.

Rabindranath Tagore

Data ownership works best when the data can be parti-
tioned so that there is little or no need for cross thread
access or update. Fortunately, this situation is reasonably
common, and in a wide variety of parallel-programming
environments.

Examples of data ownership include:

1. All message-passing environments, such as
MPI [MPI08] and BOINC [Uni08a].

2. Map-reduce [Jac08].

3. Client-server systems, including RPC, web services,
and pretty much any system with a back-end data-
base server.

4. Shared-nothing database systems.

5. Fork-join systems with separate per-process address
spaces.

6. Process-based parallelism, such as the Erlang lan-
guage.

7. Private variables, for example, C-language on-stack
auto variables, in threaded environments.

8. Many parallel linear-algebra algorithms, especially
those well-suited for GPGPUs.1

9. Operating-system kernels adapted for networking,
where each connection (also called flow [DKS89,
Zha89, McK90a]) is assigned to a specific thread.
One recent example of this approach is the IX oper-
ating system [BPP+16]. IX does have some shared
data structures, which use synchronization mecha-
nisms to be described in Section 9.5.

Data ownership is perhaps the most underappreciated
synchronization mechanism in existence. When used
properly, it delivers unrivaled simplicity, performance,
and scalability. Perhaps its simplicity costs it the respect
that it deserves. Hopefully a greater appreciation for the
subtlety and power of data ownership will lead to greater
level of respect, to say nothing of leading to greater perfor-
mance and scalability coupled with reduced complexity.

1 But note that a great many other classes of applications have also
been ported to GPGPUs [Mat13, AMD17, NVi17a, NVi17b].

120 CHAPTER 8. DATA OWNERSHIP

All things come to those who wait.

Violet FaneChapter 9

Deferred Processing

The strategy of deferring work goes back before the dawn
of recorded history. It has occasionally been derided as
procrastination or even as sheer laziness. However, in
the last few decades workers have recognized this strat-
egy’s value in simplifying and streamlining parallel algo-
rithms [KL80, Mas92]. Believe it or not, “laziness” in
parallel programming often outperforms and out-scales in-
dustriousness! These performance and scalability benefits
stem from the fact that deferring work often enables weak-
ening of synchronization primitives, thereby reducing
synchronization overhead. General approaches of work
deferral include reference counting (Section 9.2), haz-
ard pointers (Section 9.3), sequence locking (Section 9.4),
and RCU (Section 9.5). Finally, Section 9.6 describes how
to choose among the work-deferral schemes covered in
this chapter and Section 9.7 discusses the role of updates.
But first we will introduce an example algorithm that will
be used to compare and contrast these approaches.

9.1 Running Example

An ounce of application is worth a ton of abstraction.

Booker T. Washington

This chapter will use a simplified packet-routing algo-
rithm to demonstrate the value of these approaches and
to allow them to be compared. Routing algorithms are
used in operating-system kernels to deliver each outgo-
ing TCP/IP packets to the appropriate network interface.
This particular algorithm is a simplified version of the
classic 1980s packet-train-optimized algorithm used in
BSD UNIX [Jac88], consisting of a simple linked list.1

1 In other words, this is not OpenBSD, NetBSD, or even FreeBSD,
but none other than Pre-BSD.

route_list

->addr=42

->iface=1

->addr=56

->iface=3

->addr=17

->iface=7

Figure 9.1: Pre-BSD Packet Routing List

Modern routing algorithms use more complex data struc-
tures, however, as in Chapter 5, a simple algorithm will
help highlight issues specific to parallelism in an easy-to-
understand setting.

We further simplify the algorithm by reducing the
search key from a quadruple consisting of source and
destination IP addresses and ports all the way down to a
simple integer. The value looked up and returned will also
be a simple integer, so that the data structure is as shown
in Figure 9.1, which directs packets with address 42 to
interface 1, address 56 to interface 3, and address 17 to
interface 7. Assuming that external packet network is
stable, this list will be searched frequently and updated
rarely. In Chapter 3 we learned that the best ways to evade
inconvenient laws of physics, such as the finite speed of
light and the atomic nature of matter, is to either partition
the data or to rely on read-mostly sharing. In this chapter,
we will use this Pre-BSD packet routing list to evaluate a
number of read-mostly synchronization techniques.

Listing 9.1 (route_seq.c) shows a simple single-
threaded implementation corresponding to Figure 9.1.
Lines 1-5 define a route_entry structure and line 6 de-
fines the route_list header. Lines 8-20 define route_
lookup(), which sequentially searches route_list, re-

121

122 CHAPTER 9. DEFERRED PROCESSING

Listing 9.1: Sequential Pre-BSD Routing Table
1 struct route_entry {
2 struct cds_list_head re_next;
3 unsigned long addr;
4 unsigned long iface;
5 };
6 CDS_LIST_HEAD(route_list);
7

8 unsigned long route_lookup(unsigned long addr)
9 {

10 struct route_entry *rep;
11 unsigned long ret;
12

13 cds_list_for_each_entry(rep, &route_list, re_next) {
14 if (rep->addr == addr) {
15 ret = rep->iface;
16 return ret;
17 }
18 }
19 return ULONG_MAX;
20 }
21

22 int route_add(unsigned long addr, unsigned long interface)
23 {
24 struct route_entry *rep;
25

26 rep = malloc(sizeof(*rep));
27 if (!rep)
28 return -ENOMEM;
29 rep->addr = addr;
30 rep->iface = interface;
31 cds_list_add(&rep->re_next, &route_list);
32 return 0;
33 }
34

35 int route_del(unsigned long addr)
36 {
37 struct route_entry *rep;
38

39 cds_list_for_each_entry(rep, &route_list, re_next) {
40 if (rep->addr == addr) {
41 cds_list_del(&rep->re_next);
42 free(rep);
43 return 0;
44 }
45 }
46 return -ENOENT;
47 }

turning the corresponding ->iface, or ULONG_MAX if
there is no such route entry. Lines 22-33 define route_
add(), which allocates a route_entry structure, initial-
izes it, and adds it to the list, returning -ENOMEM in case
of memory-allocation failure. Finally, lines 35-47 define
route_del(), which removes and frees the specified
route_entry structure if it exists, or returns -ENOENT
otherwise.

This single-threaded implementation serves as a proto-
type for the various concurrent implementations in this
chapter, and also as an estimate of ideal scalability and
performance.

Listing 9.2: Reference-Counted Pre-BSD Routing Table
Lookup (BUGGY!!!)

1 struct route_entry {
2 atomic_t re_refcnt;
3 struct route_entry *re_next;
4 unsigned long addr;
5 unsigned long iface;
6 int re_freed;
7 };
8 struct route_entry route_list;
9 DEFINE_SPINLOCK(routelock);

10

11 static void re_free(struct route_entry *rep)
12 {
13 WRITE_ONCE(rep->re_freed, 1);
14 free(rep);
15 }
16

17 unsigned long route_lookup(unsigned long addr)
18 {
19 int old;
20 int new;
21 struct route_entry *rep;
22 struct route_entry **repp;
23 unsigned long ret;
24

25 retry:
26 repp = &route_list.re_next;
27 rep = NULL;
28 do {
29 if (rep && atomic_dec_and_test(&rep->re_refcnt))
30 re_free(rep);
31 rep = READ_ONCE(*repp);
32 if (rep == NULL)
33 return ULONG_MAX;
34 do {
35 if (READ_ONCE(rep->re_freed))
36 abort();
37 old = atomic_read(&rep->re_refcnt);
38 if (old <= 0)
39 goto retry;
40 new = old + 1;
41 } while (atomic_cmpxchg(&rep->re_refcnt,
42 old, new) != old);
43 repp = &rep->re_next;
44 } while (rep->addr != addr);
45 ret = rep->iface;
46 if (atomic_dec_and_test(&rep->re_refcnt))
47 re_free(rep);
48 return ret;
49 }

9.2 Reference Counting

I am never letting you go!

Unknown

Reference counting tracks the number of references to
a given object in order to prevent that object from be-
ing prematurely freed. As such, it has a long and hon-
orable history of use dating back to at least the early
1960s [Wei63].2 Reference counting is thus an excellent

2 Weizenbaum discusses reference counting as if it was already
well-known, so it likely dates back to the 1950s and perhaps even to the

9.2. REFERENCE COUNTING 123

Listing 9.3: Reference-Counted Pre-BSD Routing Table Ad-
d/Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4

5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 atomic_set(&rep->re_refcnt, 1);
9 rep->addr = addr;

10 rep->iface = interface;
11 spin_lock(&routelock);
12 rep->re_next = route_list.re_next;
13 rep->re_freed = 0;
14 route_list.re_next = rep;
15 spin_unlock(&routelock);
16 return 0;
17 }
18

19 int route_del(unsigned long addr)
20 {
21 struct route_entry *rep;
22 struct route_entry **repp;
23

24 spin_lock(&routelock);
25 repp = &route_list.re_next;
26 for (;;) {
27 rep = *repp;
28 if (rep == NULL)
29 break;
30 if (rep->addr == addr) {
31 *repp = rep->re_next;
32 spin_unlock(&routelock);
33 if (atomic_dec_and_test(&rep->re_refcnt))
34 re_free(rep);
35 return 0;
36 }
37 repp = &rep->re_next;
38 }
39 spin_unlock(&routelock);
40 return -ENOENT;
41 }

candidate for a concurrent implementation of Pre-BSD
routing.

To that end, Listing 9.2 shows data structures and
the route_lookup() function and Listing 9.3 shows
the route_add() and route_del() functions (all at
route_refcnt.c). Since these algorithms are quite sim-
ilar to the sequential algorithm shown in Listing 9.1, only
the differences will be discussed.

Starting with Listing 9.2, line 2 adds the actual refer-
ence counter, line 6 adds a ->re_freed use-after-free
check field, line 9 adds the routelock that will be used
to synchronize concurrent updates, and lines 11-15 add
re_free(), which sets ->re_freed, enabling route_
lookup() to check for use-after-free bugs. In route_

1940s. And perhaps even further. People repairing and maintaining large
dangerous machines have long used a mechanical reference-counting
technique implemented via padlocks. Before entering the machine, each
worker locks a padlock onto the machine’s on/off switch, thus preventing
the machine from being powered on while that worker is inside.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

ideal

refcnt

Figure 9.2: Pre-BSD Routing Table Protected by Refer-
ence Counting

lookup() itself, lines 29-30 release the reference count
of the prior element and free it if the count becomes zero,
and lines 34-42 acquire a reference on the new element,
with lines 35 and 36 performing the use-after-free check.

Quick Quiz 9.1: Why bother with a use-after-free
check?

In Listing 9.3, lines 11, 15, 24, 32, and 39 introduce
locking to synchronize concurrent updates. Line 13 ini-
tializes the ->re_freed use-after-free-check field, and
finally lines 33-34 invoke re_free() if the new value of
the reference count is zero.

Quick Quiz 9.2: Why doesn’t route_del() in List-
ing 9.3 use reference counts to protect the traversal to the
element to be freed?

Figure 9.2 shows the performance and scalability of
reference counting on a read-only workload with a ten-
element list running on a single-socket four-core hyper-
threaded 2.5 GHz x86 system. The “ideal” trace was gen-
erated by running the sequential code shown in Listing 9.1,
which works only because this is a read-only workload.
The reference-counting performance is abysmal and its
scalability even more so, with the “refcnt” trace drop-
ping down onto the x-axis. This should be no surprise
in view of Chapter 3: The reference-count acquisitions
and releases have added frequent shared-memory writes
to an otherwise read-only workload, thus incurring severe
retribution from the laws of physics. As well it should,
given that all the wishful thinking in the world is not go-
ing to increase the speed of light or decrease the size of

124 CHAPTER 9. DEFERRED PROCESSING

the atoms used in modern digital electronics.
Quick Quiz 9.3: Why the stairsteps in the “ideal” line

in Figure 9.2? Shouldn’t it be a straight line?
Quick Quiz 9.4: Why, in these modern times, does

Figure 9.2 only go up to 8 CPUs???
But it gets worse.
Running multiple updater threads repeatedly invoking

route_add() and route_del() will quickly encounter
the abort() statement on line 36 of Listing 9.2, which
indicates a use-after-free bug. This in turn means that
the reference counts are not only profoundly degrading
scalability and performance, but also failing to provide
the needed protection.

One sequence of events leading to the use-after-free
bug is as follows, given the list shown in Figure 9.1:

1. Thread A looks up address 42, reaching line 32 of
route_lookup() in Listing 9.2. In other words,
Thread A has a pointer to the first element, but has
not yet acquired a reference to it.

2. Thread B invokes route_del() in Listing 9.3 to
delete the route entry for address 42. It completes
successfully, and because this entry’s ->re_refcnt
field was equal to the value one, it invokes re_
free() to set the ->re_freed field and to free the
entry.

3. Thread A continues execution of route_lookup().
Its rep pointer is non-NULL, but line 35 sees that its
->re_freed field is non-zero, so line 36 invokes
abort().

The problem is that the reference count is located in
the object to be protected, but that means that there is
no protection during the instant in time when the refer-
ence count itself is being acquired! This is the reference-
counting counterpart of a locking issue noted by Gamsa
et al. [GKAS99]. One could imagine using a global
lock or reference count to protect the per-route-entry
reference-count acquisition, but this would result in se-
vere contention issues. Although algorithms exist that
allow safe reference-count acquisition in a concurrent
environment [Val95], they are not only extremely com-
plex and error-prone [MS95], but also provide terrible
performance and scalability [HMBW07].

In short, concurrency has most definitely reduced the
usefulness of reference counting!

Quick Quiz 9.5: If concurrency has “most definitely
reduced the usefulness of reference counting”, why are
there so many reference counters in the Linux kernel?

Listing 9.4: Hazard-Pointer Storage and Erasure
1 int hp_store(void **p, void **hp)
2 {
3 void *tmp;
4

5 tmp = READ_ONCE(*p);
6 WRITE_ONCE(*hp, tmp);
7 smp_mb();
8 if (tmp != READ_ONCE(*p) || tmp == HAZPTR_POISON) {
9 WRITE_ONCE(*hp, NULL);

10 return 0;
11 }
12 return 1;
13 }
14

15 void hp_erase(void **hp)
16 {
17 smp_mb();
18 WRITE_ONCE(*hp, NULL);
19 hp_free(hp);
20 }

That said, sometimes it is necessary to look at a prob-
lem in an entirely different way in order to successfully
solve it. The next section describes what could be thought
of as an inside-out reference count that provides decent
performance and scalability.

9.3 Hazard Pointers

If in doubt, turn it inside out.

Zara Carpenter

One way of avoiding problems with concurrent reference
counting is to implement the reference counters inside out,
that is, rather than incrementing an integer stored in the
data element, instead store a pointer to that data element
in per-CPU (or per-thread) lists. Each element of these
lists is called a hazard pointer [Mic04].3 The value of a
given data element’s “virtual reference counter” can then
be obtained by counting the number of hazard pointers
referencing that element. Therefore, if that element has
been rendered inaccessible to readers, and there are no
longer any hazard pointers referencing it, that element
may safely be freed.

Of course, this means that hazard-pointer acquisition
must be carried out quite carefully in order to avoid de-
structive races with concurrent deletion. One implemen-
tation is shown in Listing 9.4, which shows hp_store()
on lines 1-13 and hp_erase() on lines 15-20. The smp_
mb() primitive will be described in detail in Chapter 15,
but may be ignored for the purposes of this brief overview.

3 Also independently invented by others [HLM02].

9.3. HAZARD POINTERS 125

The hp_store() function records a hazard pointer
at hp for the data element whose pointer is referenced
by p, while checking for concurrent modifications. If a
concurrent modification occurred, hp_store() refuses
to record a hazard pointer, and returns zero to indicate
that the caller must restart its traversal from the begin-
ning. Otherwise, hp_store() returns one to indicate
that it successfully recorded a hazard pointer for the data
element.

Quick Quiz 9.6: Why does hp_store() in Listing 9.4
take a double indirection to the data element? Why not
void * instead of void **?

Quick Quiz 9.7: Why does hp_store()’s caller need
to restart its traversal from the beginning in case of fail-
ure? Isn’t that inefficient for large data structures?

Quick Quiz 9.8: Given that papers on hazard point-
ers use the bottom bits of each pointer to mark deleted
elements, what is up with HAZPTR_POISON?

Because algorithms using hazard pointers might be
restarted at any step of their traversal through the data
structure, such algorithms must typically take care to
avoid making any changes to the data structure until after
they have acquired all relevant hazard pointers.

Quick Quiz 9.9: But don’t these restrictions on hazard
pointers also apply to other forms of reference counting?

These restrictions result in great benefits to readers,
courtesy of the fact that the hazard pointers are stored
local to each CPU or thread, which in turn allows traver-
sals of the data structures themselves to be carried out in
a completely read-only fashion. Referring back to Fig-
ure 5.8 on page 66, hazard pointers enable the CPU caches
to do resource replication, which in turn allows weakening
of the parallel-access-control mechanism, thus boosting
performance and scalability. Performance comparisons
with other mechanisms may be found in Chapter 10 and
in other publications [HMBW07, McK13, Mic04].

The Pre-BSD routing example can use hazard pointers
as shown in Listing 9.5 for data structures and route_
lookup(), and in Listing 9.6 for route_add() and
route_del() (route_hazptr.c). As with reference
counting, the hazard-pointers implementation is quite sim-
ilar to the sequential algorithm shown in Listing 9.1 on
page 122, so only differences will be discussed.

Starting with Listing 9.5, line 2 shows the ->hh field
used to queue objects pending hazard-pointer free, line 6
shows the ->re_freed field used to detect use-after-free
bugs, and lines 24-30 attempt to acquire a hazard pointer,
branching to line 18’s retry label on failure.

Listing 9.5: Hazard-Pointer Pre-BSD Routing Table Lookup
1 struct route_entry {
2 struct hazptr_head hh;
3 struct route_entry *re_next;
4 unsigned long addr;
5 unsigned long iface;
6 int re_freed;
7 };
8 struct route_entry route_list;
9 DEFINE_SPINLOCK(routelock);

10 hazard_pointer __thread *my_hazptr;
11

12 unsigned long route_lookup(unsigned long addr)
13 {
14 int offset = 0;
15 struct route_entry *rep;
16 struct route_entry **repp;
17

18 retry:
19 repp = &route_list.re_next;
20 do {
21 rep = READ_ONCE(*repp);
22 if (rep == NULL)
23 return ULONG_MAX;
24 if (rep == (struct route_entry *)HAZPTR_POISON)
25 goto retry; /* element deleted. */
26 my_hazptroffset.p = &rep->hh;
27 offset = !offset;
28 smp_mb(); /* Force pointer loads in order. */
29 if (READ_ONCE(*repp) != rep)
30 goto retry;
31 repp = &rep->re_next;
32 } while (rep->addr != addr);
33 if (READ_ONCE(rep->re_freed))
34 abort();
35 return rep->iface;
36 }

In Listing 9.6, line 10 initializes ->re_freed, line 31
poisons the ->re_next field of the newly removed object,
and line 33 passes that object to the hazard pointers’s
hazptr_free_later() function, which will free that
object once it is safe to do so. The spinlocks work the
same as in Listing 9.3.

Figure 9.3 shows the hazard-pointers-protected Pre-
BSD routing algorithm’s performance on the same read-
only workload as for Figure 9.2. Although hazard pointers
scales much better than does reference counting, hazard
pointers still require readers to do writes to shared mem-
ory (albeit with much improved locality of reference),
and also require a full memory barrier and retry check
for each object traversed. Therefore, hazard pointers’s
performance is far short of ideal. On the other hand, haz-
ard pointers do operate correctly for workloads involving
concurrent updates.

Quick Quiz 9.10: The paper “Structured Deferral:
Synchronization via Procrastination” [McK13] shows that
hazard pointers have near-ideal performance. Whatever
happened in Figure 9.3???

126 CHAPTER 9. DEFERRED PROCESSING

Listing 9.6: Hazard-Pointer Pre-BSD Routing Table Ad-
d/Delete

1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4

5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 rep->addr = addr;
9 rep->iface = interface;

10 rep->re_freed = 0;
11 spin_lock(&routelock);
12 rep->re_next = route_list.re_next;
13 route_list.re_next = rep;
14 spin_unlock(&routelock);
15 return 0;
16 }
17

18 int route_del(unsigned long addr)
19 {
20 struct route_entry *rep;
21 struct route_entry **repp;
22

23 spin_lock(&routelock);
24 repp = &route_list.re_next;
25 for (;;) {
26 rep = *repp;
27 if (rep == NULL)
28 break;
29 if (rep->addr == addr) {
30 *repp = rep->re_next;
31 rep->re_next = (struct route_entry *)HAZPTR_POISON;
32 spin_unlock(&routelock);
33 hazptr_free_later(&rep->hh);
34 return 0;
35 }
36 repp = &rep->re_next;
37 }
38 spin_unlock(&routelock);
39 return -ENOENT;
40 }

The next section attempts to improve on hazard point-
ers by using sequence locks, which avoid both read-side
writes and per-object memory barriers.

9.4 Sequence Locks

It’ll be just like starting over.

John Lennon

Sequence locks are used in the Linux kernel for read-
mostly data that must be seen in a consistent state by
readers. However, unlike reader-writer locking, readers
do not exclude writers. Instead, like hazard pointers,
sequence locks force readers to retry an operation if they
detect activity from a concurrent writer. As can be seen
from Figure 9.4, it is important to design code using

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

ideal

refcnthazptr

Figure 9.3: Pre-BSD Routing Table Protected by Hazard
Pointers

Ah, I finally got

done reading!

No, you didn't!

Start over!

Figure 9.4: Reader And Uncooperative Sequence Lock

sequence locks so that readers very rarely need to retry.
Quick Quiz 9.11: Why isn’t this sequence-lock dis-

cussion in Chapter 7, you know, the one on locking?
The key component of sequence locking is the sequence

number, which has an even value in the absence of up-
daters and an odd value if there is an update in progress.
Readers can then snapshot the value before and after
each access. If either snapshot has an odd value, or if
the two snapshots differ, there has been a concurrent

Listing 9.7: Sequence-Locking Reader
1 do {
2 seq = read_seqbegin(&test_seqlock);
3 /* read-side access. */
4 } while (read_seqretry(&test_seqlock, seq));

9.4. SEQUENCE LOCKS 127

update, and the reader must discard the results of the
access and then retry it. Readers therefore use the read_
seqbegin() and read_seqretry() functions shown in
Listing 9.7 when accessing data protected by a sequence
lock. Writers must increment the value before and af-
ter each update, and only one writer is permitted at a
given time. Writers therefore use the write_seqlock()
and write_sequnlock() functions shown in Listing 9.8
when updating data protected by a sequence lock.

As a result, sequence-lock-protected data can have an
arbitrarily large number of concurrent readers, but only
one writer at a time. Sequence locking is used in the
Linux kernel to protect calibration quantities used for
timekeeping. It is also used in pathname traversal to
detect concurrent rename operations.

A simple implementation of sequence locks is shown
in Listing 9.9 (seqlock.h). The seqlock_t data struc-
ture is shown on lines 1-4, and contains the sequence
number along with a lock to serialize writers. Lines 6-10
show seqlock_init(), which, as the name indicates,
initializes a seqlock_t.

Lines 12-19 show read_seqbegin(), which begins
a sequence-lock read-side critical section. Line 16 takes
a snapshot of the sequence counter, and line 17 orders
this snapshot operation before the caller’s critical section.
Finally, line 18 returns the value of the snapshot (with the
least-significant bit cleared), which the caller will pass to
a later call to read_seqretry().

Quick Quiz 9.12: Why not have read_seqbegin()
in Listing 9.9 check for the low-order bit being set, and
retry internally, rather than allowing a doomed read to
start?

Lines 21-29 show read_seqretry(), which returns
true if there was at least one writer since the time of the
corresponding call to read_seqbegin(). Line 26 orders
the caller’s prior critical section before line 27’s fetch
of the new snapshot of the sequence counter. Finally,
line 28 checks whether the sequence counter has changed,
in other words, whether there has been at least one writer,

Listing 9.8: Sequence-Locking Writer
1 write_seqlock(&test_seqlock);
2 /* Update */
3 write_sequnlock(&test_seqlock);

Listing 9.9: Sequence-Locking Implementation
1 typedef struct {
2 unsigned long seq;
3 spinlock_t lock;
4 } seqlock_t;
5

6 static inline void seqlock_init(seqlock_t *slp)
7 {
8 slp->seq = 0;
9 spin_lock_init(&slp->lock);

10 }
11

12 static inline unsigned long read_seqbegin(seqlock_t *slp)
13 {
14 unsigned long s;
15

16 s = READ_ONCE(slp->seq);
17 smp_mb();
18 return s & ~0x1UL;
19 }
20

21 static inline int read_seqretry(seqlock_t *slp,
22 unsigned long oldseq)
23 {
24 unsigned long s;
25

26 smp_mb();
27 s = READ_ONCE(slp->seq);
28 return s != oldseq;
29 }
30

31 static inline void write_seqlock(seqlock_t *slp)
32 {
33 spin_lock(&slp->lock);
34 ++slp->seq;
35 smp_mb();
36 }
37

38 static inline void write_sequnlock(seqlock_t *slp)
39 {
40 smp_mb();
41 ++slp->seq;
42 spin_unlock(&slp->lock);
43 }

and returns true if so.

Quick Quiz 9.13: Why is the smp_mb() on line 26 of
Listing 9.9 needed?

Quick Quiz 9.14: Can’t weaker memory barriers be
used in the code in Listing 9.9?

Quick Quiz 9.15: What prevents sequence-locking
updaters from starving readers?

Lines 31-36 show write_seqlock(), which simply
acquires the lock, increments the sequence number, and
executes a memory barrier to ensure that this increment
is ordered before the caller’s critical section. Lines 38-43
show write_sequnlock(), which executes a memory
barrier to ensure that the caller’s critical section is ordered
before the increment of the sequence number on line 41,

128 CHAPTER 9. DEFERRED PROCESSING

Listing 9.10: Sequence-Locked Pre-BSD Routing Table
Lookup (BUGGY!!!)

1 struct route_entry {
2 struct route_entry *re_next;
3 unsigned long addr;
4 unsigned long iface;
5 int re_freed;
6 };
7 struct route_entry route_list;
8 DEFINE_SEQ_LOCK(sl);
9

10 unsigned long route_lookup(unsigned long addr)
11 {
12 struct route_entry *rep;
13 struct route_entry **repp;
14 unsigned long ret;
15 unsigned long s;
16

17 retry:
18 s = read_seqbegin(&sl);
19 repp = &route_list.re_next;
20 do {
21 rep = READ_ONCE(*repp);
22 if (rep == NULL) {
23 if (read_seqretry(&sl, s))
24 goto retry;
25 return ULONG_MAX;
26 }
27 repp = &rep->re_next;
28 } while (rep->addr != addr);
29 if (READ_ONCE(rep->re_freed))
30 abort();
31 ret = rep->iface;
32 if (read_seqretry(&sl, s))
33 goto retry;
34 return ret;
35 }

then releases the lock.
Quick Quiz 9.16: What if something else serializes

writers, so that the lock is not needed?
Quick Quiz 9.17: Why isn’t seq on line 2 of List-

ing 9.9 unsigned rather than unsigned long? After
all, if unsigned is good enough for the Linux kernel,
shouldn’t it be good enough for everyone?

So what happens when sequence locking is applied to
the Pre-BSD routing table? Listing 9.10 shows the data
structures and route_lookup(), and Listing 9.11 shows
route_add() and route_del() (route_seqlock.c).
This implementation is once again similar to its counter-
parts in earlier sections, so only the differences will be
highlighted.

In Listing 9.10, line 5 adds ->re_freed, which is
checked on lines 29 and 30. Line 8 adds a sequence
lock, which is used by route_lookup() on lines 18, 23,
and 32, with lines 24 and 33 branching back to the retry
label on line 17. The effect is to retry any lookup that runs
concurrently with an update.

In Listing 9.11, lines 11, 14, 23, 31, and 39 acquire
and release the sequence lock, while lines 10 and 33

Listing 9.11: Sequence-Locked Pre-BSD Routing Table Ad-
d/Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4

5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 rep->addr = addr;
9 rep->iface = interface;

10 rep->re_freed = 0;
11 write_seqlock(&sl);
12 rep->re_next = route_list.re_next;
13 route_list.re_next = rep;
14 write_sequnlock(&sl);
15 return 0;
16 }
17

18 int route_del(unsigned long addr)
19 {
20 struct route_entry *rep;
21 struct route_entry **repp;
22

23 write_seqlock(&sl);
24 repp = &route_list.re_next;
25 for (;;) {
26 rep = *repp;
27 if (rep == NULL)
28 break;
29 if (rep->addr == addr) {
30 *repp = rep->re_next;
31 write_sequnlock(&sl);
32 smp_mb();
33 rep->re_freed = 1;
34 free(rep);
35 return 0;
36 }
37 repp = &rep->re_next;
38 }
39 write_sequnlock(&sl);
40 return -ENOENT;
41 }

handle ->re_freed. This implementation is therefore
quite straightforward.

It also performs better on the read-only workload, as
can be seen in Figure 9.5, though its performance is still
far from ideal.

Unfortunately, it also suffers use-after-free failures.
The problem is that the reader might encounter a seg-
mentation violation due to accessing an already-freed
structure before it comes to the read_seqretry().

Quick Quiz 9.18: Can this bug be fixed? In other
words, can you use sequence locks as the only synchro-
nization mechanism protecting a linked list supporting
concurrent addition, deletion, and lookup?

Both the read-side and write-side critical sections of
a sequence lock can be thought of as transactions, and
sequence locking therefore can be thought of as a limited
form of transactional memory, which will be discussed
in Section 17.2. The limitations of sequence locking are:

9.5. READ-COPY UPDATE (RCU) 129

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

ideal

refcnthazptr

seqlock

Figure 9.5: Pre-BSD Routing Table Protected by Se-
quence Locking

(1) Sequence locking restricts updates and (2) sequence
locking does not permit traversal of pointers to objects
that might be freed by updaters. These limitations are of
course overcome by transactional memory, but can also be
overcome by combining other synchronization primitives
with sequence locking.

Sequence locks allow writers to defer readers, but not
vice versa. This can result in unfairness and even starva-
tion in writer-heavy workloads. On the other hand, in the
absence of writers, sequence-lock readers are reasonably
fast and scale linearly. It is only human to want the best of
both worlds: fast readers without the possibility of read-
side failure, let alone starvation. In addition, it would also
be nice to overcome sequence locking’s limitations with
pointers. The following section presents a synchroniza-
tion mechanism with exactly these properties.

9.5 Read-Copy Update (RCU)

Nothing is faster than doing nothing!

Unknown

All of the mechanisms discussed in the preceding sections
used one of a number of approaches to defer specific ac-
tions until they may be carried out safely. The reference
counters discussed in Section 9.2 use explicit counters to
defer actions that could disturb readers, which results in
read-side contention and thus poor scalability. The hazard
pointers covered by Section 9.3 uses implicit counters
in the guise of per-thread lists of pointer. This avoids
read-side contention, but requires full memory barriers

in read-side primitives. The sequence lock presented in
Section 9.4 also avoids read-side contention, but does not
protect pointer traversals and, like hazard pointers, re-
quires full memory barriers in read-side primitives. These
schemes’ shortcomings raise the question of whether it is
possible to do better.

This section introduces read-copy update (RCU),
which provides an API that allows delays to be identified
in the source code, rather than as expensive updates to
shared data. The remainder of this section examines RCU
from a number of different perspectives. Section 9.5.1
provides the classic introduction to RCU, Section 9.5.2
covers fundamental RCU concepts, Section 9.5.3 intro-
duces some common uses of RCU, Section 9.5.4 presents
the Linux-kernel API, Section 9.5.5 covers recent work
related to RCU, and finally Section 9.5.6 provides some
RCU exercises.

9.5.1 Introduction to RCU
The approaches discussed in the preceding sections have
provided some scalability but decidedly non-ideal per-
formance for the Pre-BSD routing table. It would be
nice if the overhead of Pre-BSD lookups was the same
as that of a single-threaded lookup, so that the parallel
lookups would execute the same sequence of assembly
language instructions as would a single-threaded lookup.
Although this is a nice goal, it does raise some serious
implementability questions. But let’s see what happens if
we try, treating insertion and deletion separately.

A classic approach for insertion is shown in Figure 9.6.
The first row shows the default state, with gptr equal to
NULL. In the second row, we have allocated a structure
which is uninitialized, as indicated by the question marks.
In the third row, we have initialized the structure. Next,
we assign gptr to reference this new element.4 On mod-
ern general-purpose systems, this assignment is atomic in
the sense that concurrent readers will see either a NULL
pointer or a pointer to the new structure p, but not some
mash-up containing bits from both values. Each reader
is therefore guaranteed to either get the default value of
NULL or to get the newly installed non-default values, but
either way each reader will see a consistent result. Even
better, readers need not use any expensive synchronization
primitives, so this approach is quite suitable for real-time
use.5

4 On many computer systems, simple assignment is insufficient due
to interference from both the compiler and the CPU. These issues will
be covered in Section 9.5.2.

5 Again, on many computer systems, additional work is required

130 CHAPTER 9. DEFERRED PROCESSING

gptr

kmalloc()

->addr=?

->iface=?gptr

initialization

gptr

gptr = p; /*almost*/

gptr

p

p

p

(1)

(2)

(3)

(4)

->addr=42

->iface=1

->addr=42

->iface=1

Figure 9.6: Insertion With Concurrent Readers

But sooner or later, it will be necessary to remove data
that is being referenced by concurrent readers. Let us
move to a more complex example where we are removing
an element from a linked list, as shown in Figure 9.7.
This list initially contains elements A, B, and C, and we
need to remove element B. First, we use list_del()
to carry out the removal,6 at which point all new readers
will see element B as having been deleted from the list.
However, there might be old readers still referencing this
element. Once all these old readers have finished, we can
safely free element B, resulting in the situation shown at
the bottom of the figure.

But how can we tell when the readers are finished?
It is tempting to consider a reference-counting scheme,

but Figure 5.1 in Chapter 5 shows that this can also re-
sult in long delays, just as can the locking and sequence-
locking approaches that we already rejected.

to prevent interference from the compiler, and, on DEC Alpha systems,
the CPU as well. This will be covered in Section 9.5.2.

6 And yet again, this approximates reality, which will be expanded
on in Section 9.5.2.

Readers?

A B C(1)

Readers?

1 Version

A CB(2)

Readers?

2 Versions

A CB(3) 1 Versions

A C(4) 1 Versions

wait for readers

free()

list_del() /*almost*/

Figure 9.7: Deletion From Linked List With Concurrent
Readers

Let’s consider the logical extreme where the readers
do absolutely nothing to announce their presence. This
approach clearly allows optimal performance for readers
(after all, free is a very good price), but leaves open the
question of how the updater can possibly determine when
all the old readers are done. We clearly need some addi-
tional constraints if we are to provide a reasonable answer
to this question.

One constraint that fits well with some operating-
system kernels is to consider the case where threads are
not subject to preemption. In such non-preemptible envi-
ronments, each thread runs until it explicitly and voluntar-
ily blocks. This means that an infinite loop without block-
ing will render a CPU useless for any other purpose from
the start of the infinite loop onwards.7 Non-preemptibility
also requires that threads be prohibited from blocking
while holding spinlocks. Without this prohibition, all
CPUs might be consumed by threads spinning attempt-
ing to acquire a spinlock held by a blocked thread. The

7 In contrast, an infinite loop in a preemptible environment might
be preempted. This infinite loop might still waste considerable CPU
time, but the CPU in question would nevertheless be able to do other
work.

9.5. READ-COPY UPDATE (RCU) 131

Context Switch

Reader

G
ra

ce
 P

er
io

d

CPU 1 CPU 2 CPU 3

w
a
i
t

f
o
r

r
e
a
d
e
r
s

l
i
s
t
_
d
e
l
(
)

f
r
e
e
(
)

Figure 9.8: RCU QSBR: Waiting for Pre-Existing Read-
ers

spinning threads will not relinquish their CPUs until they
acquire the lock, but the thread holding the lock cannot
possibly release it until one of the spinning threads relin-
quishes a CPU. This is a classic deadlock situation.

Let us impose this same constraint on reader threads
traversing the linked list: such threads are not allowed to
block until after completing their traversal. Returning to
the second row of Figure 9.7, where the updater has just
completed executing list_del(), imagine that CPU 0
executes a context switch. Because readers are not per-
mitted to block while traversing the linked list, we are
guaranteed that all prior readers that might have been run-
ning on CPU 0 will have completed. Extending this line
of reasoning to the other CPUs, once each CPU has been
observed executing a context switch, we are guaranteed
that all prior readers have completed, and that there are
no longer any reader threads referencing element B. The
updater can then safely free element B, resulting in the
state shown at the bottom of Figure 9.7.

This approach is termed quiescent state based reclama-
tion (QSBR) [HMB06]. A QSBR schematic is shown in
Figure 9.8, with time advancing from the top of the figure
to the bottom.

Although production-quality implementations of this
approach can be quite complex, a toy implementation is

exceedingly simple:

1 for_each_online_cpu(cpu)
2 run_on(cpu);

The for_each_online_cpu() primitive iterates over
all CPUs, and the run_on() function causes the current
thread to execute on the specified CPU, which forces the
destination CPU to execute a context switch. Therefore,
once the for_each_online_cpu() has completed, each
CPU has executed a context switch, which in turn guaran-
tees that all pre-existing reader threads have completed.

Please note that this approach is not production qual-
ity. Correct handling of a number of corner cases and
the need for a number of powerful optimizations mean
that production-quality implementations have significant
additional complexity. In addition, RCU implementations
for preemptible environments require that readers actually
do something. However, this simple non-preemptible ap-
proach is conceptually complete, and forms a good initial
basis for understanding the RCU fundamentals covered
in the following section.

9.5.2 RCU Fundamentals
Read-copy update (RCU) is a synchronization mechanism
that was added to the Linux kernel in October of 2002.
RCU achieves scalability improvements by allowing reads
to occur concurrently with updates. In contrast with con-
ventional locking primitives that ensure mutual exclusion
among concurrent threads regardless of whether they be
readers or updaters, or with reader-writer locks that al-
low concurrent reads but not in the presence of updates,
RCU supports concurrency between a single updater and
multiple readers. RCU ensures that reads are coherent
by maintaining multiple versions of objects and ensuring
that they are not freed up until all pre-existing read-side
critical sections complete. RCU defines and uses efficient
and scalable mechanisms for publishing and reading new
versions of an object, and also for deferring the collection
of old versions. These mechanisms distribute the work
among read and update paths in such a way as to make
read paths extremely fast, using replication and weaken-
ing optimizations in a manner similar to hazard pointers,
but without the need for read-side retries. In some cases
(non-preemptible kernels), RCU’s read-side primitives
have zero overhead.

Quick Quiz 9.19: But doesn’t Section 9.4’s seqlock
also permit readers and updaters to get work done concur-
rently?

132 CHAPTER 9. DEFERRED PROCESSING

Listing 9.12: Data Structure Publication (Unsafe)
1 struct foo {
2 int a;
3 int b;
4 int c;
5 };
6 struct foo *gp = NULL;
7

8 /* . . . */
9

10 p = kmalloc(sizeof(*p), GFP_KERNEL);
11 p->a = 1;
12 p->b = 2;
13 p->c = 3;
14 gp = p;

This leads to the question “What exactly is RCU?”,
and perhaps also to the question “How can RCU possi-
bly work?” (or, not infrequently, the assertion that RCU
cannot possibly work). This document addresses these
questions from a fundamental viewpoint; later install-
ments look at them from usage and from API viewpoints.
This last installment also includes a list of references.

RCU is made up of three fundamental mechanisms,
the first being used for insertion, the second being used
for deletion, and the third being used to allow read-
ers to tolerate concurrent insertions and deletions. Sec-
tion 9.5.2.1 describes the publish-subscribe mechanism
used for insertion, Section 9.5.2.2 describes how waiting
for pre-existing RCU readers enabled deletion, and Sec-
tion 9.5.2.3 discusses how maintaining multiple versions
of recently updated objects permits concurrent insertions
and deletions. Finally, Section 9.5.2.4 summarizes RCU
fundamentals.

9.5.2.1 Publish-Subscribe Mechanism

One key attribute of RCU is the ability to safely scan
data, even though that data is being modified concurrently.
To provide this ability for concurrent insertion, RCU uses
what can be thought of as a publish-subscribe mechanism.
For example, consider an initially NULL global pointer gp
that is to be modified to point to a newly allocated and
initialized data structure. The code fragment shown in
Listing 9.12 (with the addition of appropriate locking)
might be used for this purpose.

Unfortunately, there is nothing forcing the compiler
and CPU to execute the last four assignment statements
in order. If the assignment to gp happens before the
initialization of p fields, then concurrent readers could see
the uninitialized values. Memory barriers are required to
keep things ordered, but memory barriers are notoriously
difficult to use. We therefore encapsulate them into a

primitive rcu_assign_pointer() that has publication
semantics. The last four lines would then be as follows:

1 p->a = 1;
2 p->b = 2;
3 p->c = 3;
4 rcu_assign_pointer(gp, p);

The rcu_assign_pointer() would publish the new
structure, forcing both the compiler and the CPU to ex-
ecute the assignment to gp after the assignments to the
fields referenced by p.

However, it is not sufficient to only enforce ordering at
the updater, as the reader must enforce proper ordering as
well. Consider for example the following code fragment:

1 p = gp;
2 if (p != NULL) {
3 do_something_with(p->a, p->b, p->c);
4 }

Although this code fragment might well seem im-
mune to misordering, unfortunately, the DEC Alpha
CPU [McK05a, McK05b] and value-speculation compiler
optimizations can, believe it or not, cause the values of
p->a, p->b, and p->c to be fetched before the value of
p. This is perhaps easiest to see in the case of value-
speculation compiler optimizations, where the compiler
guesses the value of p, fetches p->a, p->b, and p->c,
and then fetches the actual value of p in order to check
whether its guess was correct. This sort of optimization is
quite aggressive, perhaps insanely so, but does actually
occur in the context of profile-driven optimization.

Clearly, we need to prevent this sort of skullduggery
on the part of both the compiler and the CPU. The rcu_
dereference() primitive uses whatever memory-barrier
instructions and compiler directives are required for this
purpose:8

1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 if (p != NULL) {
4 do_something_with(p->a, p->b, p->c);
5 }
6 rcu_read_unlock();

8 In the Linux kernel, rcu_dereference() is implemented via
a volatile cast, and, on DEC Alpha, a memory barrier instruction. In
the C11 and C++11 standards, memory_order_consume is intended
to provide longer-term support for rcu_dereference(), but no com-
pilers implement this natively yet. (They instead strengthen memory_
order_consume to memory_order_acquire, thus emitting a need-
less memory-barrier instruction on weakly ordered systems.)

9.5. READ-COPY UPDATE (RCU) 133

next next next next

prev prev prevprev

A B C

Figure 9.9: Linux Circular Linked List

A B C

Figure 9.10: Linux Linked List Abbreviated

The rcu_dereference() primitive can thus be
thought of as subscribing to a given value of the spec-
ified pointer, guaranteeing that subsequent dereference
operations will see any initialization that occurred before
the corresponding rcu_assign_pointer() operation
that published that pointer. The rcu_read_lock() and
rcu_read_unlock() calls are absolutely required: they
define the extent of the RCU read-side critical section.
Their purpose is explained in Section 9.5.2.2, however,
they never spin or block, nor do they prevent the list_
add_rcu() from executing concurrently. In fact, in non-
CONFIG_PREEMPT kernels, they generate absolutely no
code.

Although rcu_assign_pointer() and rcu_
dereference() can in theory be used to construct any
conceivable RCU-protected data structure, in practice it is
often better to use higher-level constructs. Therefore, the
rcu_assign_pointer() and rcu_dereference()
primitives have been embedded in special RCU variants
of Linux’s list-manipulation API. Linux has two variants
of doubly linked list, the circular struct list_head
and the linear struct hlist_head/struct hlist_
node pair. The former is laid out as shown in Figure 9.9,
where the green (leftmost) boxes represent the list
header and the blue (rightmost three) boxes represent the
elements in the list. This notation is cumbersome, and
will therefore be abbreviated as shown in Figure 9.10,
which shows only the non-header (blue) elements.

Adapting the pointer-publish example for the linked
list results in the code shown in Listing 9.13.

Line 15 must be protected by some synchronization
mechanism (most commonly some sort of lock) to pre-
vent multiple list_add_rcu() instances from executing
concurrently. However, such synchronization does not
prevent this list_add() instance from executing con-
currently with RCU readers.

Subscribing to an RCU-protected list is straightfor-
ward:

Listing 9.13: RCU Data Structure Publication
1 struct foo {
2 struct list_head *list;
3 int a;
4 int b;
5 int c;
6 };
7 LIST_HEAD(head);
8

9 /* . . . */
10

11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a = 1;
13 p->b = 2;
14 p->c = 3;
15 list_add_rcu(&p->list, &head);

next next next

prev prev prev

first

A B C

Figure 9.11: Linux Linear Linked List

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, head, list) {
3 do_something_with(p->a, p->b, p->c);
4 }
5 rcu_read_unlock();

The list_add_rcu() primitive publishes an entry,
inserting it at the head of the specified list, guaranteeing
that the corresponding list_for_each_entry_rcu()
invocation will properly subscribe to this same entry.

Quick Quiz 9.20: What prevents the list_for_
each_entry_rcu() from getting a segfault if it happens
to execute at exactly the same time as the list_add_
rcu()?

Linux’s other doubly linked list, the hlist, is a linear
list, which means that it needs only one pointer for the
header rather than the two required for the circular list,
as shown in Figure 9.11. Thus, use of hlist can halve the
memory consumption for the hash-bucket arrays of large
hash tables. As before, this notation is cumbersome, so
hlists will be abbreviated in the same way lists are, as
shown in Figure 9.10.

Publishing a new element to an RCU-protected hlist is
quite similar to doing so for the circular list, as shown in
Listing 9.14.

As before, line 15 must be protected by some sort of
synchronization mechanism, for example, a lock.

Subscribing to an RCU-protected hlist is also similar
to the circular list:

134 CHAPTER 9. DEFERRED PROCESSING

Listing 9.14: RCU hlist Publication
1 struct foo {
2 struct hlist_node *list;
3 int a;
4 int b;
5 int c;
6 };
7 HLIST_HEAD(head);
8

9 /* . . . */
10

11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a = 1;
13 p->b = 2;
14 p->c = 3;
15 hlist_add_head_rcu(&p->list, &head);

1 rcu_read_lock();
2 hlist_for_each_entry_rcu(p, head, list) {
3 do_something_with(p->a, p->b, p->c);
4 }
5 rcu_read_unlock();

The set of RCU publish and subscribe primitives are
shown in Table 9.1, along with additional primitives to
“unpublish”, or retract.

Note that the list_replace_rcu(), list_del_
rcu(), hlist_replace_rcu(), and hlist_del_
rcu() APIs add a complication. When is it safe to free
up the data element that was replaced or removed? In par-
ticular, how can we possibly know when all the readers
have released their references to that data element?

These questions are addressed in the following section.

9.5.2.2 Wait For Pre-Existing RCU Readers to
Complete

In its most basic form, RCU is a way of waiting for things
to finish. Of course, there are a great many other ways
of waiting for things to finish, including reference counts,
reader-writer locks, events, and so on. The great advan-
tage of RCU is that it can wait for each of (say) 20,000
different things without having to explicitly track each
and every one of them, and without having to worry about
the performance degradation, scalability limitations, com-
plex deadlock scenarios, and memory-leak hazards that
are inherent in schemes using explicit tracking.

In RCU’s case, the things waited on are called “RCU
read-side critical sections”. An RCU read-side critical
section starts with an rcu_read_lock() primitive, and
ends with a corresponding rcu_read_unlock() primi-
tive. RCU read-side critical sections can be nested, and
may contain pretty much any code, as long as that code
does not explicitly block or sleep (although a special form

Reader Reader Reader

ReaderReader

Reader

Reader Reader

Grace Period
Extends as
NeededReader

Removal Reclamation

Time

Figure 9.12: Readers and RCU Grace Period

of RCU called SRCU [McK06] does permit general sleep-
ing in SRCU read-side critical sections). If you abide by
these conventions, you can use RCU to wait for any de-
sired piece of code to complete.

RCU accomplishes this feat by indirectly determin-
ing when these other things have finished [McK07g,
McK07a].

In particular, as shown in Figure 9.12, RCU is a way of
waiting for pre-existing RCU read-side critical sections to
completely finish, including memory operations executed
by those critical sections. However, note that RCU read-
side critical sections that begin after the beginning of a
given grace period can and will extend beyond the end of
that grace period.

The following pseudocode shows the basic form of
algorithms that use RCU to wait for readers:

1. Make a change, for example, replace an element in
a linked list.

2. Wait for all pre-existing RCU read-side critical sec-
tions to completely finish (for example, by using the
synchronize_rcu() primitive or its asynchronous
counterpart, call_rcu(), which invokes a specified
function at the end of a future grace period). The key
observation here is that subsequent RCU read-side
critical sections have no way to gain a reference to
the newly removed element.

3. Clean up, for example, free the element that was
replaced above.

The code fragment shown in Listing 9.15, adapted from
those in Section 9.5.2.1, demonstrates this process, with
field a being the search key.

Lines 19, 20, and 21 implement the three steps called
out above. Lines 16-19 gives RCU (“read-copy update”)

9.5. READ-COPY UPDATE (RCU) 135

Table 9.1: RCU Publish and Subscribe Primitives

Category Publish Retract Subscribe

Pointers rcu_assign_pointer() rcu_assign_pointer(..., NULL) rcu_dereference()

Lists
list_add_rcu()
list_add_tail_rcu()
list_replace_rcu()

list_del_rcu() list_for_each_entry_rcu()

Hlists

hlist_add_behind_rcu()
hlist_add_before_rcu()
hlist_add_head_rcu()
hlist_replace_rcu()

hlist_del_rcu() hlist_for_each_entry_rcu()

Listing 9.15: Canonical RCU Replacement Example
1 struct foo {
2 struct list_head *list;
3 int a;
4 int b;
5 int c;
6 };
7 LIST_HEAD(head);
8

9 /* . . . */
10

11 p = search(head, key);
12 if (p == NULL) {
13 /* Take appropriate action, unlock, & return. */
14 }
15 q = kmalloc(sizeof(*p), GFP_KERNEL);
16 *q = *p;
17 q->b = 2;
18 q->c = 3;
19 list_replace_rcu(&p->list, &q->list);
20 synchronize_rcu();
21 kfree(p);

its name: while permitting concurrent reads, line 16
copies and lines 17-19 do an update.

As discussed in Section 9.5.1, the synchronize_
rcu() primitive can be quite simple (see Appendix B
for additional “toy” RCU implementations). Furthermore,
simple executable formal models of RCU are available
as part of Linux kernel v4.17 and later, as discussed in
Section 12.3.2. However, production-quality implementa-
tions must deal with difficult corner cases and also incor-
porate powerful optimizations, both of which result in sig-
nificant complexity. Although it is good to know that there
is a simple conceptual implementation of synchronize_
rcu(), other questions remain. For example, what ex-
actly do RCU readers see when traversing a concurrently
updated list? This question is addressed in the following
section.

9.5.2.3 Maintain Multiple Versions of Recently Up-
dated Objects

This section demonstrates how RCU maintains multiple
versions of lists to accommodate synchronization-free
readers. Two examples are presented showing how an el-
ement that might be referenced by a given reader must re-
main intact while that reader remains in its RCU read-side
critical section. The first example demonstrates deletion
of a list element, and the second example demonstrates
replacement of an element.

Example 1: Maintaining Multiple Versions During
Deletion We can now revisit the deletion example from
Section 9.5.1, but now with the benefit of a firm under-
standing of the fundamental concepts underlying RCU.
To begin this new version of the deletion example, we
will modify lines 11-21 in Listing 9.15 to read as follows:

1 p = search(head, key);
2 if (p != NULL) {
3 list_del_rcu(&p->list);
4 synchronize_rcu();
5 kfree(p);
6 }

This code will update the list as shown in Figure 9.13.
The triples in each element represent the values of fields a,
b, and c, respectively. The red-shaded elements indicate
that RCU readers might be holding references to them, so
in the initial state at the top of the diagram, all elements
are shaded red. Please note that we have omitted the
backwards pointers and the link from the tail of the list to
the head for clarity.

After the list_del_rcu() on line 3 has completed,
the 5,6,7 element has been removed from the list, as
shown in the second row of Figure 9.13. Since readers
do not synchronize directly with updaters, readers might
be concurrently scanning this list. These concurrent read-
ers might or might not see the newly removed element,

136 CHAPTER 9. DEFERRED PROCESSING

list_del_rcu()

synchronize_rcu()

kfree()

1,2,3 5,6,7 11,4,8

1,2,3 11,4,8

1,2,3 5,6,7 11,4,8

1,2,3 5,6,7 11,4,8

Figure 9.13: RCU Deletion From Linked List

depending on timing. However, readers that were de-
layed (e.g., due to interrupts, ECC memory errors, or,
in CONFIG_PREEMPT_RT kernels, preemption) just after
fetching a pointer to the newly removed element might
see the old version of the list for quite some time after the
removal. Therefore, we now have two versions of the list,
one with element 5,6,7 and one without. The 5,6,7 ele-
ment in the second row of the figure is now shaded yellow,
indicating that old readers might still be referencing it,
but that new readers cannot obtain a reference to it.

Please note that readers are not permitted to main-
tain references to element 5,6,7 after exiting from their
RCU read-side critical sections. Therefore, once the
synchronize_rcu() on line 4 completes, so that all
pre-existing readers are guaranteed to have completed,
there can be no more readers referencing this element,
as indicated by its green shading on the third row of Fig-
ure 9.13. We are thus back to a single version of the
list.

At this point, the 5,6,7 element may safely be freed,
as shown on the final row of Figure 9.13. At this point,
we have completed the deletion of element 5,6,7. The
following example covers replacement.

Example 2: Maintaining Multiple Versions During
Replacement To start the replacement example, here
are the last few lines of the example shown in Listing 9.15:

15 q = kmalloc(sizeof(*p), GFP_KERNEL);
16 *q = *p;
17 q->b = 2;
18 q->c = 3;
19 list_replace_rcu(&p->list, &q->list);
20 synchronize_rcu();
21 kfree(p);

The initial state of the list, including the pointer p, is
the same as for the deletion example, as shown on the first
row of Figure 9.14.

As before, the triples in each element represent the
values of fields a, b, and c, respectively. The red-shaded
elements might be referenced by readers, and because
readers do not synchronize directly with updaters, read-
ers might run concurrently with this entire replacement
process. Please note that we again omit the backwards
pointers and the link from the tail of the list to the head
for clarity.

The following text describes how to replace the 5,6,7
element with 5,2,3 in such a way that any given reader
sees one of these two values.

Line 15 kmalloc()s a replacement element, as fol-
lows, resulting in the state as shown in the second row
of Figure 9.14. At this point, no reader can hold a refer-
ence to the newly allocated element (as indicated by its
green shading), and it is uninitialized (as indicated by the
question marks).

Line 16 copies the old element to the new one, resulting
in the state as shown in the third row of Figure 9.14. The
newly allocated element still cannot be referenced by
readers, but it is now initialized.

Line 17 updates q->b to the value “2”, and line 18
updates q->c to the value “3”, as shown on the fourth
row of Figure 9.14.

Now, line 19 does the replacement, so that the new
element is finally visible to readers, and hence is shaded
red, as shown on the fifth row of Figure 9.14. At this
point, as shown below, we have two versions of the list.
Pre-existing readers might see the 5,6,7 element (which
is therefore now shaded yellow), but new readers will
instead see the 5,2,3 element. But any given reader is
guaranteed to see some well-defined list.

After the synchronize_rcu() on line 20 returns, a
grace period will have elapsed, and so all reads that started
before the list_replace_rcu() will have completed.
In particular, any readers that might have been holding

9.5. READ-COPY UPDATE (RCU) 137

1,2,3 5,6,7 11,4,8

Update

5,2,3

5,6,71,2,3 11,4,8

list_replace_rcu()

5,2,3

5,6,71,2,3 11,4,8

5,2,3

5,6,71,2,3 11,4,8

kfree()

1,2,3 5,2,3 11,4,8

Copy

5,6,7

5,6,71,2,3 11,4,8

Allocate

?,?,?

5,6,71,2,3 11,4,8

synchronize_rcu()

Figure 9.14: RCU Replacement in Linked List

references to the 5,6,7 element are guaranteed to have
exited their RCU read-side critical sections, and are thus
prohibited from continuing to hold a reference. Therefore,
there can no longer be any readers holding references to
the old element, as indicated its green shading in the sixth
row of Figure 9.14. As far as the readers are concerned,
we are back to having a single version of the list, but with
the new element in place of the old.

After the kfree() on line 21 completes, the list will
appear as shown on the final row of Figure 9.14.

Despite the fact that RCU was named after the replace-
ment case, the vast majority of RCU usage within the
Linux kernel relies on the simple deletion case shown in
Section 9.5.2.3.

Discussion These examples assumed that a mutex was
held across the entire update operation, which would
mean that there could be at most two versions of the
list active at a given time.

Quick Quiz 9.21: How would you modify the deletion
example to permit more than two versions of the list to be
active?

Quick Quiz 9.22: How many RCU versions of a given
list can be active at any given time?

This sequence of events shows how RCU updates use
multiple versions to safely carry out changes in presence
of concurrent readers. Of course, some algorithms cannot
gracefully handle multiple versions. There are techniques
for adapting such algorithms to RCU [McK04], but these
are beyond the scope of this section.

9.5.2.4 Summary of RCU Fundamentals

This section has described the three fundamental compo-
nents of RCU-based algorithms:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and

3. a discipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

Quick Quiz 9.23: How can RCU updaters possibly de-
lay RCU readers, given that the rcu_read_lock() and
rcu_read_unlock() primitives neither spin nor block?

These three RCU components allow data to be updated
in face of concurrent readers, and can be combined in

138 CHAPTER 9. DEFERRED PROCESSING

Table 9.2: RCU Usage

Mechanism RCU Replaces Section

Reader-writer locking Section 9.5.3.2
Restricted reference-counting mechanism Section 9.5.3.3
Bulk reference-counting mechanism Section 9.5.3.4
Poor man’s garbage collector Section 9.5.3.5
Existence Guarantees Section 9.5.3.6
Type-Safe Memory Section 9.5.3.7
Wait for things to finish Section 9.5.3.8

Listing 9.16: RCU Pre-BSD Routing Table Lookup
1 struct route_entry {
2 struct rcu_head rh;
3 struct cds_list_head re_next;
4 unsigned long addr;
5 unsigned long iface;
6 int re_freed;
7 };
8 CDS_LIST_HEAD(route_list);
9 DEFINE_SPINLOCK(routelock);

10

11 unsigned long route_lookup(unsigned long addr)
12 {
13 struct route_entry *rep;
14 unsigned long ret;
15

16 rcu_read_lock();
17 cds_list_for_each_entry_rcu(rep, &route_list, re_next) {
18 if (rep->addr == addr) {
19 ret = rep->iface;
20 if (READ_ONCE(rep->re_freed))
21 abort();
22 rcu_read_unlock();
23 return ret;
24 }
25 }
26 rcu_read_unlock();
27 return ULONG_MAX;
28 }

different ways to implement a surprising variety of differ-
ent types of RCU-based algorithms, some of which are
described in the following section.

9.5.3 RCU Usage
This section answers the question “What is RCU?” from
the viewpoint of the uses to which RCU can be put. Be-
cause RCU is most frequently used to replace some ex-
isting mechanism, we look at it primarily in terms of its
relationship to such mechanisms, as listed in Table 9.2.
Following the sections listed in this table, Section 9.5.3.9
provides a summary.

9.5.3.1 RCU for Pre-BSD Routing

Listing 9.17: RCU Pre-BSD Routing Table Add/Delete
1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4

5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 rep->addr = addr;
9 rep->iface = interface;

10 rep->re_freed = 0;
11 spin_lock(&routelock);
12 cds_list_add_rcu(&rep->re_next, &route_list);
13 spin_unlock(&routelock);
14 return 0;
15 }
16

17 static void route_cb(struct rcu_head *rhp)
18 {
19 struct route_entry *rep;
20

21 rep = container_of(rhp, struct route_entry, rh);
22 WRITE_ONCE(rep->re_freed, 1);
23 free(rep);
24 }
25

26 int route_del(unsigned long addr)
27 {
28 struct route_entry *rep;
29

30 spin_lock(&routelock);
31 cds_list_for_each_entry(rep, &route_list, re_next) {
32 if (rep->addr == addr) {
33 cds_list_del_rcu(&rep->re_next);
34 spin_unlock(&routelock);
35 call_rcu(&rep->rh, route_cb);
36 return 0;
37 }
38 }
39 spin_unlock(&routelock);
40 return -ENOENT;
41 }

Listings 9.16 and 9.17 show code for an RCU-protected
Pre-BSD routing table (route_rcu.c). The former
shows data structures and route_lookup(), and the lat-
ter shows route_add() and route_del().

In Listing 9.16, line 2 adds the ->rh field used by RCU
reclamation, line 6 adds the ->re_freed use-after-free-
check field, lines 16, 22, and 26 add RCU read-side protec-
tion, and lines 20 and 21 add the use-after-free check. In
Listing 9.17, lines 11, 13, 30, 34, and 39 add update-side
locking, lines 12 and 33 add RCU update-side protection,
line 35 causes route_cb() to be invoked after a grace
period elapses, and lines 17-24 define route_cb(). This
is minimal added code for a working concurrent imple-
mentation.

Figure 9.15 shows the performance on the read-only
workload. RCU scales quite well, and offers nearly
ideal performance. However, this data was generated
using the RCU_SIGNAL flavor of userspace RCU [Des09b,
MDJ13c], for which rcu_read_lock() and rcu_read_

9.5. READ-COPY UPDATE (RCU) 139

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

ideal

refcnthazptr

seqlock

RCU

Figure 9.15: Pre-BSD Routing Table Protected by RCU

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

ideal

refcnthazptr

seqlock

RCU

Figure 9.16: Pre-BSD Routing Table Protected by RCU
QSBR

unlock() generate a small amount of code. What hap-
pens for the QSBR flavor of RCU, which generates
no code at all for rcu_read_lock() and rcu_read_
unlock()? (See Section 9.5.1, and especially Figure 9.8,
for a discussion of RCU QSBR.)

The answer to this shown in Figure 9.16, which shows
the RCU QSBR results as the trace between the RCU and
the ideal traces. RCU QSBR’s performance and scala-
bility is very nearly that of an ideal synchronization-free
workload, as desired.

Quick Quiz 9.24: Why doesn’t RCU QSBR give ex-
actly ideal results?

Quick Quiz 9.25: Given RCU QSBR’s read-side per-
formance, why bother with any other flavor of userspace
RCU?

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(n

an
os

ec
on

ds
)

Number of CPUs

rcu

rwlock

Figure 9.17: Performance Advantage of RCU Over
Reader-Writer Locking

9.5.3.2 RCU is a Reader-Writer Lock Replacement

Perhaps the most common use of RCU within the Linux
kernel is as a replacement for reader-writer locking in
read-intensive situations. Nevertheless, this use of RCU
was not immediately apparent to me at the outset, in
fact, I chose to implement a lightweight reader-writer
lock [HW92]9 before implementing a general-purpose
RCU implementation back in the early 1990s. Each and
every one of the uses I envisioned for the lightweight
reader-writer lock was instead implemented using RCU.
In fact, it was more than three years before the lightweight
reader-writer lock saw its first use. Boy, did I feel foolish!

The key similarity between RCU and reader-writer
locking is that both have read-side critical sections that
can execute in parallel. In fact, in some cases, it is possible
to mechanically substitute RCU API members for the
corresponding reader-writer lock API members. But first,
why bother?

Advantages of RCU include performance, deadlock
immunity, and realtime latency. There are, of course,
limitations to RCU, including the fact that readers and
updaters run concurrently, that low-priority RCU readers
can block high-priority threads waiting for a grace period
to elapse, and that grace-period latencies can extend for
many milliseconds. These advantages and limitations are
discussed in the following sections.

9 Similar to brlock in the 2.4 Linux kernel and to lglock in more
recent Linux kernels.

140 CHAPTER 9. DEFERRED PROCESSING

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(n

an
os

ec
on

ds
)

Number of CPUs

rcu

rwlock

Figure 9.18: Performance Advantage of Preemptible
RCU Over Reader-Writer Locking

Performance The read-side performance advantages of
RCU over reader-writer locking are shown in Figure 9.17.

Quick Quiz 9.26: WTF? How the heck do you expect
me to believe that RCU has a 100-femtosecond overhead
when the clock period at 3 GHz is more than 300 picosec-
onds?

Note that reader-writer locking is orders of magnitude
slower than RCU on a single CPU, and is almost two
additional orders of magnitude slower on 16 CPUs. In
contrast, RCU scales quite well. In both cases, the error
bars span a single standard deviation in either direction.

A more moderate view may be obtained from a
CONFIG_PREEMPT kernel, though RCU still beats reader-
writer locking by between one and three orders of magni-
tude, as shown in Figure 9.18. Note the high variability
of reader-writer locking at larger numbers of CPUs. The
error bars span a single standard deviation in either direc-
tion.

Of course, the low performance of reader-writer lock-
ing in Figure 9.18 is exaggerated by the unrealistic zero-
length critical sections. The performance advantages of
RCU become less significant as the overhead of the crit-
ical section increases, as shown in Figure 9.19 for a 16-
CPU system, in which the y-axis represents the sum of
the overhead of the read-side primitives and that of the
critical section.

Quick Quiz 9.27: Why does both the variability and
overhead of rwlock decrease as the critical-section over-
head increases?

However, this observation must be tempered by the
fact that a number of system calls (and thus any RCU
read-side critical sections that they contain) can complete

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10

O
ve

rh
ea

d
(n

an
os

ec
on

ds
)

Critical-Section Duration (microseconds)

rcu

rwlock

Figure 9.19: Comparison of RCU to Reader-Writer Lock-
ing as Function of Critical-Section Duration

within a few microseconds.
In addition, as is discussed in the next section,

RCU read-side primitives are almost entirely deadlock-
immune.

Deadlock Immunity Although RCU offers significant
performance advantages for read-mostly workloads, one
of the primary reasons for creating RCU in the first place
was in fact its immunity to read-side deadlocks. This im-
munity stems from the fact that RCU read-side primitives
do not block, spin, or even do backwards branches, so
that their execution time is deterministic. It is therefore
impossible for them to participate in a deadlock cycle.

Quick Quiz 9.28: Is there an exception to this dead-
lock immunity, and if so, what sequence of events could
lead to deadlock?

An interesting consequence of RCU’s read-side dead-
lock immunity is that it is possible to unconditionally
upgrade an RCU reader to an RCU updater. Attempting
to do such an upgrade with reader-writer locking results
in deadlock. A sample code fragment that does an RCU
read-to-update upgrade follows:

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, &head, list_field) {
3 do_something_with(p);
4 if (need_update(p)) {
5 spin_lock(my_lock);
6 do_update(p);
7 spin_unlock(&my_lock);
8 }
9 }

10 rcu_read_unlock();

Note that do_update() is executed under the protec-
tion of the lock and under RCU read-side protection.

9.5. READ-COPY UPDATE (RCU) 141

RCU reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU readerRCU reader

RCU reader

RCU reader

spin rwlock writer

RCU updater

spin

spin

spin

Update Received

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

Time

Figure 9.20: Response Time of RCU vs. Reader-Writer
Locking

Another interesting consequence of RCU’s deadlock
immunity is its immunity to a large class of priority inver-
sion problems. For example, low-priority RCU readers
cannot prevent a high-priority RCU updater from acquir-
ing the update-side lock. Similarly, a low-priority RCU
updater cannot prevent high-priority RCU readers from
entering an RCU read-side critical section.

Quick Quiz 9.29: Immunity to both deadlock and pri-
ority inversion??? Sounds too good to be true. Why
should I believe that this is even possible?

Realtime Latency Because RCU read-side primitives
neither spin nor block, they offer excellent realtime laten-
cies. In addition, as noted earlier, this means that they are
immune to priority inversion involving the RCU read-side
primitives and locks.

However, RCU is susceptible to more subtle priority-
inversion scenarios, for example, a high-priority process
blocked waiting for an RCU grace period to elapse can be
blocked by low-priority RCU readers in -rt kernels. This
can be solved by using RCU priority boosting [McK07d,
GMTW08].

RCU Readers and Updaters Run Concurrently Be-
cause RCU readers never spin nor block, and because
updaters are not subject to any sort of rollback or abort se-
mantics, RCU readers and updaters must necessarily run
concurrently. This means that RCU readers might access
stale data, and might even see inconsistencies, either of
which can render conversion from reader-writer locking
to RCU non-trivial.

However, in a surprisingly large number of situations,

inconsistencies and stale data are not problems. The clas-
sic example is the networking routing table. Because rout-
ing updates can take considerable time to reach a given
system (seconds or even minutes), the system will have
been sending packets the wrong way for quite some time
when the update arrives. It is usually not a problem to con-
tinue sending updates the wrong way for a few additional
milliseconds. Furthermore, because RCU updaters can
make changes without waiting for RCU readers to finish,
the RCU readers might well see the change more quickly
than would batch-fair reader-writer-locking readers, as
shown in Figure 9.20.

Once the update is received, the rwlock writer cannot
proceed until the last reader completes, and subsequent
readers cannot proceed until the writer completes. How-
ever, these subsequent readers are guaranteed to see the
new value, as indicated by the green shading of the right-
most boxes. In contrast, RCU readers and updaters do not
block each other, which permits the RCU readers to see
the updated values sooner. Of course, because their exe-
cution overlaps that of the RCU updater, all of the RCU
readers might well see updated values, including the three
readers that started before the update. Nevertheless only
the green-shaded rightmost RCU readers are guaranteed
to see the updated values.

Reader-writer locking and RCU simply provide differ-
ent guarantees. With reader-writer locking, any reader
that begins after the writer begins is guaranteed to see
new values, and any reader that attempts to begin while
the writer is spinning might or might not see new values,
depending on the reader/writer preference of the rwlock
implementation in question. In contrast, with RCU, any
reader that begins after the updater completes is guar-
anteed to see new values, and any reader that completes
after the updater begins might or might not see new values,
depending on timing.

The key point here is that, although reader-writer lock-
ing does indeed guarantee consistency within the confines
of the computer system, there are situations where this
consistency comes at the price of increased inconsistency
with the outside world. In other words, reader-writer lock-
ing obtains internal consistency at the price of silently
stale data with respect to the outside world.

Nevertheless, there are situations where inconsistency
and stale data within the confines of the system can-
not be tolerated. Fortunately, there are a number of ap-
proaches that avoid inconsistency and stale data [McK04,
ACMS03], and some methods based on reference count-
ing are discussed in Section 9.2.

142 CHAPTER 9. DEFERRED PROCESSING

Low-Priority RCU Readers Can Block High-
Priority Reclaimers In Realtime RCU [GMTW08],
SRCU [McK06], or QRCU [McK07f] (see Sec-
tion 12.1.4), a preempted reader will prevent a grace
period from completing, even if a high-priority task
is blocked waiting for that grace period to complete.
Realtime RCU can avoid this problem by substituting
call_rcu() for synchronize_rcu() or by using
RCU priority boosting [McK07d, GMTW08], which is
still in experimental status as of early 2008. It might
become necessary to augment SRCU and QRCU with
priority boosting, but not before a clear real-world need
is demonstrated.

RCU Grace Periods Extend for Many Milliseconds
With the exception of QRCU and several of the “toy”
RCU implementations described in Appendix B, RCU
grace periods extend for multiple milliseconds. Although
there are a number of techniques to render such long
delays harmless, including use of the asynchronous in-
terfaces where available (call_rcu() and call_rcu_
bh()), this situation is a major reason for the rule of
thumb that RCU be used in read-mostly situations.

Comparison of Reader-Writer Locking and RCU
Code In the best case, the conversion from reader-writer
locking to RCU is quite simple, as shown in Listings 9.18,
9.19, and 9.20, all taken from Wikipedia [MPA+06].

More-elaborate cases of replacing reader-writer locking
with RCU are beyond the scope of this document.

9.5.3.3 RCU is a Restricted Reference-Counting
Mechanism

Because grace periods are not allowed to complete while
there is an RCU read-side critical section in progress,
the RCU read-side primitives may be used as a restricted
reference-counting mechanism. For example, consider
the following code fragment:

1 rcu_read_lock(); /* acquire reference. */
2 p = rcu_dereference(head);
3 /* do something with p. */
4 rcu_read_unlock(); /* release reference. */

The rcu_read_lock() primitive can be thought of as
acquiring a reference to p, because a grace period starting
after the rcu_dereference() assigns to p cannot pos-
sibly end until after we reach the matching rcu_read_
unlock(). This reference-counting scheme is restricted

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(n

an
os

ec
on

ds
)

Number of CPUs

rcu

refcnt

Figure 9.21: Performance of RCU vs. Reference Count-
ing

in that we are not allowed to block in RCU read-side crit-
ical sections, nor are we permitted to hand off an RCU
read-side critical section from one task to another.

Regardless of these restrictions, the following code can
safely delete p:

1 spin_lock(&mylock);
2 p = head;
3 rcu_assign_pointer(head, NULL);
4 spin_unlock(&mylock);
5 /* Wait for all references to be released. */
6 synchronize_rcu();
7 kfree(p);

The assignment to head prevents any future references
to p from being acquired, and the synchronize_rcu()
waits for any previously acquired references to be re-
leased.

Quick Quiz 9.30: But wait! This is exactly the same
code that might be used when thinking of RCU as a re-
placement for reader-writer locking! What gives?

Of course, RCU can also be combined with traditional
reference counting, as discussed in Section 13.2.

But why bother? Again, part of the answer is perfor-
mance, as shown in Figure 9.21, again showing data taken
on a 16-CPU 3 GHz Intel x86 system.

Quick Quiz 9.31: Why the dip in refcnt overhead near
6 CPUs?

And, as with reader-writer locking, the performance ad-
vantages of RCU are most pronounced for short-duration
critical sections, as shown Figure 9.22 for a 16-CPU sys-
tem. In addition, as with reader-writer locking, many
system calls (and thus any RCU read-side critical sections
that they contain) complete in a few microseconds.

9.5. READ-COPY UPDATE (RCU) 143

Listing 9.18: Converting Reader-Writer Locking to RCU: Data
1 struct el { 1 struct el {
2 struct list_head lp; 2 struct list_head lp;
3 long key; 3 long key;
4 spinlock_t mutex; 4 spinlock_t mutex;
5 int data; 5 int data;
6 /* Other data fields */ 6 /* Other data fields */
7 }; 7 };
8 DEFINE_RWLOCK(listmutex); 8 DEFINE_SPINLOCK(listmutex);
9 LIST_HEAD(head); 9 LIST_HEAD(head);

Listing 9.19: Converting Reader-Writer Locking to RCU: Search
1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 read_lock(&listmutex); 5 rcu_read_lock();
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry_rcu(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 *result = p->data; 8 *result = p->data;
9 read_unlock(&listmutex); 9 rcu_read_unlock();

10 return 1; 10 return 1;
11 } 11 }
12 } 12 }
13 read_unlock(&listmutex); 13 rcu_read_unlock();
14 return 0; 14 return 0;
15 } 15 }

Listing 9.20: Converting Reader-Writer Locking to RCU: Deletion
1 int delete(long key) 1 int delete(long key)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->lp); 8 list_del_rcu(&p->lp);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);

10 synchronize_rcu();
10 kfree(p); 11 kfree(p);
11 return 1; 12 return 1;
12 } 13 }
13 } 14 }
14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
15 return 0; 16 return 0;
16 } 17 }

144 CHAPTER 9. DEFERRED PROCESSING

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10

O
ve

rh
ea

d
(n

an
os

ec
on

ds
)

Critical-Section Duration (microseconds)

rcu

refcnt

Figure 9.22: Response Time of RCU vs. Reference
Counting

However, the restrictions that go with RCU can be quite
onerous. For example, in many cases, the prohibition
against sleeping while in an RCU read-side critical section
would defeat the entire purpose. The next section looks
at ways of addressing this problem, while also reducing
the complexity of traditional reference counting, at least
in some cases.

9.5.3.4 RCU is a Bulk Reference-Counting Mecha-
nism

As noted in the preceding section, traditional reference
counters are usually associated with a specific data struc-
ture, or perhaps a specific group of data structures. How-
ever, maintaining a single global reference counter for a
large variety of data structures typically results in bounc-
ing the cache line containing the reference count. Such
cache-line bouncing can severely degrade performance.

In contrast, RCU’s light-weight read-side primitives
permit extremely frequent read-side usage with negligible
performance degradation, permitting RCU to be used
as a “bulk reference-counting” mechanism with little or
no performance penalty. Situations where a reference
must be held by a single task across a section of code
that blocks may be accommodated with Sleepable RCU
(SRCU) [McK06]. This fails to cover the not-uncommon
situation where a reference is “passed” from one task
to another, for example, when a reference is acquired
when starting an I/O and released in the corresponding
completion interrupt handler. (In principle, this could be
handled by the SRCU implementation, but in practice, it
is not yet clear whether this is a good tradeoff.)

Of course, SRCU brings restrictions of its own, namely
that the return value from srcu_read_lock() be passed
into the corresponding srcu_read_unlock(), and that
no SRCU primitives be invoked from hardware interrupt
handlers or from non-maskable interrupt (NMI) handlers.
The jury is still out as to how much of a problem is pre-
sented by these restrictions, and as to how they can best
be handled.

9.5.3.5 RCU is a Poor Man’s Garbage Collector

A not-uncommon exclamation made by people first learn-
ing about RCU is “RCU is sort of like a garbage collector!”
This exclamation has a large grain of truth, but it can also
be misleading.

Perhaps the best way to think of the relationship be-
tween RCU and automatic garbage collectors (GCs) is
that RCU resembles a GC in that the timing of collection
is automatically determined, but that RCU differs from a
GC in that: (1) the programmer must manually indicate
when a given data structure is eligible to be collected, and
(2) the programmer must manually mark the RCU read-
side critical sections where references might legitimately
be held.

Despite these differences, the resemblance does go
quite deep, and has appeared in at least one theoretical
analysis of RCU. Furthermore, the first RCU-like mecha-
nism I am aware of used a garbage collector to handle the
grace periods. Nevertheless, a better way of thinking of
RCU is described in the following section.

9.5.3.6 RCU is a Way of Providing Existence Guar-
antees

Gamsa et al. [GKAS99] discuss existence guarantees and
describe how a mechanism resembling RCU can be used
to provide these existence guarantees (see section 5 on
page 7 of the PDF), and Section 7.4 discusses how to
guarantee existence via locking, along with the ensuing
disadvantages of doing so. The effect is that if any RCU-
protected data element is accessed within an RCU read-
side critical section, that data element is guaranteed to
remain in existence for the duration of that RCU read-side
critical section.

Listing 9.21 demonstrates how RCU-based existence
guarantees can enable per-element locking via a function
that deletes an element from a hash table. Line 6 computes
a hash function, and line 7 enters an RCU read-side criti-
cal section. If line 9 finds that the corresponding bucket
of the hash table is empty or that the element present is

9.5. READ-COPY UPDATE (RCU) 145

Listing 9.21: Existence Guarantees Enable Per-Element Lock-
ing

1 int delete(int key)
2 {
3 struct element *p;
4 int b;
5

6 b = hashfunction(key);
7 rcu_read_lock();
8 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {

10 rcu_read_unlock();
11 return 0;
12 }
13 spin_lock(&p->lock);
14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock();
16 rcu_assign_pointer(hashtable[b], NULL);
17 spin_unlock(&p->lock);
18 synchronize_rcu();
19 kfree(p);
20 return 1;
21 }
22 spin_unlock(&p->lock);
23 rcu_read_unlock();
24 return 0;
25 }

not the one we wish to delete, then line 10 exits the RCU
read-side critical section and line 11 indicates failure.

Quick Quiz 9.32: What if the element we need to
delete is not the first element of the list on line 9 of List-
ing 9.21?

Otherwise, line 13 acquires the update-side spinlock,
and line 14 then checks that the element is still the one
that we want. If so, line 15 leaves the RCU read-side
critical section, line 16 removes it from the table, line 17
releases the lock, line 18 waits for all pre-existing RCU
read-side critical sections to complete, line 19 frees the
newly removed element, and line 20 indicates success. If
the element is no longer the one we want, line 22 releases
the lock, line 23 leaves the RCU read-side critical section,
and line 24 indicates failure to delete the specified key.

Quick Quiz 9.33: Why is it OK to exit the RCU read-
side critical section on line 15 of Listing 9.21 before
releasing the lock on line 17?

Quick Quiz 9.34: Why not exit the RCU read-side
critical section on line 23 of Listing 9.21 before releasing
the lock on line 22?

Alert readers will recognize this as only a slight varia-
tion on the original “RCU is a way of waiting for things
to finish” theme, which is addressed in Section 9.5.3.8.
They might also note the deadlock-immunity advantages
over the lock-based existence guarantees discussed in
Section 7.4.

9.5.3.7 RCU is a Way of Providing Type-Safe Mem-
ory

A number of lockless algorithms do not require that a
given data element keep the same identity through a given
RCU read-side critical section referencing it—but only if
that data element retains the same type. In other words,
these lockless algorithms can tolerate a given data element
being freed and reallocated as the same type of structure
while they are referencing it, but must prohibit a change
in type. This guarantee, called “type-safe memory” in
academic literature [GC96], is weaker than the existence
guarantees in the previous section, and is therefore quite
a bit harder to work with. Type-safe memory algorithms
in the Linux kernel make use of slab caches, specially
marking these caches with SLAB_DESTROY_BY_RCU so
that RCU is used when returning a freed-up slab to sys-
tem memory. This use of RCU guarantees that any in-use
element of such a slab will remain in that slab, thus re-
taining its type, for the duration of any pre-existing RCU
read-side critical sections.

Quick Quiz 9.35: But what if there is an arbitrarily
long series of RCU read-side critical sections in multi-
ple threads, so that at any point in time there is at least
one thread in the system executing in an RCU read-side
critical section? Wouldn’t that prevent any data from a
SLAB_DESTROY_BY_RCU slab ever being returned to the
system, possibly resulting in OOM events?

These algorithms typically use a validation step that
checks to make sure that the newly referenced data struc-
ture really is the one that was requested [LS86, Section
2.5]. These validation checks require that portions of the
data structure remain untouched by the free-reallocate
process. Such validation checks are usually very hard to
get right, and can hide subtle and difficult bugs.

Therefore, although type-safety-based lockless algo-
rithms can be extremely helpful in a very few difficult
situations, you should instead use existence guarantees
where possible. Simpler is after all almost always better!

9.5.3.8 RCU is a Way of Waiting for Things to Fin-
ish

As noted in Section 9.5.2 an important component of
RCU is a way of waiting for RCU readers to finish. One
of RCU’s great strengths is that it allows you to wait for
each of thousands of different things to finish without
having to explicitly track each and every one of them, and
without having to worry about the performance degrada-
tion, scalability limitations, complex deadlock scenarios,

146 CHAPTER 9. DEFERRED PROCESSING

and memory-leak hazards that are inherent in schemes
that use explicit tracking.

In this section, we will show how synchronize_
sched()’s read-side counterparts (which include any-
thing that disables preemption, along with hardware oper-
ations and primitives that disable interrupts) permit you
to implement interactions with non-maskable interrupt
(NMI) handlers that would be quite difficult if using lock-
ing. This approach has been called “Pure RCU” [McK04],
and it is used in a number of places in the Linux kernel.

The basic form of such “Pure RCU” designs is as fol-
lows:

1. Make a change, for example, to the way that the OS
reacts to an NMI.

2. Wait for all pre-existing read-side critical sections
to completely finish (for example, by using the
synchronize_sched() primitive). The key obser-
vation here is that subsequent RCU read-side critical
sections are guaranteed to see whatever change was
made.

3. Clean up, for example, return status indicating that
the change was successfully made.

The remainder of this section presents example code
adapted from the Linux kernel. In this example, the
timer_stop function uses synchronize_sched() to
ensure that all in-flight NMI notifications have completed
before freeing the associated resources. A simplified ver-
sion of this code is shown Listing 9.22.

Lines 1-4 define a profile_buffer structure, con-
taining a size and an indefinite array of entries. Line 5
defines a pointer to a profile buffer, which is presumably
initialized elsewhere to point to a dynamically allocated
region of memory.

Lines 7-16 define the nmi_profile() function, which
is called from within an NMI handler. As such, it can-
not be preempted, nor can it be interrupted by a normal
interrupts handler, however, it is still subject to delays
due to cache misses, ECC errors, and cycle stealing by
other hardware threads within the same core. Line 9
gets a local pointer to the profile buffer using the rcu_
dereference() primitive to ensure memory ordering
on DEC Alpha, and lines 11 and 12 exit from this func-
tion if there is no profile buffer currently allocated, while
lines 13 and 14 exit from this function if the pcvalue
argument is out of range. Otherwise, line 15 increments
the profile-buffer entry indexed by the pcvalue argument.
Note that storing the size with the buffer guarantees that

Listing 9.22: Using RCU to Wait for NMIs to Finish
1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6

7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p = rcu_dereference(buf);

10

11 if (p == NULL)
12 return;
13 if (pcvalue >= p->size)
14 return;
15 atomic_inc(&p->entry[pcvalue]);
16 }
17

18 void nmi_stop(void)
19 {
20 struct profile_buffer *p = buf;
21

22 if (p == NULL)
23 return;
24 rcu_assign_pointer(buf, NULL);
25 synchronize_sched();
26 kfree(p);
27 }

the range check matches the buffer, even if a large buffer
is suddenly replaced by a smaller one.

Lines 18-27 define the nmi_stop() function, where
the caller is responsible for mutual exclusion (for exam-
ple, holding the correct lock). Line 20 fetches a pointer to
the profile buffer, and lines 22 and 23 exit the function if
there is no buffer. Otherwise, line 24 NULLs out the profile-
buffer pointer (using the rcu_assign_pointer() prim-
itive to maintain memory ordering on weakly ordered ma-
chines), and line 25 waits for an RCU Sched grace period
to elapse, in particular, waiting for all non-preemptible re-
gions of code, including NMI handlers, to complete. Once
execution continues at line 26, we are guaranteed that any
instance of nmi_profile() that obtained a pointer to
the old buffer has returned. It is therefore safe to free the
buffer, in this case using the kfree() primitive.

Quick Quiz 9.36: Suppose that the nmi_profile()
function was preemptible. What would need to change to
make this example work correctly?

In short, RCU makes it easy to dynamically switch
among profile buffers (you just try doing this efficiently
with atomic operations, or at all with locking!). However,
RCU is normally used at a higher level of abstraction, as
was shown in the previous sections.

9.5.3.9 RCU Usage Summary

At its core, RCU is nothing more nor less than an API
that provides:

9.5. READ-COPY UPDATE (RCU) 147

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and

3. a discipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

That said, it is possible to build higher-level con-
structs on top of RCU, including the reader-writer-locking,
reference-counting, and existence-guarantee constructs
listed in the earlier sections. Furthermore, I have no doubt
that the Linux community will continue to find interesting
new uses for RCU, as well as for any of a number of other
synchronization primitives.

Need Fully Fresh and Consistent Data

Read-M
ostly, Stale

& Inconsistent Data O
K

(RCU W
orks G

reat!!!)

(RCU W
orks W

ell)
Read-M

ostly,

Need Consistent Data

Read-W
rite,

Need Consistent Data

(RCU M
ight Be O

K...)

W
rite-M

ostly,

Need Consistent Data

(RCU Not Best)*

10
0%

 W
rit

es

10
0%

 R
ea

ds

Stale and Inconsistent Data OK

Pre-BSD Routing Table

* 1. RCU provides ABA protection for update-friendly synchronization mechanisms
* 2. RCU provides bounded wait-free read-side primitives for real-time use

Figure 9.23: RCU Areas of Applicability

In the meantime, Figure 9.23 shows some rough rules
of thumb on where RCU is most helpful.

As shown in the blue box at the top of the figure, RCU
works best if you have read-mostly data where stale and
inconsistent data is permissible (but see below for more
information on stale and inconsistent data). The canonical
example of this case in the Linux kernel is routing tables.
Because it may have taken many seconds or even minutes
for the routing updates to propagate across Internet, the
system has been sending packets the wrong way for quite
some time. Having some small probability of continuing
to send some of them the wrong way for a few more
milliseconds is almost never a problem.

If you have a read-mostly workload where consistent
data is required, RCU works well, as shown by the green
“read-mostly, need consistent data” box. One example of
this case is the Linux kernel’s mapping from user-level
System-V semaphore IDs to the corresponding in-kernel

data structures. Semaphores tend to be used far more
frequently than they are created and destroyed, so this
mapping is read-mostly. However, it would be erroneous
to perform a semaphore operation on a semaphore that
has already been deleted. This need for consistency is
handled by using the lock in the in-kernel semaphore data
structure, along with a “deleted” flag that is set when
deleting a semaphore. If a user ID maps to an in-kernel
data structure with the “deleted” flag set, the data structure
is ignored, so that the user ID is flagged as invalid.

Although this requires that the readers acquire a lock
for the data structure representing the semaphore itself, it
allows them to dispense with locking for the mapping data
structure. The readers therefore locklessly traverse the
tree used to map from ID to data structure, which in turn
greatly improves performance, scalability, and real-time
response.

As indicated by the yellow “read-write” box, RCU can
also be useful for read-write workloads where consistent
data is required, although usually in conjunction with a
number of other synchronization primitives. For example,
the directory-entry cache in recent Linux kernels uses
RCU in conjunction with sequence locks, per-CPU locks,
and per-data-structure locks to allow lockless traversal of
pathnames in the common case. Although RCU can be
very beneficial in this read-write case, such use is often
more complex than that of the read-mostly cases.

Finally, as indicated by the red box at the bottom of
the figure, update-mostly workloads requiring consistent
data are rarely good places to use RCU, though there
are some exceptions [DMS+12]. In addition, as noted
in Section 9.5.3.7, within the Linux kernel, the SLAB_
DESTROY_BY_RCU slab-allocator flag provides type-safe
memory to RCU readers, which can greatly simplify non-
blocking synchronization and other lockless algorithms.

In short, RCU is an API that includes a publish-
subscribe mechanism for adding new data, a way of wait-
ing for pre-existing RCU readers to finish, and a disci-
pline of maintaining multiple versions to allow updates
to avoid harming or unduly delaying concurrent RCU
readers. This RCU API is best suited for read-mostly
situations, especially if stale and inconsistent data can be
tolerated by the application.

9.5.4 RCU Linux-Kernel API

This section looks at RCU from the viewpoint of its
Linux-kernel API. Section 9.5.4.1 presents RCU’s wait-to-
finish APIs, and Section 9.5.4.2 presents RCU’s publish-

148 CHAPTER 9. DEFERRED PROCESSING

subscribe and version-maintenance APIs. Finally, Sec-
tion 9.5.4.4 presents concluding remarks.

9.5.4.1 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is
that RCU is an API used in the Linux kernel, as sum-
marized by Table 9.3, which shows the wait-for-RCU-
readers portions of the non-sleepable and sleepable APIs,
respectively, and by Table 9.4, which shows the publish-
subscribe portions of the API.

If you are new to RCU, you might consider focusing
on just one of the columns in Table 9.3, each of which
summarizes one member of the Linux kernel’s RCU API
family. For example, if you are primarily interested in un-
derstanding how RCU is used in the Linux kernel, “RCU
Classic” would be the place to start, as it is used most
frequently. On the other hand, if you want to understand
RCU for its own sake, “SRCU” has the simplest API. You
can always come back for the other columns later.

If you are already familiar with RCU, these tables can
serve as a useful reference.

Quick Quiz 9.37: Why do some of the cells in Ta-
ble 9.3 have exclamation marks (“!”)?

The “RCU Classic” column corresponds to the original
RCU implementation, in which RCU read-side critical
sections are delimited by rcu_read_lock() and rcu_
read_unlock(), which may be nested. The correspond-
ing synchronous update-side primitives, synchronize_
rcu(), along with its synonym synchronize_net(),
wait for any currently executing RCU read-side critical
sections to complete. The length of this wait is known
as a “grace period”. The asynchronous update-side prim-
itive, call_rcu(), invokes a specified function with a
specified argument after a subsequent grace period. For
example, call_rcu(p,f); will result in the “RCU call-
back” f(p) being invoked after a subsequent grace pe-
riod. There are situations, such as when unloading a
Linux-kernel module that uses call_rcu(), when it
is necessary to wait for all outstanding RCU callbacks
to complete [McK07e]. The rcu_barrier() primitive
does this job. Note that the more recent hierarchical
RCU [McK08a] implementation also adheres to “RCU
Classic” semantics.

Finally, RCU may be used to provide type-safe mem-
ory [GC96], as described in Section 9.5.3.7. In the context
of RCU, type-safe memory guarantees that a given data
element will not change type during any RCU read-side
critical section that accesses it. To make use of RCU-
based type-safe memory, pass SLAB_DESTROY_BY_RCU

to kmem_cache_create(). It is important to note that
SLAB_DESTROY_BY_RCU will in no way prevent kmem_
cache_alloc() from immediately reallocating memory
that was just now freed via kmem_cache_free()! In
fact, the SLAB_DESTROY_BY_RCU-protected data struc-
ture just returned by rcu_dereference might be freed
and reallocated an arbitrarily large number of times, even
when under the protection of rcu_read_lock(). In-
stead, SLAB_DESTROY_BY_RCU operates by preventing
kmem_cache_free() from returning a completely freed-
up slab of data structures to the system until after an RCU
grace period elapses. In short, although the data element
might be freed and reallocated arbitrarily often, at least
its type will remain the same.

Quick Quiz 9.38: How do you prevent a huge num-
ber of RCU read-side critical sections from indefinitely
blocking a synchronize_rcu() invocation?

Quick Quiz 9.39: The synchronize_rcu() API
waits for all pre-existing interrupt handlers to complete,
right?

In the “RCU BH” column, rcu_read_lock_bh() and
rcu_read_unlock_bh() delimit RCU read-side critical
sections, synchronize_rcu_bh() waits for a grace pe-
riod, and call_rcu_bh() invokes the specified function
and argument after a later grace period.

Quick Quiz 9.40: What happens if you mix and
match? For example, suppose you use rcu_read_
lock() and rcu_read_unlock() to delimit RCU read-
side critical sections, but then use call_rcu_bh() to
post an RCU callback?

Quick Quiz 9.41: Hardware interrupt handlers can be
thought of as being under the protection of an implicit
rcu_read_lock_bh(), right?

In the “RCU Sched” column, anything that disables
preemption acts as an RCU read-side critical section,
and synchronize_sched() waits for the correspond-
ing RCU grace period. This RCU API family was added
in the 2.6.12 kernel, which split the old synchronize_
kernel() API into the current synchronize_rcu()
(for RCU Classic) and synchronize_sched() (for
RCU Sched). Note that RCU Sched did not originally
have an asynchronous call_rcu_sched() interface, but
one was added in 2.6.26. In accordance with the quasi-
minimalist philosophy of the Linux community, APIs are
added on an as-needed basis.

Quick Quiz 9.42: What happens if you mix and match
RCU Classic and RCU Sched?

Quick Quiz 9.43: In general, you cannot rely on
synchronize_sched() to wait for all pre-existing in-

9.5. READ-COPY UPDATE (RCU) 149

Ta
bl

e
9.

3:
R

C
U

W
ai

t-
to

-F
in

is
h

A
PI

s

A
ttr

ib
ut

e
R

C
U

C
la

ss
ic

R
C

U
B

H
R

C
U

Sc
he

d
R

ea
lti

m
e

R
C

U
SR

C
U

Pu
rp

os
e

O
ri

gi
na

l
Pr

ev
en

tD
D

oS
at

ta
ck

s
W

ai
tf

or
pr

ee
m

pt
-d

is
ab

le
re

gi
on

s,
ha

rd
irq

s,
&

N
M

Is
R

ea
lti

m
e

re
sp

on
se

Sl
ee

pi
ng

re
ad

er
s

A
va

ila
bi

lit
y

2.
5.

43
2.

6.
9

2.
6.

12
2.

6.
26

2.
6.

19

R
ea

d-
si

de
pr

im
iti

ve
s

rc
u_

re
ad

_l
oc

k(
)

!
rc

u_
re

ad
_u

nl
oc

k(
)

!
rc

u_
re

ad
_l

oc
k_

bh
()

rc
u_

re
ad

_u
nl

oc
k_

bh
()

pr
ee

mp
t_

di
sa

bl
e(

)
pr

ee
mp

t_
en

ab
le

()
(a

nd
fr

ie
nd

s)

rc
u_

re
ad

_l
oc

k(
)

rc
u_

re
ad

_u
nl

oc
k(

)
sr

cu
_r

ea
d_

lo
ck

()
sr

cu
_r

ea
d_

un
lo

ck
()

U
pd

at
e-

si
de

pr
im

iti
ve

s
(s

yn
ch

ro
no

us
)

sy
nc

hr
on

iz
e_

rc
u(

)
sy

nc
hr

on
iz

e_
ne

t(
)

sy
nc

hr
on

iz
e_

rc
u_

bh
()

sy
nc

hr
on

iz
e_

sc
he

d(
)

sy
nc

hr
on

iz
e_

rc
u(

)
sy

nc
hr

on
iz

e_
ne

t(
)

sy
nc

hr
on

iz
e_

sr
cu

()

U
pd

at
e-

si
de

pr
im

iti
ve

s
(a

sy
nc

hr
on

ou
s/

ca
llb

ac
k)

ca
ll

_r
cu

()
!

ca
ll

_r
cu

_b
h(

)
ca

ll
_r

cu
_s

ch
ed

()
ca

ll
_r

cu
()

ca
ll

_s
rc

u(
)

U
pd

at
e-

si
de

pr
im

iti
ve

s
(w

ai
tf

or
ca

llb
ac

ks
)

rc
u_

ba
rr

ie
r(

)
rc

u_
ba

rr
ie

r_
bh

()
rc

u_
ba

rr
ie

r_
sc

he
d(

)
rc

u_
ba

rr
ie

r(
)

N
/A

Ty
pe

-s
af

e
m

em
or

y
SL

AB
_D

ES
TR

OY
_B

Y_
RC

U
SL

AB
_D

ES
TR

OY
_B

Y_
RC

U

R
ea

d
si

de
co

ns
tr

ai
nt

s
N

o
bl

oc
ki

ng
N

o
bo

tto
m

-h
al

f(
B

H
)

en
ab

lin
g

N
o

bl
oc

ki
ng

O
nl

y
pr

ee
m

pt
io

n
an

d
lo

ck
ac

qu
is

iti
on

N
o

sy
nc

hr
on

iz
e_

sr
cu

()
w

ith
sa

m
e

sr
cu

_s
tr

uc
t

R
ea

d
si

de
ov

er
he

ad
Pr

ee
m

pt
di

sa
bl

e/
en

ab
le

(f
re

e
on

no
n-

PR
EE

MP
T)

B
H

di
sa

bl
e/

en
ab

le
Pr

ee
m

pt
di

sa
bl

e/
en

ab
le

(f
re

e
on

no
n-

PR
EE

MP
T)

Si
m

pl
e

in
st

ru
ct

io
ns

,I
R

Q
di

sa
bl

e/
en

ab
le

Si
m

pl
e

in
st

ru
ct

io
ns

,
pr

ee
m

pt
di

sa
bl

e/
en

ab
le

,
m

em
or

y
ba

rr
ie

rs

A
sy

nc
hr

on
ou

s
up

da
te

-s
id

e
ov

er
he

ad
su

b-
m

ic
ro

se
co

nd
su

b-
m

ic
ro

se
co

nd
su

b-
m

ic
ro

se
co

nd
su

b-
m

ic
ro

se
co

nd
N

/A

G
ra

ce
-p

er
io

d
la

te
nc

y
10

s
of

m
ill

is
ec

on
ds

10
s

of
m

ill
is

ec
on

ds
10

s
of

m
ill

is
ec

on
ds

10
s

of
m

ill
is

ec
on

ds
10

s
of

m
ill

is
ec

on
ds

N
on

-P
RE

EM
PT

_R
T

im
pl

em
en

ta
tio

n
R

C
U

C
la

ss
ic

R
C

U
B

H
R

C
U

C
la

ss
ic

Pr
ee

m
pt

ib
le

R
C

U
SR

C
U

PR
EE

MP
T_

RT
im

pl
em

en
ta

tio
n

Pr
ee

m
pt

ib
le

R
C

U
R

ea
lti

m
e

R
C

U
Fo

rc
ed

Sc
he

du
le

on
al

l
C

PU
s

R
ea

lti
m

e
R

C
U

SR
C

U

150 CHAPTER 9. DEFERRED PROCESSING

terrupt handlers, right?
The “Realtime RCU” column has the same API as does

RCU Classic, the only difference being that RCU read-
side critical sections may be preempted and may block
while acquiring spinlocks. The design of Realtime RCU
is described elsewhere [McK07a].

The “SRCU” column in Table 9.3 displays a special-
ized RCU API that permits general sleeping in RCU
read-side critical sections [McK06]. Of course, use of
synchronize_srcu() in an SRCU read-side critical sec-
tion can result in self-deadlock, so should be avoided.
SRCU differs from earlier RCU implementations in that
the caller allocates an srcu_struct for each distinct
SRCU usage. This approach prevents SRCU read-side
critical sections from blocking unrelated synchronize_
srcu() invocations. In addition, in this variant of RCU,
srcu_read_lock() returns a value that must be passed
into the corresponding srcu_read_unlock().

Quick Quiz 9.44: Why should you be careful with
call_srcu()?

Quick Quiz 9.45: Under what conditions can
synchronize_srcu() be safely used within an SRCU
read-side critical section?

The Linux kernel currently has a surprising number
of RCU APIs and implementations. There is some hope
of reducing this number, evidenced by the fact that a
given build of the Linux kernel currently has at most
four implementations behind three APIs (given that RCU
Classic and Realtime RCU share the same API). However,
careful inspection and analysis will be required, just as
would be required in order to eliminate one of the many
locking APIs.

The various RCU APIs are distinguished by the
forward-progress guarantees that their RCU read-side
critical sections must provide, and also by their scope, as
follows:

1. RCU BH: read-side critical sections must guarantee
forward progress against everything except for NMI
and interrupt handlers, but not including software-
interrupt (softirq) handlers. RCU BH is global in
scope.

2. RCU Sched: read-side critical sections must guaran-
tee forward progress against everything except for
NMI and IRQ handlers, including softirq handlers.
RCU Sched is global in scope.

3. RCU (both classic and real-time): read-side critical
sections must guarantee forward progress against
everything except for NMI handlers, IRQ handlers,

softirq handlers, and (in the real-time case) higher-
priority real-time tasks. RCU is global in scope.

4. SRCU: read-side critical sections need not guarantee
forward progress unless some other task is waiting
for the corresponding grace period to complete, in
which case these read-side critical sections should
complete in no more than a few seconds (and prefer-
ably much more quickly).10 SRCU’s scope is defined
by the use of the corresponding srcu_struct.

In other words, SRCU compensate for their extremely
weak forward-progress guarantees by permitting the de-
veloper to restrict their scope.

9.5.4.2 RCU has Publish-Subscribe and Version-
Maintenance APIs

Fortunately, the RCU publish-subscribe and version-
maintenance primitives shown in Table 9.4 apply to all
of the variants of RCU discussed above. This common-
ality can in some cases allow more code to be shared,
which certainly reduces the API proliferation that would
otherwise occur. The original purpose of the RCU
publish-subscribe APIs was to bury memory barriers into
these APIs, so that Linux kernel programmers could use
RCU without needing to become expert on the memory-
ordering models of each of the 20+ CPU families that
Linux supports [Spr01].

The first pair of categories operate on Linux struct
list_head lists, which are circular, doubly-linked lists.
The list_for_each_entry_rcu() primitive traverses
an RCU-protected list in a type-safe manner, while also
enforcing memory ordering for situations where a new list
element is inserted into the list concurrently with traver-
sal. On non-Alpha platforms, this primitive incurs little or
no performance penalty compared to list_for_each_
entry(). The list_add_rcu(), list_add_tail_
rcu(), and list_replace_rcu() primitives are analo-
gous to their non-RCU counterparts, but incur the over-
head of an additional memory barrier on weakly-ordered
machines. The list_del_rcu() primitive is also analo-
gous to its non-RCU counterpart, but oddly enough is very
slightly faster due to the fact that it poisons only the prev
pointer rather than both the prev and next pointers as
list_del() must do. Finally, the list_splice_init_
rcu() primitive is similar to its non-RCU counterpart,
but incurs a full grace-period latency. The purpose of this

10 Thanks to James Bottomley for urging me to this formulation, as
opposed to simply saying that there are no forward-progress guarantees.

9.5. READ-COPY UPDATE (RCU) 151

Table 9.4: RCU Publish-Subscribe and Version Maintenance APIs

Category Primitives Availability Overhead

List traversal list_for_each_entry_rcu() 2.5.59 Simple instructions (mem-
ory barrier on Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcu() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal hlist_for_each_entry_rcu() 2.6.8 Simple instructions (mem-
ory barrier on Alpha)

Hlist update hlist_add_behind_rcu() 2.6.14 Memory barrier
(Renamed from hlist_add_after_rcu() in 3.17)

hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference() 2.6.9 Simple instructions (mem-
ory barrier on Alpha)

Pointer update rcu_assign_pointer() 2.6.10 Memory barrier

grace period is to allow RCU readers to finish their tra-
versal of the source list before completely disconnecting
it from the list header—failure to do this could prevent
such readers from ever terminating their traversal.

Quick Quiz 9.46: Why doesn’t list_del_rcu() poi-
son both the next and prev pointers?

The second pair of categories operate on Linux’s
struct hlist_head, which is a linear linked list. One
advantage of struct hlist_head over struct list_
head is that the former requires only a single-pointer list
header, which can save significant memory in large hash
tables. The struct hlist_head primitives in the table
relate to their non-RCU counterparts in much the same
way as do the struct list_head primitives.

The final pair of categories operate directly on point-
ers, and are useful for creating RCU-protected non-list
data structures, such as RCU-protected arrays and trees.
The rcu_assign_pointer() primitive ensures that any
prior initialization remains ordered before the assignment
to the pointer on weakly ordered machines. Similarly, the
rcu_dereference() primitive ensures that subsequent
code dereferencing the pointer will see the effects of ini-
tialization code prior to the corresponding rcu_assign_
pointer() on Alpha CPUs. On non-Alpha CPUs, rcu_
dereference() documents which pointer dereferences

ca
ll_

rc
u(

)
NMI

Process

IRQ

synchronize_rcu()

rc
u_

de
re

fe
re

nc
e(

)
R

C
U

 L
is

t T
ra

ve
rs

al

rc
u_

re
ad

_u
nl

oc
k(

)
rc

u_
re

ad
_l

oc
k(

)

R
C

U
 L

is
t M

ut
at

io
n

rc
u_

as
si

gn
_p

oi
nt

er
()

Figure 9.24: RCU API Usage Constraints

are protected by RCU.

Quick Quiz 9.47: Normally, any pointer subject to
rcu_dereference() must always be updated using
rcu_assign_pointer(). What is an exception to this
rule?

Quick Quiz 9.48: Are there any downsides to the fact
that these traversal and update primitives can be used with
any of the RCU API family members?

152 CHAPTER 9. DEFERRED PROCESSING

9.5.4.3 Where Can RCU’s APIs Be Used?

Figure 9.24 shows which APIs may be used in which in-
kernel environments. The RCU read-side primitives may
be used in any environment, including NMI, the RCU mu-
tation and asynchronous grace-period primitives may be
used in any environment other than NMI, and, finally, the
RCU synchronous grace-period primitives may be used
only in process context. The RCU list-traversal prim-
itives include list_for_each_entry_rcu(), hlist_
for_each_entry_rcu(), etc. Similarly, the RCU list-
mutation primitives include list_add_rcu(), hlist_
del_rcu(), etc.

Note that primitives from other families of RCU may
be substituted, for example, srcu_read_lock() may be
used in any context in which rcu_read_lock() may be
used.

9.5.4.4 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API
that supports publication and subscription for insertions,
waiting for all RCU readers to complete, and mainte-
nance of multiple versions. That said, it is possible to
build higher-level constructs on top of RCU, including the
reader-writer-locking, reference-counting, and existence-
guarantee constructs listed in Section 9.5.3. Furthermore,
I have no doubt that the Linux community will continue
to find interesting new uses for RCU, just as they do for
any of a number of synchronization primitives throughout
the kernel.

Of course, a more-complete view of RCU would also
include all of the things you can do with these APIs.

However, for many people, a complete view of RCU
must include sample RCU implementations. Appendix B
therefore presents a series of “toy” RCU implementations
of increasing complexity and capability. For everyone
else, the next section gives an overview of both academic
and industry use of RCU.

9.5.5 RCU Related Work

The known first mention of anything resembling
RCU took the form of a bug report from Donald
Knuth [Knu73, page 413 of Fundamental Algorithms]
against J. Weizenbaum’s SLIP list-processing facility for
FORTRAN [Wei63]. Knuth was justified in reporting the
bug, as SLIP had no notion of any sort of grace-period
guarantee.

The first known non-bug-report mention of anything
resembing RCU appeared in Kung’s and Lehman’s land-
mark paper [KL80]. There was some additional use
of this technique in academia [ML82, ML84, Lis88,
Pug90, And91, PAB+95, CAK+96, RSB+97, GKAS99],
but much of the work in this area was carried out by prac-
titioners [RTY+87, HOS89, Jac93, Joh95, SM95, SM97,
SM98, MS98a]. By the year 2000, the initiative had
passed to open-source projects, most notably the Linux
kernel community [Rus00a, Rus00b, MS01, MAK+01,
MSA+02, ACMS03].11

However, in the mid 2010s, there was a welcome up-
surge in RCU research and development across a number
of communities and institutions [Kaa15]. Section 9.5.5.1
describes uses of RCU, Section 9.5.5.2 describes RCU im-
plementations (as well as work that both creates and uses
an implementation), and finally, Section 9.5.5.3 describes
verification and validation of RCU and its uses.

9.5.5.1 RCU Uses

Phil Howard and Jon Walpole of Portland State Univer-
sity (PSU) have applied RCU to red-black trees [How12,
HW11] combined with updates synchronized using soft-
ware transactional memory. Josh Triplett and Jon
Walpole (again of PSU) applied RCU to resizable hash
tables [Tri12, TMW11, Cor14b, Cor14c]. Other RCU-
protected resizable hash tables have been created by Her-
bert Xu [Xu10] and by Mathieu Desnoyers [MDJ13a].

Austin Clements, Frans Kaashoek, and Nickolai Zel-
dovich of MIT created an RCU-optimized balanced bi-
nary tree (Bonsai) [CKZ12], and applied this tree to the
Linux kernel’s VM subsystem in order to reduce read-side
contention on the Linux kernel’s mmap_sem. This work
resulted in order-of-magnitude speedups and scalability
up to at least 80 CPUs for a microbenchmark featuring
large numbers of minor page faults. This is similar to a
patch developed earlier by Peter Zijlstra [Zij14], and both
were limited by the fact that, at the time, filesystem data
structures were not safe for RCU readers. Clements et
al. avoided this limitation by optimizing the page-fault
path for anonymous pages only. More recently, filesys-
tem data structures have been made safe for RCU read-
ers [Cor10a, Cor11], so perhaps this work can be imple-
mented for all page types, not just anonymous pages—
Peter Zijlstra has, in fact, recently prototyped exactly this.

Yandong Mao and Robert Morris of MIT and Ed-

11 A list of citations with well over 200 entries may be found in
bib/RCU.bib in the LATEX source for this book.

9.5. READ-COPY UPDATE (RCU) 153

die Kohler of Harvard University created another RCU-
protected tree named Masstree [MKM12] that combines
ideas from B+ trees and tries. Although this tree is about
2.5x slower than an RCU-protected hash table, it supports
operations on key ranges, unlike hash tables. In addition,
Masstree supports efficient storage of objects with long
shared key prefixes and, furthermore, provides persistence
via logging to mass storage.

The paper notes that Masstree’s performance rivals
that of memcached, even given that Masstree is persis-
tently storing updates and memcached is not. The paper
also compares Masstree’s performance to the persistent
datastores MongoDB, VoltDB, and Redis, reporting sig-
nificant performance advantages for Masstree, in some
cases exceeding two orders of magnitude. Another pa-
per [TZK+13], by Stephen Tu, Wenting Zheng, Barbara
Liskov, and Samuel Madden of MIT and Kohler, applies
Masstree to an in-memory database named Silo, achiev-
ing 700K transactions per second (42M transactions per
minute) on a well-known transaction-processing bench-
mark. Interestingly enough, Silo guarantees linearizabil-
ity without incurring the overhead of grace periods while
holding locks.

Maya Arbel and Hagit Attiya of Technion took a more
rigorous approach [AA14] to an RCU-protected search
tree that, like Masstree, allows concurrent updates. This
paper includes a proof of correctness, including proof
that all operations on this tree are linearizable. Unfortu-
nately, this implementation achieves linearizability by
incurring the full latency of grace-period waits while
holding locks, which degrades scalability of update-only
workloads. One way around this problem is to abandon
linearizability [HKLP12, McK14b]), however, Arbel and
Attiya instead created an RCU variant that reduces low-
end grace-period latency. Of course, nothing comes for
free, and this RCU variant appears to hit a scalability
limit at about 32 CPUs. Although there is much to be
said for dropping linearizability, thus gaining both perfor-
mance and scalability, it is very good to see academics
experimenting with alternative RCU implementations.

9.5.5.2 RCU Implementations

Mathieu Desnoyers created a user-space RCU for use in
tracing [Des09b, Des09a, DMS+12], which has seen use
in a number of projects [BD13].

Researchers at Charles University in Prague have
also been working on RCU implementations, including
dissertations by Andrej Podzimek [Pod10] and Adam
Hraska [Hra13].

Yujie Liu (Lehigh University), Victor Luchangco (Or-
acle Labs), and Michael Spear (also Lehigh) [LLS13]
pressed scalable non-zero indicators (SNZI) [ELLM07]
into service as a grace-period mechanism. The intended
use is to implement software transactional memory (see
Section 17.2), which imposes linearizability requirements,
which in turn seems to limit scalability.

RCU-like mechanisms are also finding their way into
Java. Sivaramakrishnan et al. [SZJ12] use an RCU-like
mechanism to eliminate the read barriers that are other-
wise required when interacting with Java’s garbage collec-
tor, resulting in significant performance improvements.

Ran Liu, Heng Zhang, and Haibo Chen of Shang-
hai Jiao Tong University created a specialized variant
of RCU that they used for an optimized “passive reader-
writer lock” [LZC14], similar to those created by Gau-
tham Shenoy [She06] and Srivatsa Bhat [Bha14]. The
Liu et al. paper is interesting from a number of perspec-
tives [McK14e].

Mike Ash posted [Ash15] a description of an RCU-like
primitive in Apple’s Objective-C runtime. This approach
identifies read-side critical sections via designated code
ranges, thus qualifying as another method of achieving
zero read-side overhead, albeit one that poses some in-
teresting practical challenges for large read-side critical
sections that span multiple functions.

Pedro Ramalhete and Andreia Correia [RC15] pro-
duced “Poor Man’s RCU”, which, despite using a pair of
reader-writer locks, manages to provide lock-free forward-
progress guarantees to readers [MP15a].

Maya Arbel and Adam Morrison [AM15] produced
“Predicate RCU”, which works hard to reduce grace-
period duration in order to efficiently support algorithms
that hold update-side locks across grace periods. This
results in reduced batching of updates into grace periods
and reduced scalability, but does succeed in providing
short grace periods.

Quick Quiz 9.49: Why not just drop the lock before
waiting for the grace period, or using something like
call_rcu() instead of waiting for a grace period?

Alexander Matveev (MIT), Nir Shavit (MIT and Tel-
Aviv University), Pascal Felber (University of Neuchâ-
tel), and Patrick Marlier (also University of Neuchâ-
tel) [MSFM15] produced an RCU-like mechanism that
can be thought of as software transactional memory that
explicitly marks read-only transactions. Their use cases
require holding locks across grace periods, which lim-
its scalability [MP15a, MP15b]. This appears to be the
first academic RCU-related work to make good use of

154 CHAPTER 9. DEFERRED PROCESSING

the rcutorture test suite, and also the first to have sub-
mitted a performance improvement to Linux-kernel RCU,
which was accepted into v4.4.

Geoff Romer and Andrew Hunter (both at Google) pro-
posed a cell-based API for RCU protection of singleton
data structures for inclusion in the C++ standard [RH17].

9.5.5.3 RCU Validation

In early 2017, it is commonly recognized that almost
any bug is a potential security exploit, so validation and
verification are first-class concerns.

Researchers at Stony Brook University have pro-
duced an RCU-aware data-race detector [Dug10, Sey12,
SRK+11]. Alexey Gotsman of IMDEA, Noam Rinet-
zky of Tel Aviv University, and Hongseok Yang of the
University of Oxford have published a paper [GRY12]
expressing the formal semantics of RCU in terms of sep-
aration logic, and have continued with other aspects of
concurrency.

Joseph Tassarotti (Carnegie-Mellon University), Derek
Dreyer (Max Planck Institute for Software Systems), and
Viktor Vafeiadis (also MPI-SWS) [TDV15] produced
a manual formal proof of correctness of the quiescent-
state-based reclamation (QSBR) variant of userspace
RCU [Des09b, DMS+12]. Lihao Liang (University of
Oxford), Paul E. McKenney (IBM), Daniel Kroening,
and Tom Melham (both also Oxford) [LMKM16] used
the C bounded model checker (CBMC) [CKL04] to pro-
duce a mechanical proof of correctness of a significant
portion of Linux-kernel Tree RCU. Lance Roy [Roy17]
used CBMC to produce a similar proof of correctness
for a significant portion of Linux-kernel sleepable RCU
(SRCU) [McK06]. Finally, Michalis Kokologiannakis
and Konstantinos Sagonas (National Technical University
of Athens) [KS17a] used the Nighugg tool [LSLK14] to
produce a mechanical proof of correctness of a somewhat
larger portion of Linux-kernel Tree RCU.

None of these efforts located any bugs other than bugs
injected into RCU specifically to test the verification
tools. In contrast, Alex Groce (Oregon State University),
Iftekhar Ahmed, Carlos Jensen (both also OSU), and Paul
E. McKenney (IBM) [GAJM15] automatically mutated
Linux-kernel RCU’s source code to test the coverage of
the rcutorture test suite. The effort found several holes
in this suite’s coverage, one of which was hiding a real
bug (since fixed) in Tiny RCU.

With some luck, all of this validation work will eventu-
ally result in more and better tools for validating concur-
rent code.

9.5.6 RCU Exercises

This section is organized as a series of Quick Quizzes
that invite you to apply RCU to a number of exam-
ples earlier in this book. The answer to each Quick
Quiz gives some hints, and also contains a pointer
to a later section where the solution is explained at
length. The rcu_read_lock(), rcu_read_unlock(),
rcu_dereference(), rcu_assign_pointer(), and
synchronize_rcu() primitives should suffice for most
of these exercises.

Quick Quiz 9.50: The statistical-counter implementa-
tion shown in Listing 5.5 (count_end.c) used a global
lock to guard the summation in read_count(), which re-
sulted in poor performance and negative scalability. How
could you use RCU to provide read_count() with excel-
lent performance and good scalability. (Keep in mind that
read_count()’s scalability will necessarily be limited
by its need to scan all threads’ counters.)

Quick Quiz 9.51: Section 5.5 showed a fanciful pair
of code fragments that dealt with counting I/O accesses to
removable devices. These code fragments suffered from
high overhead on the fastpath (starting an I/O) due to the
need to acquire a reader-writer lock. How would you use
RCU to provide excellent performance and scalability?
(Keep in mind that the performance of the common-case
first code fragment that does I/O accesses is much more
important than that of the device-removal code fragment.)

9.6 Which to Choose?

Cat: Where are you going?
Alice: Which way should I go?
Cat: That depends on where you are going.
Alice: I don’t know.
Cat: Then it doesn’t matter which way you go.

Lewis Carroll, Alice in Wonderland

Table 9.5 provides some rough rules of thumb that can
help you choose among the four deferred-processing tech-
niques presented in this chapter.

As shown in the “Existence Guarantee” row, if you
need existence guarantees for linked data elements, you
must use reference counting, hazard pointers, or RCU. Se-
quence locks do not provide existence guarantees, instead
providing detection of updates, retrying any read-side
critical sections that do encounter an update.

9.6. WHICH TO CHOOSE? 155

Table 9.5: Which Deferred Technique to Choose?

Property Reference Counting Hazard
Pointers

Sequence
Locks

RCU

Existence Guarantees Complex Yes No Yes
Updates and Readers
Progress Concurrently

Yes Yes No Yes

Contention Among
Readers

High None None None

Reader Per-Critical-
Section Overhead

N/A N/A Two
smp_mb()

Ranges from none
to two smp_mb()

Reader Per-Object
Traversal Overhead

Read-modify-write atomic
operations, memory-barrier
instructions, and cache
misses

smp_mb() None, but
unsafe

None (volatile
accesses)

Reader Forward Progress
Guarantee

Lock free Lock free Blocking Bounded wait free

Reader Reference
Acquisition

Can fail (conditional) Can fail
(conditional)

Unsafe Cannot fail
(unconditional)

Memory Footprint Bounded Bounded Bounded Unbounded
Reclamation Forward
Progress

Lock free Lock free N/A Blocking

Automatic Reclamation Yes No N/A No
Lines of Code 94 79 79 73

Of course, as shown in the “Updates and Readers
Progress Concurrently” row, this detection of updates
implies that sequence locking does not permit updaters
and readers to make forward progress concurrently. After
all, preventing such forward progress is the whole point
of using sequence locking in the first place! This situation
points the way to using sequence locking in conjunction
with reference counting, hazard pointers, or RCU in order
to provide both existence guarantees and update detection.
In fact, the Linux kernel combines RCU and sequence
locking in this manner during pathname lookup.

The “Contention Among Readers”, “Reader Per-
Critical-Section Overhead”, and “Reader Per-Object Tra-
versal Overhead” rows give a rough sense of the read-side
overhead of these techniques. The overhead of reference
counting can be quite large, with contention among read-
ers along with a fully ordered read-modify-write atomic
operation required for each and every object traversed.
Hazard pointers incur the overhead of a memory barrier
for each data element traversed, and sequence locks in-
cur the overhead of a pair of memory barriers for each
attempt to execute the critical section. The overhead of
RCU implementations vary from nothing to that of a pair
of memory barriers for each read-side critical section,
thus providing RCU with the best performance, particu-
larly for read-side critical sections that traverse many data

elements.
The “Reader Forward Progress Guarantee” row shows

that only RCU has a bounded wait-free forward-progress
guarantee, which means that it can carry out a finite tra-
versal by executing a bounded number of instructions.

The “Reader Reference Acquisition” rows indicates
that only RCU is capable of unconditionally acquiring
references. The entry for sequence locks is “Unsafe” be-
cause, again, sequence locks detect updates rather than
acquiring references. Reference counting and hazard
pointers both require that traversals be restarted from the
beginning if a given acquisition fails. To see this, consider
a linked list containing objects A, B, C, and D, in that
order, and the following series of events:

1. A reader acquires a reference to object B.

2. An updater removes object B, but refrains from free-
ing it because the reader holds a reference. The list
now contains objects A, C, and D, and object B’s
->next pointer is set to HAZPTR_POISON.

3. The updater removes object C, so that the list now
contains objects A and D. Because there is no refer-
ence to object C, it is immediately freed.

4. The reader tries to advance to the successor of the
object following the now-removed object B, but the

156 CHAPTER 9. DEFERRED PROCESSING

poisoned ->next pointer prevents this. Which is
a good thing, because object B’s ->next pointer
would otherwise point to the freelist.

5. The reader must therefore restart its traversal from
the head of the list.

Thus, when failing to acquire a reference, a hazard-
pointer or reference-counter traversal must restart that
traversal from the beginning. In the case of nested linked
data structures, for example, a tree containing linked lists,
the traversal must be restarted from the outermost data
structure. This situation gives RCU a significant ease-of-
use advantage.

However, RCU’s ease-of-use advantage does not come
for free, as can be seen in the “Memory Footprint” row.
RCU’s support of unconditional reference acquisition
means that it must avoid freeing any object reachable
by a given RCU reader until that reader completes. RCU
therefore has an unbounded memory footprint, at least
unless updates are throttled. In contrast, reference count-
ing and hazard pointers need to retain only those data
elements actually referenced by concurrent readers.

This tension between memory footprint and acquisition
failures is sometimes resolved within the Linux kernel by
combining use of RCU and reference counters. RCU is
used for short-lived references, which means that RCU
read-side critical sections can be short. These short RCU
read-side critical sections in turn mean that the corre-
sponding RCU grace periods can also be short, which lim-
its the memory footprint. For the few data elements that
need longer-lived references, reference counting is used.
This means that the complexity of reference-acquisition
failure only needs to be dealt with for those few data
elements: The bulk of the reference acquisitions are un-
conditional, courtesy of RCU. See Section 13.2 for more
information on combining reference counting with other
synchronization mechanisms.

The “Reclamation Forward Progress” row shows that
hazard pointers can provide non-blocking updates [Mic04,
HLM02]. Reference counting might or might not, de-
pending on the implementation. However, sequence lock-
ing cannot provide non-blocking updates, courtesy of its
update-side lock. RCU updaters must wait on readers,
which also rules out fully non-blocking updates. How-
ever, there are situations in which the only blocking op-
eration is a wait to free memory, which results in an
situation that, for many purposes, is as good as non-
blocking [DMS+12].

As shown in the “Automatic Reclamation” row, only

reference counting can automate freeing of memory, and
even then only for non-cyclic data structures.

Finally, the “Lines of Code” row shows the size of
the Pre-BSD Routing Table implementations, giving a
rough idea of relative ease of use. That said, it is im-
portant to note that the reference-counting and sequence-
locking implementations are buggy, and that a correct
reference-counting implementation is considerably more
complex [Val95, MS95]. For its part, a correct sequence-
locking implementation requires the addition of some
other synchronization mechanism, for example, hazard
pointers or RCU, so that sequence locking detects con-
current updates and the other mechanism provides safe
reference acquisition.

As more experience is gained using these techniques,
both separately and in combination, the rules of thumb
laid out in this section will need to be refined. However,
this section does reflect the current state of the art.

9.7 What About Updates?

The only thing constant in life is change.

François de la Rochefoucauld

The deferred-processing techniques called out in this chap-
ter are most directly applicable to read-mostly situations,
which begs the question “But what about updates?” After
all, increasing the performance and scalability of readers
is all well and good, but it is only natural to also want
great performance and scalability for writers.

We have already seen one situation featuring high per-
formance and scalability for writers, namely the count-
ing algorithms surveyed in Chapter 5. These algo-
rithms featured partially partitioned data structures so that
updates can operate locally, while the more-expensive
reads must sum across the entire data structure. Silas
Boyd-Wickhizer has generalized this notion to produce
OpLog, which he has applied to Linux-kernel pathname
lookup, VM reverse mappings, and the stat() system
call [BW14].

Another approach, called “Disruptor”, is designed for
applications that process high-volume streams of input
data. The approach is to rely on single-producer-single-
consumer FIFO queues, minimizing the need for synchro-
nization [Sut13]. For Java applications, Disruptor also
has the virtue of minimizing use of the garbage collector.

And of course, where feasible, fully partitioned or

9.7. WHAT ABOUT UPDATES? 157

“sharded” systems provide excellent performance and scal-
ability, as noted in Chapter 6.

The next chapter will look at updates in the context of
several types of data structures.

158 CHAPTER 9. DEFERRED PROCESSING

Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships.

Linus TorvaldsChapter 10

Data Structures

Efficient access to data is critically important, so that dis-
cussions of algorithms include time complexity of the
related data structures [CLRS01]. However, for parallel
programs, measures of time complexity must also include
concurrency effects. These effects can be overwhelm-
ingly large, as shown in Chapter 3, which means that
concurrent data structure designs must focus as much on
concurrency as they do on sequential time complexity.
In other words, an important part of the data-structure
relationships that good parallel programmers must worry
about is that portion related to concurrency.

Section 10.1 presents a motivating application that will
be used to evaluate the data structures presented in this
chapter.

As discussed in Chapter 6, an excellent way to achieve
high scalability is partitioning. This points the way to
partitionable data structures, a topic taken up by Sec-
tion 10.2. Chapter 9 described how deferring some ac-
tions can greatly improve both performance and scala-
bility. Section 9.5 in particular showed how to tap the
awesome power of procrastination in pursuit of perfor-
mance and scalability, a topic taken up by Section 10.3.

Not all data structures are partitionable. Section 10.4
looks at a mildly non-partitionable example data struc-
ture. This section shows how to split it into read-mostly
and partitionable portions, enabling a fast and scalable
implementation.

Because this chapter cannot delve into the details of
every concurrent data structure that has ever been used
Section 10.5 provides a brief survey of the most com-
mon and important ones. Although the best performance
and scalability results design rather than after-the-fact
micro-optimization, it is nevertheless the case that micro-
optimization has an important place in achieving the abso-
lute best possible performance and scalability. This topic
is therefore taken up in Section 10.6.

Finally, Section 10.7 presents a summary of this chap-
ter.

10.1 Motivating Application
We will use the Schrödinger’s Zoo application to evaluate
performance [McK13]. Schrödinger has a zoo containing
a large number of animals, and he would like to track
them using an in-memory database with each animal in
the zoo represented by a data item in this database. Each
animal has a unique name that is used as a key, with a
variety of data tracked for each animal.

Births, captures, and purchases result in insertions,
while deaths, releases, and sales result in deletions. Be-
cause Schrödinger’s zoo contains a large quantity of short-
lived animals, including mice and insects, the database
must be able to support a high update rate.

Those interested in Schrödinger’s animals can query
them, however, Schrödinger has noted extremely high
rates of queries for his cat, so much so that he suspects
that his mice might be using the database to check up on
their nemesis. This means that Schrödinger’s application
must be able to support a high rate of queries to a single
data element.

Please keep this application in mind as various data
structures are presented.

10.2 Partitionable Data Structures
There are a huge number of data structures in use today,
so much so that there are multiple textbooks covering
them. This small section focuses on a single data struc-
ture, namely the hash table. This focused approach allows
a much deeper investigation of how concurrency interacts
with data structures, and also focuses on a data structure

159

160 CHAPTER 10. DATA STRUCTURES

Listing 10.1: Hash-Table Data Structures
1 struct ht_elem {
2 struct cds_list_head hte_next;
3 unsigned long hte_hash;
4 };
5
6 struct ht_bucket {
7 struct cds_list_head htb_head;
8 spinlock_t htb_lock;
9 };

10
11 struct hashtab {
12 unsigned long ht_nbuckets;
13 struct ht_bucket ht_bkt[0];
14 };

that is heavily used in practice. Section 10.2.1 overviews
of the design, and Section 10.2.2 presents the implemen-
tation. Finally, Section 10.2.3 discusses the resulting
performance and scalability.

10.2.1 Hash-Table Design

Chapter 6 emphasized the need to apply partitioning in
order to attain respectable performance and scalability,
so partitionability must be a first-class criterion when
selecting data structures. This criterion is well satisfied by
that workhorse of parallelism, the hash table. Hash tables
are conceptually simple, consisting of an array of hash
buckets. A hash function maps from a given element’s
key to the hash bucket that this element will be stored
in. Each hash bucket therefore heads up a linked list of
elements, called a hash chain. When properly configured,
these hash chains will be quite short, permitting a hash
table to access the element with a given key extremely
efficiently.

Quick Quiz 10.1: But there are many types of hash
tables, of which the chained hash tables described here
are but one type. Why the focus on chained hash tables?

In addition, each bucket can be given its own lock, so
that elements in different buckets of the hash table may be
added, deleted, and looked up completely independently.
A large hash table containing a large number of elements
therefore offers excellent scalability.

10.2.2 Hash-Table Implementation

Listing 10.1 (hash_bkt.c) shows a set of data structures
used in a simple fixed-sized hash table using chaining
and per-hash-bucket locking, and Figure 10.1 diagrams
how they fit together. The hashtab structure (lines 11-
14 in Listing 10.1) contains four ht_bucket structures

struct hashtab
−>ht_nbuckets = 4

−>ht_bkt[3]

−>htb_head
−>htb_lock

−>ht_bkt[2]

−>htb_head
−>htb_lock

−>ht_bkt[1]

−>htb_head
−>htb_lock

−>ht_bkt[0]

−>htb_head
−>htb_lock

−>hte_next
−>hte_hash

−>hte_next
−>hte_hash

−>hte_next
−>hte_hash

struct ht_elem struct ht_elem

struct ht_elem

Figure 10.1: Hash-Table Data-Structure Diagram

Listing 10.2: Hash-Table Mapping and Locking
1 #define HASH2BKT(htp, h) \
2 (&(htp)->ht_bkt[h % (htp)->ht_nbuckets])
3
4 static void hashtab_lock(struct hashtab *htp,
5 unsigned long hash)
6 {
7 spin_lock(&HASH2BKT(htp, hash)->htb_lock);
8 }
9

10 static void hashtab_unlock(struct hashtab *htp,
11 unsigned long hash)
12 {
13 spin_unlock(&HASH2BKT(htp, hash)->htb_lock);
14 }

(lines 6-9 in Listing 10.1), with the ->ht_nbuckets field
controlling the number of buckets. Each such bucket
contains a list header ->htb_head and a lock ->htb_
lock. The list headers chain ht_elem structures (lines 1-
4 in Listing 10.1) through their ->hte_next fields, and
each ht_elem structure also caches the corresponding
element’s hash value in the ->hte_hash field. The ht_
elem structure would be included in the larger structure
being placed in the hash table, and this larger structure
might contain a complex key.

The diagram shown in Figure 10.1 has bucket 0 with
two elements and bucket 2 with one.

Listing 10.2 shows mapping and locking functions.
Lines 1 and 2 show the macro HASH2BKT(), which maps
from a hash value to the corresponding ht_bucket struc-
ture. This macro uses a simple modulus: if more aggres-
sive hashing is required, the caller needs to implement
it when mapping from key to hash value. The remain-
ing two functions acquire and release the ->htb_lock
corresponding to the specified hash value.

Listing 10.3 shows hashtab_lookup(), which re-
turns a pointer to the element with the specified hash

10.2. PARTITIONABLE DATA STRUCTURES 161

Listing 10.3: Hash-Table Lookup
1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp,
3 unsigned long hash,
4 void *key,
5 int (*cmp)(struct ht_elem *htep,
6 void *key))
7 {
8 struct ht_bucket *htb;
9 struct ht_elem *htep;

10
11 htb = HASH2BKT(htp, hash);
12 cds_list_for_each_entry(htep,
13 &htb->htb_head,
14 hte_next) {
15 if (htep->hte_hash != hash)
16 continue;
17 if (cmp(htep, key))
18 return htep;
19 }
20 return NULL;
21 }

Listing 10.4: Hash-Table Modification
1 void
2 hashtab_add(struct hashtab *htp,
3 unsigned long hash,
4 struct ht_elem *htep)
5 {
6 htep->hte_hash = hash;
7 cds_list_add(&htep->hte_next,
8 &HASH2BKT(htp, hash)->htb_head);
9 }

10
11 void hashtab_del(struct ht_elem *htep)
12 {
13 cds_list_del_init(&htep->hte_next);
14 }

and key if it exists, or NULL otherwise. This function
takes both a hash value and a pointer to the key because
this allows users of this function to use arbitrary keys
and arbitrary hash functions, with the key-comparison
function passed in via cmp(), in a manner similar to
qsort(). Line 11 maps from the hash value to a pointer
to the corresponding hash bucket. Each pass through the
loop spanning lines 12-19 examines one element of the
bucket’s hash chain. Line 15 checks to see if the hash
values match, and if not, line 16 proceeds to the next ele-
ment. Line 17 checks to see if the actual key matches, and
if so, line 18 returns a pointer to the matching element. If
no element matches, line 20 returns NULL.

Quick Quiz 10.2: But isn’t the double comparison on
lines 15-18 in Listing 10.3 inefficient in the case where
the key fits into an unsigned long?

Listing 10.4 shows the hashtab_add() and
hashtab_del() functions that add and delete elements
from the hash table, respectively.

The hashtab_add() function simply sets the ele-
ment’s hash value on line 6, then adds it to the corre-

Listing 10.5: Hash-Table Allocation and Free
1 struct hashtab *
2 hashtab_alloc(unsigned long nbuckets)
3 {
4 struct hashtab *htp;
5 int i;
6
7 htp = malloc(sizeof(*htp) +
8 nbuckets *
9 sizeof(struct ht_bucket));

10 if (htp == NULL)
11 return NULL;
12 htp->ht_nbuckets = nbuckets;
13 for (i = 0; i < nbuckets; i++) {
14 CDS_INIT_LIST_HEAD(&htp->ht_bkt[i].htb_head);
15 spin_lock_init(&htp->ht_bkt[i].htb_lock);
16 }
17 return htp;
18 }
19
20 void hashtab_free(struct hashtab *htp)
21 {
22 free(htp);
23 }

sponding bucket on lines 7 and 8. The hashtab_del()
function simply removes the specified element from what-
ever hash chain it is on, courtesy of the doubly linked
nature of the hash-chain lists. Before calling either of
these two functions, the caller is required to ensure that no
other thread is accessing or modifying this same bucket,
for example, by invoking hashtab_lock() beforehand.

Listing 10.5 shows hashtab_alloc() and hashtab_
free(), which do hash-table allocation and freeing, re-
spectively. Allocation begins on lines 7-9 with allocation
of the underlying memory. If line 10 detects that memory
has been exhausted, line 11 returns NULL to the caller.
Otherwise, line 12 initializes the number of buckets, and
the loop spanning lines 13-16 initializes the buckets them-
selves, including the chain list header on line 14 and the
lock on line 15. Finally, line 17 returns a pointer to the
newly allocated hash table. The hashtab_free() func-
tion on lines 20-23 is straightforward.

10.2.3 Hash-Table Performance

The performance results for an eight-CPU 2 GHz Intel
Xeon system using a bucket-locked hash table with 1024
buckets are shown in Figure 10.2. The performance does
scale nearly linearly, but is not much more than half of
the ideal performance level, even at only eight CPUs. Part
of this shortfall is due to the fact that the lock acquisitions
and releases incur no cache misses on a single CPU, but
do incur misses on two or more CPUs.

And things only get worse with larger number of CPUs,
as can be seen in Figure 10.3. We do not need an addi-

162 CHAPTER 10. DATA STRUCTURES

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1 2 3 4 5 6 7 8

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

ideal

Figure 10.2: Read-Only Hash-Table Performance For
Schrödinger’s Zoo

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 0 10 20 30 40 50 60

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.3: Read-Only Hash-Table Performance For
Schrödinger’s Zoo, 60 CPUs

tional line to show ideal performance: The performance
for nine CPUs and beyond is worse than abysmal. This
clearly underscores the dangers of extrapolating perfor-
mance from a modest number of CPUs.

Of course, one possible reason for the collapse in per-
formance might be that more hash buckets are needed.
After all, we did not pad each hash bucket to a full cache
line, so there are a number of hash buckets per cache line.
It is possible that the resulting cache-thrashing comes
into play at nine CPUs. This is of course easy to test by
increasing the number of hash buckets.

Quick Quiz 10.3: Instead of simply increasing the
number of hash buckets, wouldn’t it be better to cache-
align the existing hash buckets?

However, as can be seen in Figure 10.4, although in-

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10 20 30 40 50 60

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

1024

2048
4096

8192
16384

Figure 10.4: Read-Only Hash-Table Performance For
Schrödinger’s Zoo, Varying Buckets

creasing the number of buckets does increase performance
somewhat, scalability is still abysmal. In particular, we
still see a sharp dropoff at nine CPUs and beyond. Fur-
thermore, going from 8192 buckets to 16,384 buckets
produced almost no increase in performance. Clearly
something else is going on.

The problem is that this is a multi-socket system, with
CPUs 0-7 and 32-39 mapped to the first socket as shown
in Figure 10.5. Test runs confined to the first eight
CPUs therefore perform quite well, but tests that involve
socket 0’s CPUs 0-7 as well as socket 1’s CPU 8 incur the
overhead of passing data across socket boundaries. This
can severely degrade performance, as was discussed in
Section 3.2.1. In short, large multi-socket systems require
good locality of reference in addition to full partitioning.

Quick Quiz 10.4: Given the negative scalability of the
Schrödinger’s Zoo application across sockets, why not
just run multiple copies of the application, with each copy
having a subset of the animals and confined to run on a
single socket?

One key property of the Schrödinger’s-zoo runs dis-
cussed thus far is that they are all read-only. This makes
the performance degradation due to lock-acquisition-
induced cache misses all the more painful. Even though
we are not updating the underlying hash table itself, we
are still paying the price for writing to memory. Of course,
if the hash table was never going to be updated, we could
dispense entirely with mutual exclusion. This approach
is quite straightforward and is left as an exercise for the
reader. But even with the occasional update, avoiding
writes avoids cache misses, and allows the read-mostly
data to be replicated across all the caches, which in turn

10.3. READ-MOSTLY DATA STRUCTURES 163

Socket Core
0 0 1 2 3 4 5 6 7

32 33 34 35 36 37 38 39
1 8 9 10 11 12 13 14 15

40 41 42 43 44 45 46 47
2 16 17 18 19 20 21 22 23

48 49 50 51 52 53 54 55
3 24 25 26 27 28 29 30 31

56 47 58 59 60 61 62 63

Figure 10.5: NUMA Topology of System Under Test

Listing 10.6: RCU-Protected Hash-Table Read-Side Concur-
rency Control

1 static void hashtab_lock_lookup(struct hashtab *htp,
2 unsigned long hash)
3 {
4 rcu_read_lock();
5 }
6
7 static void hashtab_unlock_lookup(struct hashtab *htp,
8 unsigned long hash)
9 {

10 rcu_read_unlock();
11 }

promotes locality of reference.
The next section therefore examines optimizations that

can be carried out in read-mostly cases where updates are
rare, but could happen at any time.

10.3 Read-Mostly Data Structures
Although partitioned data structures can offer excellent
scalability, NUMA effects can result in severe degrada-
tions of both performance and scalability. In addition,
the need for readers to exclude writers can degrade per-
formance in read-mostly situations. However, we can
achieve both performance and scalability by using RCU,
which was introduced in Section 9.5. Similar results can
be achieved using hazard pointers (hazptr.c) [Mic04],
which will be included in the performance results shown
in this section [McK13].

10.3.1 RCU-Protected Hash Table Imple-
mentation

For an RCU-protected hash table with per-bucket lock-
ing, updaters use locking exactly as described in Sec-
tion 10.2, but readers use RCU. The data structures re-
main as shown in Listing 10.1, and the HASH2BKT(),
hashtab_lock(), and hashtab_unlock() functions

Listing 10.7: RCU-Protected Hash-Table Lookup
1 struct ht_elem
2 *hashtab_lookup(struct hashtab *htp,
3 unsigned long hash,
4 void *key,
5 int (*cmp)(struct ht_elem *htep,
6 void *key))
7 {
8 struct ht_bucket *htb;
9 struct ht_elem *htep;

10
11 htb = HASH2BKT(htp, hash);
12 cds_list_for_each_entry_rcu(htep,
13 &htb->htb_head,
14 hte_next) {
15 if (htep->hte_hash != hash)
16 continue;
17 if (cmp(htep, key))
18 return htep;
19 }
20 return NULL;
21 }

remain as shown in Listing 10.2. However, readers
use the lighter-weight concurrency-control embodied
by hashtab_lock_lookup() and hashtab_unlock_
lookup() shown in Listing 10.6.

Listing 10.7 shows hashtab_lookup() for the RCU-
protected per-bucket-locked hash table. This is identi-
cal to that in Listing 10.3 except that cds_list_for_
each_entry() is replaced by cds_list_for_each_
entry_rcu(). Both of these primitives sequence down
the hash chain referenced by htb->htb_head but cds_
list_for_each_entry_rcu() also correctly enforces
memory ordering in case of concurrent insertion. This
is an important difference between these two hash-table
implementations: Unlike the pure per-bucket-locked im-
plementation, the RCU protected implementation allows
lookups to run concurrently with insertions and dele-
tions, and RCU-aware primitives like cds_list_for_
each_entry_rcu() are required to correctly handle this
added concurrency. Note also that hashtab_lookup()’s
caller must be within an RCU read-side critical section,
for example, the caller must invoke hashtab_lock_
lookup() before invoking hashtab_lookup() (and of
course invoke hashtab_unlock_lookup() some time
afterwards).

Quick Quiz 10.5: But if elements in a hash table can
be deleted concurrently with lookups, doesn’t that mean
that a lookup could return a reference to a data element
that was deleted immediately after it was looked up?

Listing 10.8 shows hashtab_add() and hashtab_
del(), both of which are quite similar to their counter-
parts in the non-RCU hash table shown in Listing 10.4.
The hashtab_add() function uses cds_list_add_

164 CHAPTER 10. DATA STRUCTURES

Listing 10.8: RCU-Protected Hash-Table Modification
1 void
2 hashtab_add(struct hashtab *htp,
3 unsigned long hash,
4 struct ht_elem *htep)
5 {
6 htep->hte_hash = hash;
7 cds_list_add_rcu(&htep->hte_next,
8 &HASH2BKT(htp, hash)->htb_head);
9 }

10
11 void hashtab_del(struct ht_elem *htep)
12 {
13 cds_list_del_rcu(&htep->hte_next);
14 }

 1000

 10000

 100000

 1e+06

 1 10 100

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

global

bucket

RCU,hazptr
ideal

Figure 10.6: Read-Only RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo

rcu() instead of cds_list_add() in order to ensure
proper ordering when an element is added to the hash table
at the same time that it is being looked up. The hashtab_
del() function uses cds_list_del_rcu() instead of
cds_list_del_init() to allow for the case where an
element is looked up just before it is deleted. Unlike
cds_list_del_init(), cds_list_del_rcu() leaves
the forward pointer intact, so that hashtab_lookup()
can traverse to the newly deleted element’s successor.

Of course, after invoking hashtab_del(), the caller
must wait for an RCU grace period (e.g., by invok-
ing synchronize_rcu()) before freeing or otherwise
reusing the memory for the newly deleted element.

10.3.2 RCU-Protected Hash Table Perfor-
mance

Figure 10.6 shows the read-only performance of RCU-
protected and hazard-pointer-protected hash tables against
the previous section’s per-bucket-locked implementation.
As you can see, both RCU and hazard pointers achieve

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 10 20 30 40 50 60

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

bucket

hazptr

ideal
RCU

Figure 10.7: Read-Only RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo, Linear Scale

near-ideal performance and scalability despite the larger
numbers of threads and the NUMA effects. Results from
a globally locked implementation are also shown, and as
expected the results are even worse than those of the per-
bucket-locked implementation. RCU does slightly better
than hazard pointers, but the difference is not readily
visible in this log-scale plot.

Figure 10.7 shows the same data on a linear scale. This
drops the global-locking trace into the x-axis, but allows
the relative performance of RCU and hazard pointers to
be more readily discerned. Both show a change in slope
at 32 CPUs, and this is due to hardware multithreading.
At 32 and fewer CPUs, each thread has a core to itself. In
this regime, RCU does better than does hazard pointers
because hazard pointers’s read-side memory barriers re-
sult in dead time within the core. In short, RCU is better
able to utilize a core from a single hardware thread than
is hazard pointers.

This situation changes above 32 CPUs. Because RCU
is using more than half of each core’s resources from a
single hardware thread, RCU gains relatively little benefit
from the second hardware thread in each core. The slope
of hazard pointers’s trace also decreases at 32 CPUs, but
less dramatically, because the second hardware thread is
able to fill in the time that the first hardware thread is
stalled due to memory-barrier latency. As we will see in
later sections, hazard pointers’s second-hardware-thread
advantage depends on the workload.

As noted earlier, Schrödinger is surprised by the popu-
larity of his cat [Sch35], but recognizes the need to reflect
this popularity in his design. Figure 10.8 shows the results
of 60-CPU runs, varying the number of CPUs that are do-

10.3. READ-MOSTLY DATA STRUCTURES 165

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100

C
at

 L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads) Looking Up The Cat

global

bucket

hazptr

RCU

Figure 10.8: Read-Side Cat-Only RCU-Protected Hash-
Table Performance For Schrödinger’s Zoo at 60
CPUs

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs Doing Updates

global

bucket

hazptr
RCU

Figure 10.9: Read-Side RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo at 60 CPUs

ing nothing but looking up the cat. Both RCU and hazard
pointers respond well to this challenge, but bucket locking
scales negatively, eventually performing even worse than
global locking. This should not be a surprise because if
all CPUs are doing nothing but looking up the cat, the
lock corresponding to the cat’s bucket is for all intents
and purposes a global lock.

This cat-only benchmark illustrates one potential prob-
lem with fully partitioned sharding approaches. Only the
CPUs associated with the cat’s partition is able to access
the cat, limiting the cat-only throughput. Of course, a
great many applications have good load-spreading proper-
ties, and for these applications sharding works quite well.
However, sharding does not handle “hot spots” very well,
with the hot spot exemplified by Schrödinger’s cat being
but one case in point.

 10

 100

 1000

 10000

 100000

 1 10 100

U
pd

at
es

 p
er

 M
ill

is
ec

on
d

Number of CPUs Doing Updates

global

bucket

RCU

hazptr

Figure 10.10: Update-Side RCU-Protected Hash-Table
Performance For Schrödinger’s Zoo at 60 CPUs

Of course, if we were only ever going to read the data,
we would not need any concurrency control to begin with.
Figure 10.9 therefore shows the effect of updates. At the
extreme left-hand side of this graph, all 60 CPUs are doing
lookups, while to the right all 60 CPUs are doing updates.
For all four implementations, the number of lookups per
millisecond decreases as the number of updating CPUs
increases, of course reaching zero lookups per millisecond
when all 60 CPUs are updating. RCU does well relative
to hazard pointers due to the fact that hazard pointers’s
read-side memory barriers incur greater overhead in the
presence of updates. It therefore seems likely that modern
hardware heavily optimizes memory-barrier execution,
greatly reducing memory-barrier overhead in the read-
only case.

Where Figure 10.9 showed the effect of increasing
update rates on lookups, Figure 10.10 shows the effect of
increasing update rates on the updates themselves. Hazard
pointers and RCU start off with a significant advantage
because, unlike bucket locking, readers do not exclude
updaters. However, as the number of updating CPUs
increases, update-side overhead starts to make its presence
known, first for RCU and then for hazard pointers. Of
course, all three of these implementations fare much better
than does global locking.

Of course, it is quite possible that the differences in
lookup performance are affected by the differences in up-
date rates. One way to check this is to artificially throttle
the update rates of per-bucket locking and hazard pointers
to match that of RCU. Doing so does not significantly
improve the lookup performace of per-bucket locking, nor
does it close the gap between hazard pointers and RCU.
However, removing hazard pointers’s read-side memory

166 CHAPTER 10. DATA STRUCTURES

barriers (thus resulting in an unsafe implementation of
hazard pointers) does nearly close the gap between hazard
pointers and RCU. Although this unsafe hazard-pointer
implementation will usually be reliable enough for bench-
marking purposes, it is absolutely not recommended for
production use.

Quick Quiz 10.6: The dangers of extrapolating from
eight CPUs to 60 CPUs was made quite clear in Sec-
tion 10.2.3. But why should extrapolating up from 60
CPUs be any safer?

10.3.3 RCU-Protected Hash Table Discus-
sion

One consequence of the RCU and hazard-pointer imple-
mentations is that a pair of concurrent readers might dis-
agree on the state of the cat. For example, one of the
readers might have fetched the pointer to the cat’s data
structure just before it was removed, while another reader
might have fetched this same pointer just afterwards. The
first reader would then believe that the cat was alive, while
the second reader would believe that the cat was dead.

Of course, this situation is completely fitting for
Schrödinger’s cat, but it turns out that it is quite reason-
able for normal non-quantum cats as well.

The reason for this is that it is impossible to determine
exactly when an animal is born or dies.

To see this, let’s suppose that we detect a cat’s death by
heartbeat. This raise the question of exactly how long we
should wait after the last heartbeat before declaring death.
It is clearly ridiculous to wait only one millisecond, be-
cause then a healthy living cat would have to be declared
dead—and then resurrected—more than once every sec-
ond. It is equally ridiculous to wait a full month, because
by that time the poor cat’s death would have made itself
very clearly known via olfactory means.

Because an animal’s heart can stop for some seconds
and then start up again, there is a tradeoff between timely
recognition of death and probability of false alarms. It is
quite possible that a pair of veterinarians might disagree
on the time to wait between the last heartbeat and the
declaration of death. For example, one veterinarian might
declare death thirty seconds after the last heartbeat, while
another might insist on waiting a full minute. In this case,
the two veterinarians would disagree on the state of the
cat for the second period of thirty seconds following the
last heartbeat, as fancifully depicted in Figure 10.11.

Of course, Heisenberg taught us to live with this sort
of uncertainty [Hei27], which is a good thing because

Figure 10.11: Even Veterinarians Disagree!

computing hardware and software acts similarly. For
example, how do you know that a piece of computing
hardware has failed? Often because it does not respond
in a timely fashion. Just like the cat’s heartbeat, this
results in a window of uncertainty as to whether or not
the hardware has failed.

Furthermore, most computing systems are intended
to interact with the outside world. Consistency with the
outside world is therefore of paramount importance. How-
ever, as we saw in Figure 9.20 on page 141, increased
internal consistency can come at the expense of external
consistency. Techniques such as RCU and hazard point-
ers give up some degree of internal consistency to attain
improved external consistency.

In short, internal consistency is not a natural part of all
problem domains, and often incurs great expense in terms
of performance, scalability, external consistency, or all of
the above.

10.4 Non-Partitionable Data Struc-
tures

Fixed-size hash tables are perfectly partitionable, but re-
sizable hash tables pose partitioning challenges when
growing or shrinking, as fancifully depicted in Fig-
ure 10.12. However, it turns out that it is possible to
construct high-performance scalable RCU-protected hash
tables, as described in the following sections.

10.4. NON-PARTITIONABLE DATA STRUCTURES 167

Figure 10.12: Partitioning Problems

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1

Figure 10.13: Growing a Double-List Hash Table, State
(a)

10.4.1 Resizable Hash Table Design
In happy contrast to the situation in the early 2000s, there
are now no fewer than three different types of scalable
RCU-protected hash tables. The first (and simplest) was
developed for the Linux kernel by Herbert Xu [Xu10],
and is described in the following sections. The other two
are covered briefly in Section 10.4.4.

The key insight behind the first hash-table implemen-
tation is that each data element can have two sets of list
pointers, with one set currently being used by RCU read-
ers (as well as by non-RCU updaters) and the other being
used to construct a new resized hash table. This approach
allows lookups, insertions, and deletions to all run con-
currently with a resize operation (as well as with each
other).

The resize operation proceeds as shown in Fig-
ures 10.13-10.16, with the initial two-bucket state shown
in Figure 10.13 and with time advancing from figure to
figure. The initial state uses the zero-index links to chain
the elements into hash buckets. A four-bucket array is
allocated, and the one-index links are used to chain the

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Figure 10.14: Growing a Double-List Hash Table, State
(b)

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Figure 10.15: Growing a Double-List Hash Table, State
(c)

elements into these four new hash buckets. This results in
state (b) shown in Figure 10.14, with readers still using
the original two-bucket array.

The new four-bucket array is exposed to readers and
then a grace-period operation waits for all readers, result-
ing in state (c), shown in Figure 10.15. In this state, all
readers are using the new four-bucket array, which means
that the old two-bucket array may now be freed, resulting

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Figure 10.16: Growing a Double-List Hash Table, State
(d)

168 CHAPTER 10. DATA STRUCTURES

Listing 10.9: Resizable Hash-Table Data Structures
1 struct ht_elem {
2 struct rcu_head rh;
3 struct cds_list_head hte_next[2];
4 unsigned long hte_hash;
5 };
6
7 struct ht_bucket {
8 struct cds_list_head htb_head;
9 spinlock_t htb_lock;

10 };
11
12 struct ht {
13 long ht_nbuckets;
14 long ht_resize_cur;
15 struct ht *ht_new;
16 int ht_idx;
17 void *ht_hash_private;
18 int (*ht_cmp)(void *hash_private,
19 struct ht_elem *htep,
20 void *key);
21 long (*ht_gethash)(void *hash_private,
22 void *key);
23 void *(*ht_getkey)(struct ht_elem *htep);
24 struct ht_bucket ht_bkt[0];
25 };
26
27 struct hashtab {
28 struct ht *ht_cur;
29 spinlock_t ht_lock;
30 };

in state (d), shown in Figure 10.16.
This design leads to a relatively straightforward imple-

mentation, which is the subject of the next section.

10.4.2 Resizable Hash Table Implementa-
tion

Resizing is accomplished by the classic approach of in-
serting a level of indirection, in this case, the ht structure
shown on lines 12-25 of Listing 10.9. The hashtab struc-
ture shown on lines 27-30 contains only a pointer to the
current ht structure along with a spinlock that is used to
serialize concurrent attempts to resize the hash table. If we
were to use a traditional lock- or atomic-operation-based
implementation, this hashtab structure could become a
severe bottleneck from both performance and scalability
viewpoints. However, because resize operations should
be relatively infrequent, we should be able to make good
use of RCU.

The ht structure represents a specific size of the hash
table, as specified by the ->ht_nbuckets field on line 13.
The size is stored in the same structure containing the ar-
ray of buckets (->ht_bkt[] on line 24) in order to avoid
mismatches between the size and the array. The ->ht_
resize_cur field on line 14 is equal to −1 unless a resize
operation is in progress, in which case it indicates the in-

dex of the bucket whose elements are being inserted into
the new hash table, which is referenced by the ->ht_new
field on line 15. If there is no resize operation in progress,
->ht_new is NULL. Thus, a resize operation proceeds by
allocating a new ht structure and referencing it via the
->ht_new pointer, then advancing ->ht_resize_cur
through the old table’s buckets. When all the elements
have been added to the new table, the new table is linked
into the hashtab structure’s ->ht_cur field. Once all
old readers have completed, the old hash table’s ht struc-
ture may be freed.

The ->ht_idx field on line 16 indicates which of the
two sets of list pointers are being used by this instantiation
of the hash table, and is used to index the ->hte_next[]
array in the ht_elem structure on line 3.

The ->ht_hash_private, ->ht_cmp(), ->ht_
gethash(), and ->ht_getkey() fields on lines 17-23
collectively define the per-element key and the hash func-
tion. The ->ht_hash_private allows the hash function
to be perturbed [McK90b, McK90a, McK91], which can
be used to avoid denial-of-service attacks based on statisti-
cal estimation of the parameters used in the hash function.
The ->ht_cmp() function compares a specified key with
that of the specified element, the ->ht_gethash() cal-
culates the specified key’s hash, and ->ht_getkey()
extracts the key from the enclosing data element.

The ht_bucket structure is the same as before, and
the ht_elem structure differs from that of previous imple-
mentations only in providing a two-element array of list
pointer sets in place of the prior single set of list pointers.

In a fixed-sized hash table, bucket selection is quite
straightforward: Simply transform the hash value to the
corresponding bucket index. In contrast, when resizing, it
is also necessary to determine which of the old and new
sets of buckets to select from. If the bucket that would be
selected from the old table has already been distributed
into the new table, then the bucket should be selected
from the new table. Conversely, if the bucket that would
be selected from the old table has not yet been distributed,
then the bucket should be selected from the old table.

Bucket selection is shown in Listing 10.10, which
shows ht_get_bucket_single() on lines 1-8 and ht_
get_bucket() on lines 10-24. The ht_get_bucket_
single() function returns a reference to the bucket cor-
responding to the specified key in the specified hash table,
without making any allowances for resizing. It also stores
the hash value corresponding to the key into the location
referenced by parameter b on lines 5 and 6. Line 7 then
returns a reference to the corresponding bucket.

10.4. NON-PARTITIONABLE DATA STRUCTURES 169

Listing 10.10: Resizable Hash-Table Bucket Selection
1 static struct ht_bucket *
2 ht_get_bucket_single(struct ht *htp,
3 void *key, long *b)
4 {
5 *b = htp->ht_gethash(htp->ht_hash_private,
6 key) % htp->ht_nbuckets;
7 return &htp->ht_bkt[*b];
8 }
9

10 static struct ht_bucket *
11 ht_get_bucket(struct ht **htp, void *key,
12 long *b, int *i)
13 {
14 struct ht_bucket *htbp;
15
16 htbp = ht_get_bucket_single(*htp, key, b);
17 if (*b <= (*htp)->ht_resize_cur) {
18 *htp = (*htp)->ht_new;
19 htbp = ht_get_bucket_single(*htp, key, b);
20 }
21 if (i)
22 *i = (*htp)->ht_idx;
23 return htbp;
24 }

The ht_get_bucket() function handles hash-table
selection, invoking ht_get_bucket_single() on
line 16 to select the bucket corresponding to the hash
in the current hash table, storing the hash value through
parameter b. If line 17 determines that the table is being
resized and that line 16’s bucket has already been distrib-
uted across the new hash table, then line 18 selects the
new hash table and line 19 selects the bucket correspond-
ing to the hash in the new hash table, again storing the
hash value through parameter b.

Quick Quiz 10.7: The code in Listing 10.10 computes
the hash twice! Why this blatant inefficiency?

If line 21 finds that parameter i is non-NULL, then
line 22 stores the pointer-set index for the selected hash
table. Finally, line 23 returns a reference to the selected
hash bucket.

Quick Quiz 10.8: How does the code in Listing 10.10
protect against the resizing process progressing past the
selected bucket?

This implementation of ht_get_bucket_single()
and ht_get_bucket() will permit lookups and modifi-
cations to run concurrently with a resize operation.

Read-side concurrency control is provided by RCU
as was shown in Listing 10.6, but the update-side
concurrency-control functions hashtab_lock_mod()
and hashtab_unlock_mod() must now deal with the
possibility of a concurrent resize operation as shown in
Listing 10.11.

The hashtab_lock_mod() spans lines 1-19 in the list-
ing. Line 9 enters an RCU read-side critical section to

Listing 10.11: Resizable Hash-Table Update-Side Concurrency
Control

1 void hashtab_lock_mod(struct hashtab *htp_master,
2 void *key)
3 {
4 long b;
5 struct ht *htp;
6 struct ht_bucket *htbp;
7 struct ht_bucket *htbp_new;
8
9 rcu_read_lock();

10 htp = rcu_dereference(htp_master->ht_cur);
11 htbp = ht_get_bucket_single(htp, key, &b);
12 spin_lock(&htbp->htb_lock);
13 if (b > htp->ht_resize_cur)
14 return;
15 htp = htp->ht_new;
16 htbp_new = ht_get_bucket_single(htp, key, &b);
17 spin_lock(&htbp_new->htb_lock);
18 spin_unlock(&htbp->htb_lock);
19 }
20
21 void hashtab_unlock_mod(struct hashtab *htp_master,
22 void *key)
23 {
24 long b;
25 struct ht *htp;
26 struct ht_bucket *htbp;
27
28 htp = rcu_dereference(htp_master->ht_cur);
29 htbp = ht_get_bucket(&htp, key, &b, NULL);
30 spin_unlock(&htbp->htb_lock);
31 rcu_read_unlock();
32 }

prevent the data structures from being freed during the
traversal, line 10 acquires a reference to the current hash
table, and then line 11 obtains a reference to the bucket in
this hash table corresponding to the key. Line 12 acquires
that bucket’s lock, which will prevent any concurrent re-
sizing operation from distributing that bucket, though of
course it will have no effect if the resizing operation has
already distributed this bucket. Line 13 then checks to see
if a concurrent resize operation has already distributed
this bucket across the new hash table, and if not, line 14
returns with the selected hash bucket’s lock held (and also
within an RCU read-side critical section).

Otherwise, a concurrent resize operation has already
distributed this bucket, so line 15 proceeds to the new
hash table and line 16 selects the bucket corresponding
to the key. Finally, line 17 acquires the bucket’s lock and
line 18 releases the lock for the old hash table’s bucket.
Once again, hashtab_lock_mod() exits within an RCU
read-side critical section.

Quick Quiz 10.9: The code in Listing 10.10 and 10.11
computes the hash and executes the bucket-selection logic
twice for updates! Why this blatant inefficiency?

The hashtab_unlock_mod() function releases the
lock acquired by hashtab_lock_mod(). Line 28 picks

170 CHAPTER 10. DATA STRUCTURES

Listing 10.12: Resizable Hash-Table Access Functions
1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp_master,
3 void *key)
4 {
5 long b;
6 int i;
7 struct ht *htp;
8 struct ht_elem *htep;
9 struct ht_bucket *htbp;

10
11 htp = rcu_dereference(htp_master->ht_cur);
12 htbp = ht_get_bucket(&htp, key, &b, &i);
13 cds_list_for_each_entry_rcu(htep,
14 &htbp->htb_head,
15 hte_next[i]) {
16 if (htp->ht_cmp(htp->ht_hash_private,
17 htep, key))
18 return htep;
19 }
20 return NULL;
21 }
22
23 void
24 hashtab_add(struct hashtab *htp_master,
25 struct ht_elem *htep)
26 {
27 long b;
28 int i;
29 struct ht *htp;
30 struct ht_bucket *htbp;
31
32 htp = rcu_dereference(htp_master->ht_cur);
33 htbp = ht_get_bucket(&htp, htp->ht_getkey(htep),
34 &b, &i);
35 cds_list_add_rcu(&htep->hte_next[i],
36 &htbp->htb_head);
37 }
38
39 void
40 hashtab_del(struct hashtab *htp_master,
41 struct ht_elem *htep)
42 {
43 long b;
44 int i;
45 struct ht *htp;
46 struct ht_bucket *htbp;
47
48 htp = rcu_dereference(htp_master->ht_cur);
49 htbp = ht_get_bucket(&htp, htp->ht_getkey(htep),
50 &b, &i);
51 cds_list_del_rcu(&htep->hte_next[i]);
52 }

up the current hash table, and then line 29 invokes ht_
get_bucket() in order to gain a reference to the bucket
that corresponds to the key—and of course this bucket
might well be in a new hash table. Line 30 releases the
bucket’s lock and finally line 31 exits the RCU read-side
critical section.

Quick Quiz 10.10: Suppose that one thread is insert-
ing an element into the new hash table during a resize
operation. What prevents this insertion from being lost
due to a subsequent resize operation completing before
the insertion does?

Now that we have bucket selection and concurrency

control in place, we are ready to search and update our re-
sizable hash table. The hashtab_lookup(), hashtab_
add(), and hashtab_del() functions shown in List-
ing 10.12.

The hashtab_lookup() function on lines 1-21 of the
figure does hash lookups. Line 11 fetches the current
hash table and line 12 obtains a reference to the bucket
corresponding to the specified key. This bucket will be
located in a new resized hash table when a resize operation
has progressed past the bucket in the old hash table that
contained the desired data element. Note that line 12
also passes back the index that will be used to select the
correct set of pointers from the pair in each element. The
loop spanning lines 13-19 searches the bucket, so that if
line 16 detects a match, line 18 returns a pointer to the
enclosing data element. Otherwise, if there is no match,
line 20 returns NULL to indicate failure.

Quick Quiz 10.11: In the hashtab_lookup() func-
tion in Listing 10.12, the code carefully finds the right
bucket in the new hash table if the element to be looked
up has already been distributed by a concurrent resize op-
eration. This seems wasteful for RCU-protected lookups.
Why not just stick with the old hash table in this case?

The hashtab_add() function on lines 23-37 of the
figure adds new data elements to the hash table. Lines 32-
34 obtain a pointer to the hash bucket corresponding to
the key (and provide the index), as before, and line 35
adds the new element to the table. The caller is required to
handle concurrency, for example, by invoking hashtab_
lock_mod() before the call to hashtab_add() and in-
voking hashtab_unlock_mod() afterwards. These two
concurrency-control functions will correctly synchronize
with a concurrent resize operation: If the resize operation
has already progressed beyond the bucket that this data
element would have been added to, then the element is
added to the new table.

The hashtab_del() function on lines 39-52 of the
figure removes an existing element from the hash table.
Lines 48-50 provide the bucket and index as before, and
line 51 removes the specified element. As with hashtab_
add(), the caller is responsible for concurrency control
and this concurrency control suffices for synchronizing
with a concurrent resize operation.

Quick Quiz 10.12: The hashtab_del() function in
Listing 10.12 does not always remove the element from
the old hash table. Doesn’t this mean that readers might
access this newly removed element after it has been freed?

The actual resizing itself is carried out by hashtab_

10.4. NON-PARTITIONABLE DATA STRUCTURES 171

Listing 10.13: Resizable Hash-Table Resizing
1 int hashtab_resize(struct hashtab *htp_master,
2 unsigned long nbuckets, void *hash_private,
3 int (*cmp)(void *hash_private, struct ht_elem *htep, void *key),
4 long (*gethash)(void *hash_private, void *key),
5 void *(*getkey)(struct ht_elem *htep))
6 {
7 struct ht *htp;
8 struct ht *htp_new;
9 int i;

10 int idx;
11 struct ht_elem *htep;
12 struct ht_bucket *htbp;
13 struct ht_bucket *htbp_new;
14 unsigned long hash;
15 long b;
16
17 if (!spin_trylock(&htp_master->ht_lock))
18 return -EBUSY;
19 htp = htp_master->ht_cur;
20 htp_new = ht_alloc(nbuckets,
21 hash_private ? hash_private : htp->ht_hash_private,
22 cmp ? cmp : htp->ht_cmp,
23 gethash ? gethash : htp->ht_gethash,
24 getkey ? getkey : htp->ht_getkey);
25 if (htp_new == NULL) {
26 spin_unlock(&htp_master->ht_lock);
27 return -ENOMEM;
28 }
29 htp->ht_new = htp_new;
30 synchronize_rcu();
31 idx = htp->ht_idx;
32 htp_new->ht_idx = !idx;
33 for (i = 0; i < htp->ht_nbuckets; i++) {
34 htbp = &htp->ht_bkt[i];
35 spin_lock(&htbp->htb_lock);
36 htp->ht_resize_cur = i;
37 cds_list_for_each_entry(htep, &htbp->htb_head, hte_next[idx]) {
38 htbp_new = ht_get_bucket_single(htp_new, htp_new->ht_getkey(htep), &b);
39 spin_lock(&htbp_new->htb_lock);
40 cds_list_add_rcu(&htep->hte_next[!idx], &htbp_new->htb_head);
41 spin_unlock(&htbp_new->htb_lock);
42 }
43 spin_unlock(&htbp->htb_lock);
44 }
45 rcu_assign_pointer(htp_master->ht_cur, htp_new);
46 synchronize_rcu();
47 spin_unlock(&htp_master->ht_lock);
48 free(htp);
49 return 0;
50 }

resize, shown in Listing 10.13 on page 171. Line 17
conditionally acquires the top-level ->ht_lock, and if
this acquisition fails, line 18 returns -EBUSY to indicate
that a resize is already in progress. Otherwise, line 19
picks up a reference to the current hash table, and lines 21-
24 allocate a new hash table of the desired size. If a new
set of hash/key functions have been specified, these are
used for the new table, otherwise those of the old table are
preserved. If line 25 detects memory-allocation failure,
line 26 releases ->ht_lock and line 27 returns a failure
indication.

Line 29 starts the bucket-distribution process by in-
stalling a reference to the new table into the ->ht_new

field of the old table. Line 30 ensures that all readers who
are not aware of the new table complete before the resize
operation continues. Line 31 picks up the current table’s
index and stores its inverse to the new hash table, thus
ensuring that the two hash tables avoid overwriting each
other’s linked lists.

Each pass through the loop spanning lines 33-44 distrib-
utes the contents of one of the old hash table’s buckets into
the new hash table. Line 34 picks up a reference to the old
table’s current bucket, line 35 acquires that bucket’s spin-
lock, and line 36 updates ->ht_resize_cur to indicate
that this bucket is being distributed.

Quick Quiz 10.13: In the hashtab_resize() func-

172 CHAPTER 10. DATA STRUCTURES

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

2048

16,384

131,072

Figure 10.17: Overhead of Resizing Hash Tables

tion in Listing 10.12, what guarantees that the update to
->ht_new on line 29 will be seen as happening before
the update to ->ht_resize_cur on line 36 from the per-
spective of hashtab_lookup(), hashtab_add(), and
hashtab_del()?

Each pass through the loop spanning lines 37-42 adds
one data element from the current old-table bucket to the
corresponding new-table bucket, holding the new-table
bucket’s lock during the add operation. Finally, line 43
releases the old-table bucket lock.

Execution reaches line 45 once all old-table buckets
have been distributed across the new table. Line 45 in-
stalls the newly created table as the current one, and
line 46 waits for all old readers (who might still be refer-
encing the old table) to complete. Then line 47 releases
the resize-serialization lock, line 48 frees the old hash
table, and finally line 48 returns success.

10.4.3 Resizable Hash Table Discussion
Figure 10.17 compares resizing hash tables to their fixed-
sized counterparts for 2048, 16,384, and 131,072 elements
in the hash table. The figure shows three traces for each
element count, one for a fixed-size 1024-bucket hash
table, another for a fixed-size 2048-bucket hash table, and
a third for a resizable hash table that shifts back and forth
between 1024 and 2048 buckets, with a one-millisecond
pause between each resize operation.

The uppermost three traces are for the 2048-element
hash table. The upper trace corresponds to the 2048-
bucket fixed-size hash table, the middle trace to the 1024-
bucket fixed-size hash table, and the lower trace to the
resizable hash table. In this case, the short hash chains

cause normal lookup overhead to be so low that the over-
head of resizing dominates. Nevertheless, the larger fixed-
size hash table has a significant performance advantage,
so that resizing can be quite beneficial, at least given suffi-
cient time between resizing operations: One millisecond
is clearly too short a time.

The middle three traces are for the 16,384-element
hash table. Again, the upper trace corresponds to the
2048-bucket fixed-size hash table, but the middle trace
now corresponds to the resizable hash table and the lower
trace to the 1024-bucket fixed-size hash table. However,
the performance difference between the resizable and the
1024-bucket hash table is quite small. One consequence
of the eight-fold increase in number of elements (and thus
also in hash-chain length) is that incessant resizing is now
no worse than maintaining a too-small hash table.

The lower three traces are for the 131,072-element hash
table. The upper trace corresponds to the 2048-bucket
fixed-size hash table, the middle trace to the resizable
hash table, and the lower trace to the 1024-bucket fixed-
size hash table. In this case, longer hash chains result in
higher lookup overhead, so that this lookup overhead dom-
inates that of resizing the hash table. However, the per-
formance of all three approaches at the 131,072-element
level is more than an order of magnitude worse than that
at the 2048-element level, suggesting that the best strategy
would be a single 64-fold increase in hash-table size.

The key point from this data is that the RCU-protected
resizable hash table performs and scales almost as well
as does its fixed-size counterpart. The performance dur-
ing an actual resize operation of course suffers somewhat
due to the cache misses causes by the updates to each
element’s pointers, and this effect is most pronounced
when the hash-tables bucket lists are short. This indicates
that hash tables should be resized by substantial amounts,
and that hysteresis should be be applied to prevent perfor-
mance degradation due to too-frequent resize operations.
In memory-rich environments, hash-table sizes should
furthermore be increased much more aggressively than
they are decreased.

Another key point is that although the hashtab struc-
ture is non-partitionable, it is also read-mostly, which
suggests the use of RCU. Given that the performance
and scalability of this resizable hash table is very nearly
that of RCU-protected fixed-sized hash tables, we must
conclude that this approach was quite successful.

Finally, it is important to note that insertions, deletions,
and lookups can proceed concurrently with a resize op-
eration. This concurrency is critically important when

10.4. NON-PARTITIONABLE DATA STRUCTURES 173

resizing large hash tables, especially for applications that
must meet severe response-time constraints.

Of course, the ht_elem structure’s pair of pointer sets
does impose some memory overhead, which is taken up
in the next section.

10.4.4 Other Resizable Hash Tables

One shortcoming of the resizable hash table described
earlier in this section is memory consumption. Each data
element has two pairs of linked-list pointers rather than
just one. Is it possible to create an RCU-protected resiz-
able hash table that makes do with just one pair?

It turns out that the answer is “yes”. Josh Triplett et
al. [TMW11] produced a relativistic hash table that incre-
mentally splits and combines corresponding hash chains
so that readers always see valid hash chains at all points
during the resizing operation. This incremental splitting
and combining relies on the fact that it is harmless for a
reader to see a data element that should be in some other
hash chain: When this happens, the reader will simply ig-
nore the extraneous data element due to key mismatches.

The process of shrinking a relativistic hash table by
a factor of two is shown in Figure 10.18, in this case
shrinking a two-bucket hash table into a one-bucket hash
table, otherwise known as a linear list. This process works
by coalescing pairs of buckets in the old larger hash table
into single buckets in the new smaller hash table. For this
process to work correctly, we clearly need to constrain the
hash functions for the two tables. One such constraint is
to use the same underlying hash function for both tables,
but to throw out the low-order bit when shrinking from
large to small. For example, the old two-bucket hash table
would use the two top bits of the value, while the new
one-bucket hash table could use the top bit of the value.
In this way, a given pair of adjacent even and odd buckets
in the old large hash table can be coalesced into a single
bucket in the new small hash table, while still having a
single hash value cover all of the elements in that single
bucket.

The initial state is shown at the top of the figure, with
time advancing from top to bottom, starting with initial
state (a). The shrinking process begins by allocating the
new smaller array of buckets, and having each bucket of
this new smaller array reference the first element of one
of the buckets of the corresponding pair in the old large
hash table, resulting in state (b).

Then the two hash chains are linked together, resulting
in state (c). In this state, readers looking up an even-

a)
even

odd 1

0 2

3

b)
even

odd 1

0 2

3

all

all

c)
even

odd 1

0 2

3

all

d)
even

odd 1

0 2

3

all

e)
even

odd 1

0 2

3

allf) 1 0 23

Figure 10.18: Shrinking a Relativistic Hash Table

numbered element see no change, and readers looking up
elements 1 and 3 likewise see no change. However, read-
ers looking up some other odd number will also traverse
elements 0 and 2. This is harmless because any odd num-
ber will compare not-equal to these two elements. There
is some performance loss, but on the other hand, this is ex-
actly the same performance loss that will be experienced
once the new small hash table is fully in place.

Next, the new small hash table is made accessible to
readers, resulting in state (d). Note that older readers
might still be traversing the old large hash table, so in this
state both hash tables are in use.

The next step is to wait for all pre-existing readers to
complete, resulting in state (e). In this state, all readers
are using the new small hash table, so that the old large
hash table’s buckets may be freed, resulting in the final
state (f).

Growing a relativistic hash table reverses the shrinking
process, but requires more grace-period steps, as shown
in Figure 10.19. The initial state (a) is at the top of this

174 CHAPTER 10. DATA STRUCTURES

g)
even

odd 1

0 2

3

b)

even

odd

c)

d)

e)

a) all 0 2 31

all 0 2 31

even

odd

all 0 2 31

even

odd

all 0 2 31

even

odd

0 2 31

f)
even

odd

0 2 31

Figure 10.19: Growing a Relativistic Hash Table

figure, with time advancing from top to bottom.
We start by allocating the new large two-bucket hash

table, resulting in state (b). Note that each of these
new buckets references the first element destined for that
bucket. These new buckets are published to readers, result-
ing in state (c). After a grace-period operation, all readers
are using the new large hash table, resulting in state (d).
In this state, only those readers traversing the even-values
hash bucket traverse element 0, which is therefore now
colored white.

At this point, the old small hash buckets may be freed,
although many implementations use these old buckets
to track progress “unzipping” the list of items into their
respective new buckets. The last even-numbered element
in the first consecutive run of such elements now has its
pointer-to-next updated to reference the following even-
numbered element. After a subsequent grace-period oper-

ation, the result is state (e). The vertical arrow indicates
the next element to be unzipped, and element 1 is now
colored black to indicate that only those readers traversing
the odd-values hash bucket may reach it.

Next, the last odd-numbered element in the first con-
secutive run of such elements now has its pointer-to-next
updated to reference the following odd-numbered element.
After a subsequent grace-period operation, the result is
state (f). A final unzipping operation (including a grace-
period operation) results in the final state (g).

In short, the relativistic hash table reduces the number
of per-element list pointers at the expense of additional
grace periods incurred during resizing. These additional
grace periods are usually not a problem because insertions,
deletions, and lookups may proceed concurrently with a
resize operation.

It turns out that it is possible to reduce the per-element
memory overhead from a pair of pointers to a single
pointer, while still retaining O(1) deletions. This is ac-
complished by augmenting split-order list [SS06] with
RCU protection [Des09b, MDJ13a]. The data elements
in the hash table are arranged into a single sorted linked
list, with each hash bucket referencing the first element
in that bucket. Elements are deleted by setting low-order
bits in their pointer-to-next fields, and these elements are
removed from the list by later traversals that encounter
them.

This RCU-protected split-order list is complex, but
offers lock-free progress guarantees for all insertion, dele-
tion, and lookup operations. Such guarantees can be
important in real-time applications. An implementation
is available from recent versions of the userspace RCU
library [Des09b].

10.5 Other Data Structures
The preceding sections have focused on data structures
that enhance concurrency due to partitionability (Sec-
tion 10.2), efficient handling of read-mostly access pat-
terns (Section 10.3), or application of read-mostly tech-
niques to avoid non-partitionability (Section 10.4). This
section gives a brief review of other data structures.

One of the hash table’s greatest advantages for parallel
use is that it is fully partitionable, at least while not being
resized. One way of preserving the partitionability and
the size independence is to use a radix tree, which is also
called a trie. Tries partition the search key, using each
successive key partition to traverse the next level of the
trie. As such, a trie can be thought of as a set of nested

10.6. MICRO-OPTIMIZATION 175

hash tables, thus providing the required partitionability.
One disadvantage of tries is that a sparse key space can
result in inefficient use of memory. There are a number of
compression techniques that may be used to work around
this disadvantage, including hashing the key value to a
smaller keyspace before the traversal [ON06]. Radix
trees are heavily used in practice, including in the Linux
kernel [Pig06].

One important special case of both a hash table and a
trie is what is perhaps the oldest of data structures, the
array and its multi-dimensional counterpart, the matrix.
The fully partitionable nature of matrices is exploited
heavily in concurrent numerical algorithms.

Self-balancing trees are heavily used in sequential code,
with AVL trees and red-black trees being perhaps the most
well-known examples [CLRS01]. Early attempts to par-
allelize AVL trees were complex and not necessarily all
that efficient [Ell80], however, more recent work on red-
black trees provides better performance and scalability
by using RCU for readers and hashed arrays of locks1 to
protect reads and updates, respectively [HW11, HW13].
It turns out that red-black trees rebalance aggressively,
which works well for sequential programs, but not neces-
sarily so well for parallel use. Recent work has therefore
made use of RCU-protected “bonsai trees” that rebalance
less aggressively [CKZ12], trading off optimal tree depth
to gain more efficient concurrent updates.

Concurrent skip lists lend themselves well to RCU
readers, and in fact represents an early academic use of a
technique resembling RCU [Pug90].

Concurrent double-ended queues were discussed in
Section 6.1.2, and concurrent stacks and queues have a
long history [Tre86], though not normally the most im-
pressive performance or scalability. They are neverthe-
less a common feature of concurrent libraries [MDJ13b].
Researchers have recently proposed relaxing the or-
dering constraints of stacks and queues [Sha11], with
some work indicating that relaxed-ordered queues actu-
ally have better ordering properties than do strict FIFO
queues [HKLP12, KLP12, HHK+13].

It seems likely that continued work with concurrent
data structures will produce novel algorithms with sur-
prising properties.

1 In the guise of swissTM [DFGG11], which is a variant of software
transactional memory in which the developer flags non-shared accesses.

10.6 Micro-Optimization
The data structures shown in this section were coded
straightforwardly, with no adaptation to the underlying
system’s cache hierarchy. In addition, many of the im-
plementations used pointers to functions for key-to-hash
conversions and other frequent operations. Although this
approach provides simplicity and portability, in many
cases it does give up some performance.

The following sections touch on specialization, mem-
ory conservation, and hardware considerations. Please do
not mistake these short sections for a definitive treatise on
this subject. Whole books have been written on optimiz-
ing to a specific CPU, let alone to the set of CPU families
in common use today.

10.6.1 Specialization
The resizable hash table presented in Section 10.4 used
an opaque type for the key. This allows great flexibil-
ity, permitting any sort of key to be used, but it also
incurs significant overhead due to the calls via of pointers
to functions. Now, modern hardware uses sophisticated
branch-prediction techniques to minimize this overhead,
but on the other hand, real-world software is often larger
than can be accommodated even by today’s large hard-
ware branch-prediction tables. This is especially the case
for calls via pointers, in which case the branch prediction
hardware must record a pointer in addition to branch-
taken/branch-not-taken information.

This overhead can be eliminated by specializing a
hash-table implementation to a given key type and hash
function. Doing so eliminates the ->ht_cmp(), ->ht_
gethash(), and ->ht_getkey() function pointers in
the ht structure shown in Listing 10.9 on page 168. It also
eliminates the corresponding calls through these pointers,
which could allow the compiler to inline the resulting
fixed functions, eliminating not only the overhead of the
call instruction, but the argument marshalling as well.

In addition, the resizable hash table is designed to fit
an API that segregates bucket selection from concurrency
control. Although this allows a single torture test to ex-
ercise all the hash-table implementations in this chapter,
it also means that many operations must compute the
hash and interact with possible resize operations twice
rather than just once. In a performance-conscious envi-
ronment, the hashtab_lock_mod() function would also
return a reference to the bucket selected, eliminating the
subsequent call to ht_get_bucket().

Quick Quiz 10.14: Couldn’t the hashtorture.h

176 CHAPTER 10. DATA STRUCTURES

code be modified to accommodate a version of hashtab_
lock_mod() that subsumes the ht_get_bucket() func-
tionality?

Quick Quiz 10.15: How much do these specializations
really save? Are they really worth it?

All that aside, one of the great benefits of modern
hardware compared to that available when I first started
learning to program back in the early 1970s is that much
less specialization is required. This allows much greater
productivity than was possible back in the days of four-
kilobyte address spaces.

10.6.2 Bits and Bytes
The hash tables discussed in this chapter made almost no
attempt to conserve memory. For example, the ->ht_
idx field in the ht structure in Listing 10.9 on page 168
always has a value of either zero or one, yet takes up
a full 32 bits of memory. It could be eliminated, for
example, by stealing a bit from the ->ht_resize_key
field. This works because the ->ht_resize_key field
is large enough to address every byte of memory and
the ht_bucket structure is more than one byte long, so
that the ->ht_resize_key field must have several bits
to spare.

This sort of bit-packing trick is frequently used in data
structures that are highly replicated, as is the page struc-
ture in the Linux kernel. However, the resizable hash
table’s ht structure is not all that highly replicated. It
is instead the ht_bucket structures we should focus on.
There are two major opportunities for shrinking the ht_
bucket structure: (1) Placing the ->htb_lock field in
a low-order bit of one of the ->htb_head pointers and
(2) Reducing the number of pointers required.

The first opportunity might make use of bit-spinlocks
in the Linux kernel, which are provided by the include/
linux/bit_spinlock.h header file. These are used in
space-critical data structures in the Linux kernel, but are
not without their disadvantages:

1. They are significantly slower than the traditional
spinlock primitives.

2. They cannot participate in the lockdep deadlock de-
tection tooling in the Linux kernel [Cor06a].

3. They do not record lock ownership, further compli-
cating debugging.

4. They do not participate in priority boosting in -rt
kernels, which means that preemption must be dis-

Listing 10.14: Alignment for 64-Byte Cache Lines
1 struct hash_elem {
2 struct ht_elem e;
3 long __attribute__ ((aligned(64))) counter;
4 };

abled when holding bit spinlocks, which can degrade
real-time latency.

Despite these disadvantages, bit-spinlocks are ex-
tremely useful when memory is at a premium.

One aspect of the second opportunity was covered in
Section 10.4.4, which presented resizable hash tables that
require only one set of bucket-list pointers in place of the
pair of sets required by the resizable hash table presented
in Section 10.4. Another approach would be to use singly
linked bucket lists in place of the doubly linked lists used
in this chapter. One downside of this approach is that
deletion would then require additional overhead, either
by marking the outgoing pointer for later removal or by
searching the bucket list for the element being deleted.

In short, there is a tradeoff between minimal memory
overhead on the one hand, and performance and simplic-
ity on the other. Fortunately, the relatively large memories
available on modern systems have allowed us to priori-
tize performance and simplicity over memory overhead.
However, even with today’s large-memory systems2 it is
sometime necessary to take extreme measures to reduce
memory overhead.

10.6.3 Hardware Considerations
Modern computers typically move data between CPUs
and main memory in fixed-sized blocks that range in size
from 32 bytes to 256 bytes. These blocks are called cache
lines, and are extremely important to high performance
and scalability, as was discussed in Section 3.2. One
timeworn way to kill both performance and scalability is
to place incompatible variables into the same cacheline.
For example, suppose that a resizable hash table data
element had the ht_elem structure in the same cacheline
as a counter that was incremented quite frequently. The
frequent incrementing would cause the cacheline to be
present at the CPU doing the incrementing, but nowhere
else. If other CPUs attempted to traverse the hash bucket
list containing that element, they would incur expensive
cache misses, degrading both performance and scalability.

One way to solve this problem on systems with 64-
byte cache line is shown in Listing 10.14. Here GCC’s

2 Smartphones with hundreds of gigabytes of memory, anyone?

10.7. SUMMARY 177

aligned attribute is used to force the ->counter and the
ht_elem structure into separate cache lines. This would
allow CPUs to traverse the hash bucket list at full speed
despite the frequent incrementing.

Of course, this raises the question “How did we
know that cache lines are 64 bytes in size?” On a
Linux system, this information may be obtained from
the /sys/devices/system/cpu/cpu*/cache/ direc-
tories, and it is even possible to make the installation
process rebuild the application to accommodate the sys-
tem’s hardware structure. However, this would be more
difficult if you wanted your application to also run on non-
Linux systems. Furthermore, even if you were content
to run only on Linux, such a self-modifying installation
poses validation challenges.

Fortunately, there are some rules of thumb that work
reasonably well in practice, which were gathered into a
1995 paper [GKPS95].3 The first group of rules involve
rearranging structures to accommodate cache geometry:

1. Separate read-mostly data from data that is fre-
quently updated. For example, place read-mostly
data at the beginning of the structure and frequently
updated data at the end. Where possible, place data
that is rarely accessed in between.

2. If the structure has groups of fields such that each
group is updated by an independent code path, sepa-
rate these groups from each other. Again, it can make
sense to place data that is rarely accessed between
the groups. In some cases, it might also make sense
to place each such group into a separate structure
referenced by the original structure.

3. Where possible, associate update-mostly data with
a CPU, thread, or task. We saw several very effec-
tive examples of this rule of thumb in the counter
implementations in Chapter 5.

4. In fact, where possible, you should partition your
data on a per-CPU, per-thread, or per-task basis, as
was discussed in Chapter 8.

There has recently been some work towards automated
trace-based rearrangement of structure fields [GDZE10].
This work might well ease one of the more painstaking
tasks required to get excellent performance and scalability
from multithreaded software.

An additional set of rules of thumb deal with locks:
3 A number of these rules are paraphrased and expanded on here

with permission from Orran Krieger.

1. Given a heavily contended lock protecting data that
is frequently modified, take one of the following
approaches:

(a) Place the lock in a different cacheline than the
data that it protects.

(b) Use a lock that is adapted for high contention,
such as a queued lock.

(c) Redesign to reduce lock contention. (This ap-
proach is best, but can require quite a bit of
work.)

2. Place uncontended locks into the same cache line as
the data that they protect. This approach means that
the cache miss that brought the lock to the current
CPU also brought its data.

3. Protect read-mostly data with RCU, or, if RCU can-
not be used and the critical sections are of very long
duration, reader-writer locks.

Of course, these are rules of thumb rather than absolute
rules. Some experimentation is required to work out
which are most applicable to your particular situation.

10.7 Summary
This chapter has focused primarily on hash tables, includ-
ing resizable hash tables, which are not fully partitionable.
Section 10.5 gave a quick overview of a few non-hash-
table data structures. Nevertheless, this exposition of
hash tables is an excellent introduction to the many is-
sues surrounding high-performance scalable data access,
including:

1. Fully partitioned data structures work well on small
systems, for example, single-socket systems.

2. Larger systems require locality of reference as well
as full partitioning.

3. Read-mostly techniques, such as hazard pointers
and RCU, provide good locality of reference for
read-mostly workloads, and thus provide excellent
performance and scalability even on larger systems.

4. Read-mostly techniques also work well on some
types of non-partitionable data structures, such as
resizable hash tables.

178 CHAPTER 10. DATA STRUCTURES

5. Additional performance and scalability can be ob-
tained by specializing the data structure to a specific
workload, for example, by replacing a general key
with a 32-bit integer.

6. Although requirements for portability and for ex-
treme performance often conflict, there are some
data-structure-layout techniques that can strike a
good balance between these two sets of require-
ments.

That said, performance and scalability is of little use
without reliability, so the next chapter covers validation.

If it is not tested, it doesn’t work.

UnknownChapter 11

Validation

I have had a few parallel programs work the first time, but
that is only because I have written a large number parallel
programs over the past two decades. And I have had far
more parallel programs that fooled me into thinking that
they were working correctly the first time than actually
were working the first time.

I have therefore had great need of validation for my
parallel programs. The basic trick behind parallel valida-
tion, as with other software validation, is to realize that
the computer knows what is wrong. It is therefore your
job to force it to tell you. This chapter can therefore be
thought of as a short course in machine interrogation.1

A longer course may be found in many recent books
on validation, as well as at least one rather old but quite
worthwhile one [Mye79]. Validation is an extremely im-
portant topic that cuts across all forms of software, and is
therefore worth intensive study in its own right. However,
this book is primarily about concurrency, so this chapter
will necessarily do little more than scratch the surface of
this critically important topic.

Section 11.1 introduces the philosophy of debugging.
Section 11.2 discusses tracing, Section 11.3 discusses
assertions, and Section 11.4 discusses static analysis. Sec-
tion 11.5 describes some unconventional approaches to
code review that can be helpful when the fabled 10,000
eyes happen not to be looking at your code. Section 11.6
overviews the use of probability for validating parallel
software. Because performance and scalability are first-
class requirements for parallel programming, Section 11.7
covers these topics. Finally, Section 11.8 gives a fanciful
summary and a short list of statistical traps to avoid.

But never forget that the two best debugging tools are
a solid design and a good night’s sleep!

1 But you can leave the thumbscrews and waterboards at home.
This chapter covers much more sophisticated and effective methods,
especially given that most computer systems neither feel pain nor fear
drowning. At least as far as we know.

11.1 Introduction

The greatest mistake is to imagine that we never err.

Thomas Carlyle

Section 11.1.1 discusses the sources of bugs, and Sec-
tion 11.1.2 overviews the mindset required when validat-
ing software. Section 11.1.3 discusses when you should
start validation, and Section 11.1.4 describes the surpris-
ingly effective open-source regimen of code review and
community testing.

11.1.1 Where Do Bugs Come From?
Bugs come from developers. The basic problem is that
the human brain did not evolve with computer software
in mind. Instead, the human brain evolved in concert with
other human brains and with animal brains. Because of
this history, the following three characteristics of comput-
ers often come as a shock to human intuition:

1. Computers typically lack common sense, despite
decades of research sacrificed at the altar of artificial
intelligence.

2. Computers generally fail to understand user intent,
or more formally, computers generally lack a theory
of mind.

3. Computers usually cannot do anything useful with
a fragmentary plan, instead requiring that each and
every detail of each and every possible scenario be
spelled out in full.

The first two points should be uncontroversial, as they
are illustrated by any number of failed products, perhaps
most famously Clippy and Microsoft Bob. By attempting

179

180 CHAPTER 11. VALIDATION

to relate to users as people, these two products raised
common-sense and theory-of-mind expectations that they
proved incapable of meeting. Perhaps the set of software
assistants that have recently started appearing on smart-
phones will fare better. That said, the developers working
on them by all accounts still develop the old way: The
assistants might well benefit end users, but not so much
their own developers.

This human love of fragmentary plans deserves more
explanation, especially given that it is a classic two-edged
sword. This love of fragmentary plans is apparently due to
the assumption that the person carrying out the plan will
have (1) common sense and (2) a good understanding of
the intent behind the plan. This latter assumption is espe-
cially likely to hold in the common case where the person
doing the planning and the person carrying out the plan
are one and the same: In this case, the plan will be revised
almost subconsciously as obstacles arise. Therefore, the
love of fragmentary plans has served human beings well,
in part because it is better to take random actions that have
a high probability of locating food than to starve to death
while attempting to plan the unplannable. However, the
past usefulness of fragmentary plans in everyday life is
no guarantee of their future usefulness in stored-program
computers.

Furthermore, the need to follow fragmentary plans has
had important effects on the human psyche, due to the
fact that throughout much of human history, life was often
difficult and dangerous. It should come as no surprise that
executing a fragmentary plan that has a high probability
of a violent encounter with sharp teeth and claws requires
almost insane levels of optimism—a level of optimism
that actually is present in most human beings. These
insane levels of optimism extend to self-assessments of
programming ability, as evidenced by the effectiveness of
(and the controversy over) interviewing techniques involv-
ing coding trivial programs [Bra07]. In fact, the clinical
term for a human being with less-than-insane levels of
optimism is “clinically depressed.” Such people usually
have extreme difficulty functioning in their daily lives,
underscoring the perhaps counter-intuitive importance of
insane levels of optimism to a normal, healthy life. If you
are not insanely optimistic, you are less likely to start a

difficult but worthwhile project.2

Quick Quiz 11.1: When in computing is the willing-
ness to follow a fragmentary plan critically important?

An important special case is the project that, while valu-
able, is not valuable enough to justify the time required
to implement it. This special case is quite common, and
one early symptom is the unwillingness of the decision-
makers to invest enough to actually implement the project.
A natural reaction is for the developers to produce an un-
realistically optimistic estimate in order to be permitted to
start the project. If the organization (be it open source or
proprietary) is strong enough, it might survive the result-
ing schedule slips and budget overruns, so that the project
might see the light of day. However, if the organization
is not strong enough and if the decision-makers fail to
cancel the project as soon as it becomes clear that the
estimates are garbage, then the project might well kill the
organization. This might result in another organization
picking up the project and either completing it, cancelling
it, or being killed by it. A given project might well suc-
ceed only after killing several organizations. One can
only hope that the organization that eventually makes a
success of a serial-organization-killer project manages
maintains a suitable level of humility, lest it be killed by
the next project.

Important though insane levels of optimism might be,
they are a key source of bugs (and perhaps failure of or-
ganizations). The question is therefore “How to maintain
the optimism required to start a large project while at
the same time injecting enough reality to keep the bugs
down to a dull roar?” The next section examines this
conundrum.

11.1.2 Required Mindset
When carrying out any validation effort, you should keep
the following definitions in mind:

1. The only bug-free programs are trivial programs.

2. A reliable program has no known bugs.

From these definitions, it logically follows that any
reliable non-trivial program contains at least one bug that
you do not know about. Therefore, any validation effort

2 There are some famous exceptions to this rule of thumb. One set
of exceptions is people who take on difficult or risky projects in order to
make at least a temporary escape from their depression. Another set is
people who have nothing to lose: the project is literally a matter of life
or death.

11.1. INTRODUCTION 181

undertaken on a non-trivial program that fails to find any
bugs is itself a failure. A good validation is therefore an
exercise in destruction. This means that if you are the
type of person who enjoys breaking things, validation is
just the right type of job for you.

Quick Quiz 11.2: Suppose that you are writing a script
that processes the output of the time command, which
looks as follows:

real 0m0.132s
user 0m0.040s
sys 0m0.008s

The script is required to check its input for errors, and to
give appropriate diagnostics if fed erroneous time output.
What test inputs should you provide to this program to test
it for use with time output generated by single-threaded
programs?

But perhaps you are a super-programmer whose code is
always perfect the first time every time. If so, congratula-
tions! Feel free to skip this chapter, but I do hope that you
will forgive my skepticism. You see, I have met far more
people who claimed to be able to write perfect code the
first time than I have people who were actually capable
of carrying out this feat, which is not too surprising given
the previous discussion of optimism and over-confidence.
And even if you really are a super-programmer, you just
might find yourself debugging lesser mortals’ work.

One approach for the rest of us is to alternate between
our normal state of insane optimism (Sure, I can program
that!) and severe pessimism (It seems to work, but I just
know that there have to be more bugs hiding in there
somewhere!). It helps if you enjoy breaking things. If
you don’t, or if your joy in breaking things is limited to
breaking other people’s things, find someone who does
love breaking your code and get them to help you test it.

Another helpful frame of mind is to hate it when other
people find bugs in your code. This hatred can help moti-
vate you to torture your code beyond reason in order to
increase the probability that you find the bugs rather than
someone else.

One final frame of mind is to consider the possibility
that someone’s life depends on your code being correct.
This can also motivate you to torture your code into re-
vealing the whereabouts of its bugs.

This wide variety of frames of mind opens the door to
the possibility of multiple people with different frames of
mind contributing to the project, with varying levels of
optimism. This can work well, if properly organized.

Figure 11.1: Validation and the Geneva Convention

Figure 11.2: Rationalizing Validation

Some people might see vigorous validation as a form
of torture, as depicted in Figure 11.1.3 Such people might
do well to remind themselves that, Tux cartoons aside,
they are really torturing an inanimate object, as shown in
Figure 11.2. In addition, rest assured that those who fail
to torture their code are doomed to be tortured by it.

However, this leaves open the question of exactly when
during the project lifetime validation should start, a topic
taken up by the next section.

3 More cynical people might question whether these people are
instead merely afraid that validation will find bugs that they will then be
expected to fix.

182 CHAPTER 11. VALIDATION

11.1.3 When Should Validation Start?
Validation should start at the same time that the project
starts.

To see this, consider that tracking down a bug is much
harder in a large program than in a small one. Therefore,
to minimize the time and effort required to track down
bugs, you should test small units of code. Although you
won’t find all the bugs this way, you will find a substantial
fraction, and it will be much easier to find and fix the ones
you do find. Testing at this level can also alert you to
larger flaws in your overall design, minimizing the time
you waste writing code that is quite literally broken by
design.

But why wait until you have code before validating
your design?4 Hopefully reading Chapters 3 and 4 pro-
vided you with the information required to avoid some
regrettably common design flaws, but discussing your
design with a colleague or even simply writing it down
can help flush out additional flaws.

However, it is all too often the case that waiting to start
validation until you have a design is waiting too long.
Mightn’t your natural level of optimism caused you to
start the design before you fully understood the require-
ments? The answer to this question will almost always be
“yes”. One good way to avoid flawed requirements is to
get to know your users. To really serve them well, you
will have to live among them.

Quick Quiz 11.3: You are asking me to do all this
validation BS before I even start coding??? That sounds
like a great way to never get started!!!

First-of-a-kind projects require different approaches to
validation, for example, rapid prototyping. Here, the main
goal of the first few prototypes is to learn how the project
should be implemented, not so much to create a correct
implementation on the first try. However, it is important
to keep in mind that you should not omit validation, but
rather take a radically different approach to it.

Now that we have established that you should start val-
idation when you start the project, the following sections
cover a number of validation techniques and methods that
have proven their worth.

11.1.4 The Open Source Way
The open-source programming methodology has proven
quite effective, and includes a regimen of intense code
review and testing.

4 The old saying “First we must code, then we have incentive to
think” notwithstanding.

I can personally attest to the effectiveness of the open-
source community’s intense code review. One of the
first patches I prepared for the Linux kernel involved a
distributed filesystem where a user on one node writes
to a given file at a location that a user on another node
has mapped into memory. In this case, it is necessary to
invalidate the affected pages from the mapping in order
to allow the filesystem to maintain coherence during the
write operation. I coded up a first attempt at a patch, and,
in keeping with the open-source maxim “post early, post
often”, I posted the patch. I then considered how I was
going to test it.

But before I could even decide on an overall test strat-
egy, I got a reply to my posting pointing out a few bugs.
I fixed the bugs and reposted the patch, and returned to
thinking out my test strategy. However, before I had a
chance to write any test code, I received a reply to my
reposted patch, pointing out more bugs. This process
repeated itself many times, and I am not sure that I ever
got a chance to actually test the patch.

This experience brought home the truth of the open-
source saying: Given enough eyeballs, all bugs are shal-
low [Ray99].

However, when you post some code or a given patch, it
is worth asking a few questions:

1. How many of those eyeballs are actually going to
look at your code?

2. How many will be experienced and clever enough to
actually find your bugs?

3. Exactly when are they going to look?

I was lucky: There was someone out there who wanted
the functionality provided by my patch, who had long
experience with distributed filesystems, and who looked
at my patch almost immediately. If no one had looked at
my patch, there would have been no review, and therefore
no finding of bugs. If the people looking at my patch
had lacked experience with distributed filesystems, it is
unlikely that they would have found all the bugs. Had they
waited months or even years to look, I likely would have
forgotten how the patch was supposed to work, making it
much more difficult to fix them.

However, we must not forget the second tenet of the
open-source development, namely intensive testing. For
example, a great many people test the Linux kernel. Some
test patches as they are submitted, perhaps even yours.
Others test the -next tree, which is helpful, but there is
likely to be several weeks or even months delay between

11.2. TRACING 183

the time that you write the patch and the time that it
appears in the -next tree, by which time the patch will not
be quite as fresh in your mind. Still others test maintainer
trees, which often have a similar time delay.

Quite a few people don’t test code until it is committed
to mainline, or the master source tree (Linus’s tree in the
case of the Linux kernel). If your maintainer won’t accept
your patch until it has been tested, this presents you with
a deadlock situation: your patch won’t be accepted until it
is tested, but it won’t be tested until it is accepted. Never-
theless, people who test mainline code are still relatively
aggressive, given that many people and organizations do
not test code until it has been pulled into a Linux distro.

And even if someone does test your patch, there is
no guarantee that they will be running the hardware and
software configuration and workload required to locate
your bugs.

Therefore, even when writing code for an open-source
project, you need to be prepared to develop and run your
own test suite. Test development is an underappreciated
and very valuable skill, so be sure to take full advantage
of any existing test suites available to you. Important as
test development is, we will leave further discussion of it
to books dedicated to that topic. The following sections
therefore discuss locating bugs in your code given that
you already have a good test suite.

11.2 Tracing

The machine knows what is wrong. Make it tell you.

Unknown

When all else fails, add a printk()! Or a printf(), if
you are working with user-mode C-language applications.

The rationale is simple: If you cannot figure out how
execution reached a given point in the code, sprinkle
print statements earlier in the code to work out what hap-
pened. You can get a similar effect, and with more con-
venience and flexibility, by using a debugger such as gdb
(for user applications) or kgdb (for debugging Linux ker-
nels). Much more sophisticated tools exist, with some of
the more recent offering the ability to rewind backwards
in time from the point of failure.

These brute-force testing tools are all valuable, espe-
cially now that typical systems have more than 64K of
memory and CPUs running faster than 4 MHz. Much has
been written about these tools, so this chapter will add
little more.

However, these tools all have a serious shortcoming
when the job at hand is to convince a the fastpath of a
high-performance parallel algorithm to tell you what is go-
ing wrong, namely, they often have excessive overheads.
There are special tracing technologies for this purpose,
which typically leverage data ownership techniques (see
Chapter 8) to minimize the overhead of runtime data col-
lection. One example within the Linux kernel is “trace
events” [Ros10b, Ros10c, Ros10d, Ros10a], which uses
per-CPU buffers to allow data to be collected with ex-
tremely low overhead. Even so, enabling tracing can
sometimes change timing enough to hide bugs, resulting
in heisenbugs, which are discussed in Section 11.6 and
especially Section 11.6.4. In userspace code, there is a
huge number of tools that can help you. One good starting
point is Brendan Gregg’s blog.5

Even if you avoid heisenbugs, other pitfalls await you.
For example, although the machine really does know all,
what it knows is almost always way more than your head
can hold. For this reason, high-quality test suites normally
come with sophisticated scripts to analyze the voluminous
output. But beware—scripts won’t necessarily notice
surprising things. My rcutorture scripts are a case in point:
Early versions of those scripts were quite satisfied with a
test run in which RCU grace periods stalled indefinitely.
This of course resulted in the scripts being modified to
detect RCU grace-period stalls, but this does not change
the fact that the scripts will only detects problems that
I think to make them detect. But note well that unless
you have a solid design, you won’t know what your script
should check for!

Another problem with tracing and especially with
printk() calls is that their overhead is often too much
for production use. In some such cases, assertions can be
helpful.

11.3 Assertions

No man really becomes a fool until he stops asking
questions.

Charles P. Steinmetz

Assertions are usually implemented in the following man-
ner:

1 if (something_bad_is_happening())
2 complain();

5 http://www.brendangregg.com/blog/

http://www.brendangregg.com/blog/

184 CHAPTER 11. VALIDATION

This pattern is often encapsulated into C-preprocessor
macros or language intrinsics, for example, in the
Linux kernel, this might be represented as WARN_
ON(something_bad_is_happening()). Of course,
if something_bad_is_happening() quite frequently,
the resulting output might obscure reports of other prob-
lems, in which case WARN_ON_ONCE(something_bad_
is_happening()) might be more appropriate.

Quick Quiz 11.4: How can you implement WARN_ON_
ONCE()?

In parallel code, one especially bad something that
might happen is that a function expecting to be called
under a particular lock might be called without that lock
being held. Such functions sometimes have header com-
ments stating something like “The caller must hold foo_
lock when calling this function”, but such a comment
does no good unless someone actually reads it. An exe-
cutable statement like lock_is_held(&foo_lock) car-
ries far more weight.

The Linux kernel’s lockdep facility [Cor06a, Ros11]
takes this a step farther, reporting potential deadlocks as
well as allowing functions to verify that the proper locks
are held. Of course, this additional functionality incurs
significant overhead, so that lockdep is not necessarily
appropriate for production use.

So what can be done in cases where checking is neces-
sary, but where the overhead of runtime checking cannot
be tolerated? One approach is static analysis, which is
discussed in the next section.

11.4 Static Analysis

A lot of automation isn’t a replacement of humans
but of mind-numbing behavior.

Summarized from Stewart Butterfield

Static analysis is a validation technique were one program
takes a second program as input, reporting errors and vul-
nerabilities located in this second program. Interestingly
enough, almost all programs are subjected to static analy-
sis by their compilers or interpreters. These tools are of
course far from perfect, but their ability to locate errors
has improved immensely over the past few decades, in
part because they now have much more than 64K bytes
of memory in which to carry out their analysis.

The original UNIX lint tool [Joh77] was quite useful,
though much of its functionality has since been incorpo-
rated into C compilers. There are nevertheless lint-like

tools under development and in use to this day.
The sparse static analyzer [Cor04b] looks for higher-

level issues in the Linux kernel, including:

1. Misuse of pointers to user-space structures.

2. Assignments from too-long constants.

3. Empty switch statements.

4. Mismatched lock acquisition and release primitives.

5. Misuse of per-CPU primitives.

6. Use of RCU primitives on non-RCU pointers and
vice versa.

Although it is likely that compilers will continue to
increase their static-analysis capabilities, the sparse static
analyzer demonstrates the benefits of static analysis out-
side of the compiler, particularly for finding application-
specific bugs.

11.5 Code Review

If a man speaks of my virtues, he steals from me; if
he speaks of my vices, then he is my teacher.

Chinese proverb

Various code-review activities are special cases of static
analysis, but with human beings doing the analysis.
This section covers inspection, walkthroughs, and self-
inspection.

11.5.1 Inspection
Traditionally, formal code inspections take place in face-
to-face meetings with formally defined roles: moderator,
developer, and one or two other participants. The devel-
oper reads through the code, explaining what it is doing
and why it works. The one or two other participants ask
questions and raise issues, while the moderator’s job is to
resolve any conflicts and to take notes. This process can
be extremely effective at locating bugs, particularly if all
of the participants are familiar with the code at hand.

However, this face-to-face formal procedure does not
necessarily work well in the global Linux kernel com-
munity, although it might work well via an IRC session.
Instead, individuals review code separately and provide
comments via email or IRC. The note-taking is provided

11.5. CODE REVIEW 185

by email archives or IRC logs, and moderators volunteer
their services as appropriate. Give or take the occasional
flamewar, this process also works reasonably well, partic-
ularly if all of the participants are familiar with the code
at hand.6

It is quite likely that the Linux kernel community’s
review process is ripe for improvement:

1. There is sometimes a shortage of people with the
time and expertise required to carry out an effective
review.

2. Even though all review discussions are archived, they
are often “lost” in the sense that insights are forgotten
and people often fail to look up the discussions. This
can result in re-insertion of the same old bugs.

3. It is sometimes difficult to resolve flamewars when
they do break out, especially when the combatants
have disjoint goals, experience, and vocabulary.

When reviewing, therefore, it is worthwhile to review
relevant documentation in commit logs, bug reports, and
LWN articles.

11.5.2 Walkthroughs
A traditional code walkthrough is similar to a formal in-
spection, except that the group “plays computer” with
the code, driven by specific test cases. A typical walk-
through team has a moderator, a secretary (who records
bugs found), a testing expert (who generates the test cases)
and perhaps one to two others. These can be extremely
effective, albeit also extremely time-consuming.

It has been some decades since I have participated in
a formal walkthrough, and I suspect that a present-day
walkthrough would use single-stepping debuggers. One
could imagine a particularly sadistic procedure as follows:

1. The tester presents the test case.

2. The moderator starts the code under a debugger, us-
ing the specified test case as input.

3. Before each statement is executed, the developer is
required to predict the outcome of the statement and
explain why this outcome is correct.

6 That said, one advantage of the Linux kernel community approach
over traditional formal inspections is the greater probability of contribu-
tions from people not familiar with the code, who therefore might not
be blinded by the invalid assumptions harbored by those familiar with
the code.

4. If the outcome differs from that predicted by the
developer, this is taken as evidence of a potential
bug.

5. In parallel code, a “concurrency shark” asks what
code might execute concurrently with this code, and
why such concurrency is harmless.

Sadistic, certainly. Effective? Maybe. If the partic-
ipants have a good understanding of the requirements,
software tools, data structures, and algorithms, then walk-
throughs can be extremely effective. If not, walkthroughs
are often a waste of time.

11.5.3 Self-Inspection
Although developers are usually not all that effective at
inspecting their own code, there are a number of situations
where there is no reasonable alternative. For example, the
developer might be the only person authorized to look
at the code, other qualified developers might all be too
busy, or the code in question might be sufficiently bizarre
that the developer is unable to convince anyone else to
take it seriously until after demonstrating a prototype. In
these cases, the following procedure can be quite helpful,
especially for complex parallel code:

1. Write design document with requirements, diagrams
for data structures, and rationale for design choices.

2. Consult with experts, update the design document as
needed.

3. Write the code in pen on paper, correct errors as
you go. Resist the temptation to refer to pre-existing
nearly identical code sequences, instead, copy them.

4. If there were errors, copy the code in pen on fresh
paper, correcting errors as you go. Repeat until the
last two copies are identical.

5. Produce proofs of correctness for any non-obvious
code.

6. Use a source-code control system. Commit early;
commit often.

7. Where possible, test the code fragments from the
bottom up.

8. When all the code is integrated (but preferably be-
fore), do full-up functional and stress testing.

186 CHAPTER 11. VALIDATION

9. Once the code passes all tests, write code-level doc-
umentation, perhaps as an extension to the design
document discussed above. Fix both the code and
the test code as needed.

When I faithfully follow this procedure for new RCU
code, there are normally only a few bugs left at the
end. With a few prominent (and embarrassing) excep-
tions [McK11a], I usually manage to locate these bugs
before others do. That said, this is getting more difficult
over time as the number and variety of Linux-kernel users
increases.

Quick Quiz 11.5: Why would anyone bother copying
existing code in pen on paper??? Doesn’t that just increase
the probability of transcription errors?

Quick Quiz 11.6: This procedure is ridiculously over-
engineered! How can you expect to get a reasonable
amount of software written doing it this way???

The above procedure works well for new code, but
what if you need to inspect code that you have already
written? You can of course apply the above procedure for
old code in the special case where you wrote one to throw
away [FPB79], but the following approach can also be
helpful in less desperate circumstances:

1. Using your favorite documentation tool (LATEX,
HTML, OpenOffice, or straight ASCII), describe
the high-level design of the code in question. Use
lots of diagrams to illustrate the data structures and
how these structures are updated.

2. Make a copy of the code, stripping away all com-
ments.

3. Document what the code does statement by state-
ment.

4. Fix bugs as you find them.

This works because describing the code in detail is
an excellent way to spot bugs [Mye79]. Although this
second procedure is also a good way to get your head
around someone else’s code, in many cases, the first step
suffices.

Although review and inspection by others is probably
more efficient and effective, the above procedures can be
quite helpful in cases where for whatever reason it is not
feasible to involve others.

At this point, you might be wondering how to write par-
allel code without having to do all this boring paperwork.
Here are some time-tested ways of accomplishing this:

1. Write a sequential program that scales through use
of available parallel library functions.

2. Write sequential plug-ins for a parallel framework,
such as map-reduce, BOINC, or a web-application
server.

3. Do such a good job of parallel design that the prob-
lem is fully partitioned, then just implement sequen-
tial program(s) that run in parallel without commu-
nication.

4. Stick to one of the application areas (such as linear
algebra) where tools can automatically decompose
and parallelize the problem.

5. Make extremely disciplined use of parallel-
programming primitives, so that the resulting code
is easily seen to be correct. But beware: It is always
tempting to break the rules “just a little bit” to gain
better performance or scalability. Breaking the rules
often results in general breakage. That is, unless you
carefully do the paperwork described in this section.

But the sad fact is that even if you do the paperwork or
use one of the above ways to more-or-less safely avoid
paperwork, there will be bugs. If nothing else, more users
and a greater variety of users will expose more bugs more
quickly, especially if those users are doing things that the
original developers did not consider. The next section
describes how to handle the probabilistic bugs that occur
all too commonly when validating parallel software.

11.6 Probability and Heisenbugs

With both heisenbugs and impressionistic art, the
closer you get, the less you see.

Unknown

So your parallel program fails. Sometimes.
But you used techniques from the earlier sections to

locate the problem and now have a fix in place! Congrat-
ulations!!!

Now the question is just how much testing is required
in order to be certain that you actually fixed the bug, as
opposed to just reducing the probability of it occurring on
the one hand, having fixed only one of several related bugs
on the other hand, or made some ineffectual unrelated
change on yet a third hand. In short, what is the answer
to the eternal question posed by Figure 11.3?

11.6. PROBABILITY AND HEISENBUGS 187

Ha. You just got lucky

Hooray! I passed

the stress test!

Figure 11.3: Passed on Merits? Or Dumb Luck?

Unfortunately, the honest answer is that an infinite
amount of testing is required to attain absolute certainty.

Quick Quiz 11.7: Suppose that you had a very large
number of systems at your disposal. For example, at
current cloud prices, you can purchase a huge amount
of CPU time at a reasonably low cost. Why not use this
approach to get close enough to certainty for all practical
purposes?

But suppose that we are willing to give up absolute
certainty in favor of high probability. Then we can bring
powerful statistical tools to bear on this problem. How-
ever, this section will focus on simple statistical tools.
These tools are extremely helpful, but please note that
reading this section not a substitute for taking a good set
of statistics classes.7

For our start with simple statistical tools, we need to de-
cide whether we are doing discrete or continuous testing.
Discrete testing features well-defined individual test runs.
For example, a boot-up test of a Linux kernel patch is an
example of a discrete test. You boot the kernel, and it
either comes up or it does not. Although you might spend
an hour boot-testing your kernel, the number of times you
attempted to boot the kernel and the number of times the
boot-up succeeded would often be of more interest than
the length of time you spent testing. Functional tests tend
to be discrete.

7 Which I most highly recommend. The few statistics courses I
have taken have provided value way out of proportion to the time I spent
studying for them.

On the other hand, if my patch involved RCU, I would
probably run rcutorture, which is a kernel module that,
strangely enough, tests RCU. Unlike booting the kernel,
where the appearance of a login prompt signals the suc-
cessful end of a discrete test, rcutorture will happily con-
tinue torturing RCU until either the kernel crashes or until
you tell it to stop. The duration of the rcutorture test is
therefore (usually) of more interest than the number of
times you started and stopped it. Therefore, rcutorture is
an example of a continuous test, a category that includes
many stress tests.

The statistics governing discrete and continuous tests
differ somewhat. However, the statistics for discrete tests
is simpler and more familiar than that for continuous tests,
and furthermore the statistics for discrete tests can often
be pressed into service (with some loss of accuracy) for
continuous tests. We therefore start with discrete tests.

11.6.1 Statistics for Discrete Testing
Suppose that the bug had a 10 % chance of occurring in a
given run and that we do five runs. How do we compute
that probability of at least one run failing? One way is as
follows:

1. Compute the probability of a given run succeeding,
which is 90 %.

2. Compute the probability of all five runs succeeding,
which is 0.9 raised to the fifth power, or about 59 %.

3. There are only two possibilities: either all five runs
succeed, or at least one fails. Therefore, the proba-
bility of at least one failure is 59 % taken away from
100 %, or 41 %.

However, many people find it easier to work with a
formula than a series of steps, although if you prefer the
above series of steps, have at it! For those who like for-
mulas, call the probability of a single failure f . The prob-
ability of a single success is then 1− f and the probability
that all of n tests will succeed is then:

Sn = (1 − f)n (11.1)

The probability of failure is 1 − Sn , or:

Fn = 1 − (1 − f)n (11.2)

Quick Quiz 11.8: Say what??? When I plug the earlier
example of five tests each with a 10 % failure rate into

188 CHAPTER 11. VALIDATION

the formula, I get 59,050 % and that just doesn’t make
sense!!!

So suppose that a given test has been failing 10 % of
the time. How many times do you have to run the test to
be 99 % sure that your supposed fix has actually improved
matters?

Another way to ask this question is “How many times
would we need to run the test to cause the probability of
failure to rise above 99 %?” After all, if we were to run
the test enough times that the probability of seeing at least
one failure becomes 99 %, if there are no failures, there
is only 1 % probability of this being due to dumb luck.
And if we plug f = 0.1 into Equation 11.2 and vary n, we
find that 43 runs gives us a 98.92 % chance of at least one
test failing given the original 10 % per-test failure rate,
while 44 runs gives us a 99.03 % chance of at least one
test failing. So if we run the test on our fix 44 times and
see no failures, there is a 99 % probability that our fix was
actually a real improvement.

But repeatedly plugging numbers into Equation 11.2
can get tedious, so let’s solve for n:

Fn = 1 − (1 − f)n (11.3)
1 − Fn = (1 − f)n (11.4)

log (1 − Fn) = n log (1 − f) (11.5)

Finally the number of tests required is given by:

n =
log (1 − Fn)
log (1 − f)

(11.6)

Plugging f = 0.1 and Fn = 0.99 into Equation 11.6
gives 43.7, meaning that we need 44 consecutive success-
ful test runs to be 99 % certain that our fix was a real
improvement. This matches the number obtained by the
previous method, which is reassuring.

Quick Quiz 11.9: In Equation 11.6, are the logarithms
base-10, base-2, or base-e?

Figure 11.4 shows a plot of this function. Not surpris-
ingly, the less frequently each test run fails, the more test
runs are required to be 99 % confident that the bug has
been fixed. If the bug caused the test to fail only 1 % of
the time, then a mind-boggling 458 test runs are required.
As the failure probability decreases, the number of test
runs required increases, going to infinity as the failure
probability goes to zero.

The moral of this story is that when you have found a
rarely occurring bug, your testing job will be much easier
if you can come up with a carefully targeted test with a

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f R
un

s
fo

r 9
9%

 C
on

fid
en

ce

Per-Run Failure Probability

Figure 11.4: Number of Tests Required for 99 Percent
Confidence Given Failure Rate

much higher failure rate. For example, if your targeted
test raised the failure rate from 1 % to 30 %, then the
number of runs required for 99 % confidence would drop
from 458 test runs to a mere thirteen test runs.

But these thirteen test runs would only give you 99 %
confidence that your fix had produced “some improve-
ment”. Suppose you instead want to have 99 % confidence
that your fix reduced the failure rate by an order of mag-
nitude. How many failure-free test runs are required?

An order of magnitude improvement from a 30 % fail-
ure rate would be a 3 % failure rate. Plugging these num-
bers into Equation 11.6 yields:

n =
log (1 − 0.99)
log (1 − 0.03)

= 151.2 (11.7)

So our order of magnitude improvement requires
roughly an order of magnitude more testing. Certainty
is impossible, and high probabilities are quite expensive.
Clearly making tests run more quickly and making fail-
ures more probable are essential skills in the development
of highly reliable software. These skills will be covered
in Section 11.6.4.

11.6.2 Abusing Statistics for Discrete Test-
ing

But suppose that you have a continuous test that fails
about three times every ten hours, and that you fix the bug
that you believe was causing the failure. How long do
you have to run this test without failure to be 99 % certain
that you reduced the probability of failure?

11.6. PROBABILITY AND HEISENBUGS 189

Without doing excessive violence to statistics, we could
simply redefine a one-hour run to be a discrete test that
has a 30 % probability of failure. Then the results of in the
previous section tell us that if the test runs for 13 hours
without failure, there is a 99 % probability that our fix
actually improved the program’s reliability.

A dogmatic statistician might not approve of this ap-
proach, but the sad fact is that the errors introduced by
this sort of abuse of statistical methodology are usually
quite small compared to the errors inherent in your mea-
surements of your program’s failure rates. Nevertheless,
the next section describes a slightly less dodgy approach.

11.6.3 Statistics for Continuous Testing

The fundamental formula for failure probabilities is the
Poisson distribution:

Fm =
λm

m!
e−λ (11.8)

Here Fm is the probability of m failures in the test and
λ is the expected failure rate per unit time. A rigorous
derivation may be found in any advanced probability text-
book, for example, Feller’s classic “An Introduction to
Probability Theory and Its Applications” [Fel50], while a
more intuitive approach may be found in the first edition
of this book [McK14a].

Let’s try reworking the example from Section 11.6.2
using the Poisson distribution. Recall that this example
involved a test with a 30 % failure rate per hour, and that
the question was how long the test would need to run
error-free on a alleged fix to be 99 % certain that the fix
actually reduced the failure rate. In this case, m is zero,
so that Equation 11.8 reduces to:

F0 = e−λ (11.9)

Solving this requires setting F0 to 0.01 and solving for
λ, resulting in:

λ = − ln 0.01 = 4.6 (11.10)

Because we get 0.3 failures per hour, the number of
hours required is 4.6/0.3 = 14.3, which is within 10 % of
the 13 hours calculated using the method in Section 11.6.2.
Given that you normally won’t know your failure rate
to within 10 %, this indicates that the method in Sec-
tion 11.6.2 is a good and sufficient substitute for the Pois-
son distribution in a great many situations.

More generally, if we have n failures per unit time, and
we want to be P % certain that a fix reduced the failure
rate, we can use the following formula:

T = −
1
n

ln
100 − P

100
(11.11)

Quick Quiz 11.10: Suppose that a bug causes a test
failure three times per hour on average. How long must
the test run error-free to provide 99.9 % confidence that
the fix significantly reduced the probability of failure?

As before, the less frequently the bug occurs and the
greater the required level of confidence, the longer the
required error-free test run.

Suppose that a given test fails about once every hour,
but after a bug fix, a 24-hour test run fails only twice.
Assuming that the failure leading to the bug is a random
occurrence, what is the probability that the small number
of failures in the second run was due to random chance?
In other words, how confident should we be that the fix
actually had some effect on the bug? This probability may
be calculated by summing Equation 11.8 as follows:

F0 + F1 + . . . + Fm−1 + Fm =

m∑
i=0

λi

i!
e−λ (11.12)

This is the Poisson cumulative distribution function,
which can be written more compactly as:

Fi≤m =

m∑
i=0

λi

i!
e−λ (11.13)

Here m is the number of errors in the long test run
(in this case, two) and λ is expected number of errors in
the long test run (in this case, 24). Plugging m = 2 and
λ = 24 into this expression gives the probability of two
or fewer failures as about 1.2 × 10−8, in other words, we
have a high level of confidence that the fix actually had
some relationship to the bug.8

Quick Quiz 11.11: Doing the summation of all the
factorials and exponentials is a real pain. Isn’t there an
easier way?

Quick Quiz 11.12: But wait!!! Given that there has to
be some number of failures (including the possibility of
zero failures), shouldn’t the summation shown in Equa-
tion 11.13 approach the value 1 as m goes to infinity?

8 Of course, this result in no way excuses you from finding and
fixing the bug(s) resulting in the remaining two failures!

190 CHAPTER 11. VALIDATION

The Poisson distribution is a powerful tool for analyz-
ing test results, but the fact is that in this last example
there were still two remaining test failures in a 24-hour
test run. Such a low failure rate results in very long test
runs. The next section discusses counter-intuitive ways
of improving this situation.

11.6.4 Hunting Heisenbugs
This line of thought also helps explain heisenbugs: adding
tracing and assertions can easily reduce the probability of
a bug appearing, which is why extremely lightweight trac-
ing and assertion mechanism are so critically important.

The term “heisenbug” was inspired by the Heisenberg
Uncertainty Principle from quantum physics, which states
that it is impossible to exactly quantify a given particle’s
position and velocity at any given point in time [Hei27].
Any attempt to more accurately measure that particle’s
position will result in increased uncertainty of its velocity.
A roughly similar effect occurs for heisenbugs: attempts
to track down the heisenbug causes it to radically change
its symptoms or even disappear completely.9

If the field of physics inspired the name of this problem,
it is only logical that the field of physics should inspire
the solution. Fortunately, particle physics is up to the
task: Why not create an anti-heisenbug to annihilate the
heisenbug? Or, perhaps more accurately, to annihilate the
heisen-ness of the heisenbug?

This section describes a number of ways to do just that:

1. Add delay to race-prone regions.

2. Increase workload intensity.

3. Test suspicious subsystems in isolation.

4. Simulate unusual events.

5. Count near misses.

Although producing an anti-heisenbug for a given
heisenbug is more an art than a science, the following
sections give some tips on generating the corresponding
species of anti-heisenbug. These are followed by a dis-
cussion section, Section 11.6.4.6.

9 The term “heisenbug” is a misnomer, as most heisenbugs are fully
explained by the observer effect from classical physics. Nevertheless,
the name “heisenbug” has stuck.

11.6.4.1 Add Delay

Consider the count-lossy code in Section 5.1. Adding
printf() statements will likely greatly reduce or even
eliminate the lost counts. However, converting the load-
add-store sequence to a load-add-delay-store sequence
will greatly increase the incidence of lost counts (try it!).
Once you spot a bug involving a race condition, it is
frequently possible to create an anti-heisenbug by adding
delay in this manner.

Of course, this begs the question of how to find the race
condition in the first place. This is a bit of a dark art, but
there are a number of things you can do to find them.

One approach is to recognize that race conditions often
end up corrupting some of the data involved in the race.
It is therefore good practice to double-check the synchro-
nization of any corrupted data. Even if you cannot imme-
diately recognize the race condition, adding delay before
and after accesses to the corrupted data might change the
failure rate. By adding and removing the delays in an
organized fashion (e.g., binary search), you might learn
more about the workings of the race condition.

Quick Quiz 11.13: How is this approach supposed
to help if the corruption affected some unrelated pointer,
which then caused the corruption???

Another important approach is to vary the software
and hardware configuration and look for statistically sig-
nificant differences in failure rate. You can then look
more intensively at the code implicated by the software
or hardware configuration changes that make the greatest
difference in failure rate. It might be helpful to test that
code in isolation, for example.

One important aspect of software configuration is the
history of changes, which is why git bisect is so use-
ful. Bisection of the change history can provide very
valuable clues as to the nature of the heisenbug.

Quick Quiz 11.14: But I did the bisection, and ended
up with a huge commit. What do I do now?

However you locate the suspicious section of code,
you can then introduce delays to attempt to increase the
probability of failure. As we have seen, increasing the
probability of failure makes it much easier to gain high
confidence in the corresponding fix.

However, it is sometimes quite difficult to track down
the problem using normal debugging techniques. The
following sections present some other alternatives.

11.6. PROBABILITY AND HEISENBUGS 191

11.6.4.2 Increase Workload Intensity

It is often the case that a given test suite places relatively
low stress on a given subsystem, so that a small change
in timing can cause a heisenbug to disappear. One way
to create an anti-heisenbug for this case is to increase the
workload intensity, which has a good chance of increasing
the probability of the bug appearing. If the probability
is increased sufficiently, it may be possible to add light-
weight diagnostics such as tracing without causing the
bug to vanish.

How can you increase the workload intensity? This
depends on the program, but here are some things to try:

1. Add more CPUs.

2. If the program uses networking, add more network
adapters and more or faster remote systems.

3. If the program is doing heavy I/O when the prob-
lem occurs, either (1) add more storage devices, (2)
use faster storage devices, for example, substitute
SSDs for disks, or (3) use a RAM-based filesystem
to substitute main memory for mass storage.

4. Change the size of the problem, for example, if do-
ing a parallel matrix multiply, change the size of the
matrix. Larger problems may introduce more com-
plexity, but smaller problems often increase the level
of contention. If you aren’t sure whether you should
go large or go small, just try both.

However, it is often the case that the bug is in a specific
subsystem, and the structure of the program limits the
amount of stress that can be applied to that subsystem.
The next section addresses this situation.

11.6.4.3 Isolate Suspicious Subsystems

If the program is structured such that it is difficult or
impossible to apply much stress to a subsystem that is
under suspicion, a useful anti-heisenbug is a stress test
that tests that subsystem in isolation. The Linux kernel’s
rcutorture module takes exactly this approach with RCU:
By applying more stress to RCU than is feasible in a
production environment, the probability that any RCU
bugs will be found during rcutorture testing rather than
during production use is increased.10

In fact, when creating a parallel program, it is wise
to stress-test the components separately. Creating such

10 Though sadly not increased to probability one.

component-level stress tests can seem like a waste of time,
but a little bit of component-level testing can save a huge
amount of system-level debugging.

11.6.4.4 Simulate Unusual Events

Heisenbugs are sometimes due to unusual events, such as
memory-allocation failure, conditional-lock-acquisition
failure, CPU-hotplug operations, timeouts, packet losses,
and so on. One way to construct an anti-heisenbug for
this class of heisenbug is to introduce spurious failures.

For example, instead of invoking malloc() directly,
invoke a wrapper function that uses a random number
to decide whether to return NULL unconditionally on the
one hand, or to actually invoke malloc() and return the
resulting pointer on the other. Inducing spurious failures
is an excellent way to bake robustness into sequential
programs as well as parallel programs.

Quick Quiz 11.15: Why don’t existing conditional-
locking primitives provide this spurious-failure function-
ality?

11.6.4.5 Count Near Misses

Bugs are often an all-or-nothing thing, so that either the
bug happens or it doesn’t, with nothing in between. How-
ever, it is sometimes possible to define a near miss where
the bug does not result in a failure, but has likely mani-
fested. For example, suppose your code is making a robot
walk. The robot’s falling over constitutes a bug in your
program, but stumbling and recovering might constitute a
near miss. If the robot falls over only once per hour, but
stumbles every few minutes, you might be able to speed
up your debugging progress by counting the number of
stumbles in addition to the number of falls.

In concurrent programs, timestamping can sometimes
be used to detect near misses. For example, locking prim-
itives incur significant delays, so if there is a too-short
delay between a pair of operations that are supposed to be
protected by different acquisitions of the same lock, this
too-short delay might be counted as a near miss.11

For example, a low-probability bug in RCU priority
boosting occurred roughly once every hundred hours of
focused rcutorture testing. Because it would take almost
500 hours of failure-free testing to be 99 % certain that the
bug’s probability had been significantly reduced, the git
bisect process to find the failure would be painfully

11 Of course, in this case, you might be better off using whatever
lock_held() primitive is available in your environment. If there isn’t
a lock_held() primitive, create one!

192 CHAPTER 11. VALIDATION

call_rcu()

Grace-Period Start

Grace-Period End

Callback Invocation

N
ea

r M
is

s

E
rr

or

Ti
m

e

Figure 11.5: RCU Errors and Near Misses

slow—or would require an extremely large test farm. For-
tunately, the RCU operation being tested included not
only a wait for an RCU grace period, but also a previ-
ous wait for the grace period to start and a subsequent
wait for an RCU callback to be invoked after completion
of the RCU grace period. This distinction between an
rcutorture error and near miss is shown in Figure 11.5.
To qualify as a full-fledged error, an RCU read-side criti-
cal section must extend from the call_rcu() that initi-
ated a grace period, through the remainder of the previous
grace period, through the entirety of the grace period initi-
ated by the call_rcu() (denoted by the region between
the jagged lines), and through the delay from the end of
that grace period to the callback invocation, as indicated
by the “Error” arrow. However, the formal definition of
RCU prohibits RCU read-side critical sections from ex-
tending across a single grace period, as indicated by the
“Near Miss” arrow. This suggests using near misses as the
error condition, however, this can be problematic because
different CPUs can have different opinions as to exactly
where a given grace period starts and ends, as indicated
by the jagged lines.12 Using the near misses as the error
condition could therefore result in false positives, which
need to be avoided in the automated rcutorture testing.

By sheer dumb luck, rcutorture happens to include
some statistics that are sensitive to the near-miss version
of the grace period. As noted above, these statistics are
subject to false positives due to their unsynchronized ac-
cess to RCU’s state variables, but these false positives
turn out to be extremely rare on strongly ordered systems
such as the IBM mainframe and x86, occurring less than

12 The jaggedness of these lines is seriously understated because
idle CPUs might well be completely unaware of the most recent few
hundred grace periods.

once per thousand hours of testing.
These near misses occurred roughly once per hour,

about two orders of magnitude more frequently than the
actual errors. Use of these near misses allowed the bug’s
root cause to be identified in less than a week and a high
degree of confidence in the fix to be built in less than a
day. In contrast, excluding the near misses in favor of
the real errors would have required months of debug and
validation time.

To sum up near-miss counting, the general approach
is to replace counting of infrequent failures with more-
frequent near misses that are believed to be correlated with
those failures. These near-misses can be considered an
anti-heisenbug to the real failure’s heisenbug because the
near-misses, being more frequent, are likely to be more
robust in the face of changes to your code, for example,
the changes you make to add debugging code.

11.6.4.6 Heisenbug Discussion

The alert reader might have noticed that this section was
fuzzy and qualitative, in stark contrast to the precise math-
ematics of Sections 11.6.1, 11.6.2, and 11.6.3. If you
love precision and mathematics, you may be disappointed
to learn that the situations to which this section applies
are far more common than those to which the preceding
sections apply.

In fact, the common case is that although you might
have reason to believe that your code has bugs, you have
no idea what those bugs are, what causes them, how likely
they are to appear, or what conditions affect their probabil-
ity of appearance. In this all-too-common case, statistics
cannot help you.13 That is to say, statistics cannot help
you directly. But statistics can be of great indirect help—
if you have the humility required to admit that you make
mistakes, that you can reduce the probability of these
mistakes (for example, by getting enough sleep), and that
the number and type of mistakes you made in the past is
indicative of the number and type of mistakes that you
are likely to make in the future. For example, I have a
deplorable tendency to forget to write a small but critical
portion of the initialization code, and frequently get most
or even all of a parallel program correct—except for a
stupid omission in initialization. Once I was willing to
admit to myself that I am prone to this type of mistake, it
was easier (but not easy!) to force myself to double-check

13 Although if you know what your program is supposed to do and
if your program is small enough (both less likely that you might think),
then the formal-verification tools described in Chapter 12 can be helpful.

11.7. PERFORMANCE ESTIMATION 193

my initialization code. Doing this allowed me to find
numerous bugs ahead of time.

Using Taleb’s nomenclature [Tal07], a white swan is a
bug that we can reproduce. We can run a large number
of tests, use ordinary statistics to estimate the bug’s prob-
ability, and use ordinary statistics again to estimate our
confidence in a proposed fix. An unsuspected bug is a
black swan. We know nothing about it, we have no tests
that have yet caused it to happen, and statistics is of no
help. Studying our own behavior, especially the number
and types of mistakes we make, can turn black swans into
grey swans. We might not know exactly what the bugs
are, but we have some idea of their number and maybe
also of their type. Ordinary statistics is still of no help (at
least not until we are able to reproduce one of the bugs),
but robust14 testing methods can be of great help. The
goal, therefore, is to use experience and good validation
practices to turn the black swans grey, focused testing
and analysis to turn the grey swans white, and ordinary
methods to fix the white swans.

That said, thus far, we have focused solely on bugs in
the parallel program’s functionality. However, because
performance is a first-class requirement for a parallel pro-
gram (otherwise, why not write a sequential program?),
the next section discusses performance bugs.

11.7 Performance Estimation

There are lies, damn lies, statistics, and benchmarks.

Unknown

Parallel programs usually have performance and scalabil-
ity requirements, after all, if performance is not an issue,
why not use a sequential program? Ultimate performance
and linear scalability might not be necessary, but there is
little use for a parallel program that runs slower than its
optimal sequential counterpart. And there really are cases
where every microsecond matters and every nanosecond
is needed. Therefore, for parallel programs, insufficient
performance is just as much a bug as is incorrectness.

Quick Quiz 11.16: That is ridiculous!!! After all, isn’t
getting the correct answer later than one would like better
than getting an incorrect answer???

Quick Quiz 11.17: But if you are going to put in all
the hard work of parallelizing an application, why not
do it right? Why settle for anything less than optimal
performance and linear scalability?

14 That is to say brutal.

Validating a parallel program must therfore include
validating its performance. But validating performance
means having a workload to run and performance criteria
with which to evaluate the program at hand. These needs
are often met by performance benchmarks, which are
discussed in the next section.

11.7.1 Benchmarking
Frequent abuse aside, benchmarks are both useful and
heavily used, so it is not helpful to be too dismissive of
them. Benchmarks span the range from ad hoc test jigs
to international standards, but regardless of their level of
formality, benchmarks serve four major purposes:

1. Providing a fair framework for comparing competing
implementations.

2. Focusing competitive energy on improving imple-
mentations in ways that matter to users.

3. Serving as example uses of the implementations be-
ing benchmarked.

4. Serving as a marketing tool to highlight your soft-
ware against your competitors’ offerings.

Of course, the only completely fair framework is the in-
tended application itself. So why would anyone who cared
about fairness in benchmarking bother creating imperfect
benchmarks rather than simply using the application itself
as the benchmark?

Running the actual application is in fact the best ap-
proach where it is practical. Unfortunately, it is often
impractical for the following reasons:

1. The application might be proprietary, and you might
not have the right to run the intended application.

2. The application might require more hardware than
you have access to.

3. The application might use data that you cannot ac-
cess, for example, due to privacy regulations.

Creating a benchmark that approximates the applica-
tion can help overcome these obstacles. A carefully con-
structed benchmark can help promote performance, scala-
bility, energy efficiency, and much else besides. However,
be careful to avoid investing too much into the benchmark
effort. It is after all important to invest at least a little into
the application itself [Gra91].

194 CHAPTER 11. VALIDATION

11.7.2 Profiling
In many cases, a fairly small portion of your software
is responsible for the majority of the performance and
scalability shortfall. However, developers are notoriously
unable to identify the actual bottlenecks by hand. For ex-
ample, in the case of a kernel buffer allocator, all attention
focused on a search of a dense array which turned out to
represent only a few percent of the allocator’s execution
time. An execution profile collected via a logic analyzer
focused attention on the cache misses that were actually
responsible for the majority of the problem [MS93].

An old-school but quite effective method of tracking
down performance and scalability bugs is to run your
program under a debugger, then periodically interrupt it,
recording the stacks of all threads at each interruption.
The theory here is that if something is slowing down your
program, it has to be visible in your threads’ executions.

That said, there are a number of tools that will usually
do a much better job of helping you to focus your atten-
tion where it will do the most good. Two popular choices
are gprof and perf. To use perf on a single-process
program, prefix your command with perf record, then
after the command completes, type perf report. There
is a lot of work on tools for performance debugging of
multi-threaded programs, which should make this impor-
tant job easier. Again, one good starting point is Brendan
Gregg’s blog.15

11.7.3 Differential Profiling
Scalability problems will not necessarily be apparent un-
less you are running on very large systems. However, it is
sometimes possible to detect impending scalability prob-
lems even when running on much smaller systems. One
technique for doing this is called differential profiling.

The idea is to run your workload under two different
sets of conditions. For example, you might run it on two
CPUs, then run it again on four CPUs. You might instead
vary the load placed on the system, the number of network
adapters, the number of mass-storage devices, and so on.
You then collect profiles of the two runs, and mathemati-
cally combine corresponding profile measurements. For
example, if your main concern is scalability, you might
take the ratio of corresponding measurements, and then
sort the ratios into descending numerical order. The prime
scalability suspects will then be sorted to the top of the
list [McK95, McK99].

15 http://www.brendangregg.com/blog/

Some tools such as perf have built-in differential-
profiling support.

11.7.4 Microbenchmarking

Microbenchmarking can be useful when deciding which
algorithms or data structures are worth incorporating into
a larger body of software for deeper evaluation.

One common approach to microbenchmarking is to
measure the time, run some number of iterations of the
code under test, then measure the time again. The dif-
ference between the two times divided by the number of
iterations gives the measured time required to execute the
code under test.

Unfortunately, this approach to measurement allows
any number of errors to creep in, including:

1. The measurement will include some of the overhead
of the time measurement. This source of error can be
reduced to an arbitrarily small value by increasing
the number of iterations.

2. The first few iterations of the test might incur cache
misses or (worse yet) page faults that might inflate
the measured value. This source of error can also be
reduced by increasing the number of iterations, or
it can often be eliminated entirely by running a few
warm-up iterations before starting the measurement
period.

3. Some types of interference, for example, random
memory errors, are so rare that they can be dealt
with by running a number of sets of iterations of the
test. If the level of interference was statistically sig-
nificant, any performance outliers could be rejected
statistically.

4. Any iteration of the test might be interfered with
by other activity on the system. Sources of inter-
ference include other applications, system utilities
and daemons, device interrupts, firmware interrupts
(including system management interrupts, or SMIs),
virtualization, memory errors, and much else besides.
Assuming that these sources of interference occur
randomly, their effect can be minimized by reducing
the number of iterations.

The first and fourth sources of interference provide
conflicting advice, which is one sign that we are living

http://www.brendangregg.com/blog/

11.7. PERFORMANCE ESTIMATION 195

in the real world. The remainder of this section looks at
ways of resolving this conflict.

Quick Quiz 11.18: But what about other sources of
error, for example, due to interactions between caches
and memory layout?

The following sections discuss ways of dealing with
these measurement errors, with Section 11.7.5 covering
isolation techniques that may be used to prevent some
forms of interference, and with Section 11.7.6 covering
methods for detecting interference so as to reject mea-
surement data that might have been corrupted by that
interference.

11.7.5 Isolation
The Linux kernel provides a number of ways to isolate a
group of CPUs from outside interference.

First, let’s look at interference by other processes,
threads, and tasks. The POSIX sched_setaffinity()
system call may be used to move most tasks off of a
given set of CPUs and to confine your tests to that same
group. The Linux-specific user-level taskset command
may be used for the same purpose, though both sched_
setaffinity() and taskset require elevated permis-
sions. Linux-specific control groups (cgroups) may be
used for this same purpose. This approach can be quite ef-
fective at reducing interference, and is sufficient in many
cases. However, it does have limitations, for example, it
cannot do anything about the per-CPU kernel threads that
are often used for housekeeping tasks.

One way to avoid interference from per-CPU kernel
threads is to run your test at a high real-time priority, for
example, by using the POSIX sched_setscheduler()
system call. However, note that if you do this, you are
implicitly taking on responsibility for avoiding infinite
loops, because otherwise your test will prevent part of the
kernel from functioning.16

These approaches can greatly reduce, and perhaps even
eliminate, interference from processes, threads, and tasks.
However, it does nothing to prevent interference from
device interrupts, at least in the absence of threaded
interrupts. Linux allows some control of threaded in-
terrupts via the /proc/irq directory, which contains
numerical directories, one per interrupt vector. Each
numerical directory contains smp_affinity and smp_
affinity_list. Given sufficient permissions, you can
write a value to these files to restrict interrupts to the

16 This is an example of the Spiderman Principle: “With great power
comes great responsibility.”

specified set of CPUs. For example, “sudo echo 3
> /proc/irq/23/smp_affinity” would confine in-
terrupts on vector 23 to CPUs 0 and 1. The
same results may be obtained via “sudo echo 0-1
> /proc/irq/23/smp_affinity_list”. You can use
“cat /proc/interrupts” to obtain a list of the inter-
rupt vectors on your system, how many are handled by
each CPU, and what devices use each interrupt vector.

Running a similar command for all interrupt vectors on
your system would confine interrupts to CPUs 0 and 1,
leaving the remaining CPUs free of interference. Or
mostly free of interference, anyway. It turns out that
the scheduling-clock interrupt fires on each CPU that is
running in user mode.17 In addition you must take care to
ensure that the set of CPUs that you confine the interrupts
to is capable of handling the load.

But this only handles processes and interrupts running
in the same operating-system instance as the test. Suppose
that you are running the test in a guest OS that is itself run-
ning on a hypervisor, for example, Linux running KVM?
Although you can in theory apply the same techniques at
the hypervisor level that you can at the guest-OS level, it
is quite common for hypervisor-level operations to be re-
stricted to authorized personnel. In addition, none of these
techniques work against firmware-level interference.

Quick Quiz 11.19: Wouldn’t the techniques suggested
to isolate the code under test also affect that code’s per-
formance, particularly if it is running within a larger ap-
plication?

If you find yourself in this painful situation, instead of
preventing the interference, you might need to detect the
interference as described in the next section.

11.7.6 Detecting Interference
If you cannot prevent interference, perhaps you can detect
the interference after the fact and reject the test runs that
were affected by that interference. Section 11.7.6.1 de-
scribes methods of rejection involving additional measure-
ments, while Section 11.7.6.2 describes statistics-based
rejection.

11.7.6.1 Detecting Interference Via Measurement

Many systems, including Linux, provide means for deter-
mining after the fact whether some forms of interference

17 Frederic Weisbecker is working on a NO_HZ_FULL adaptive-ticks
project that will allow the scheduling-clock interrupt to be shut off on
any CPU that has only one runnable task, and as of 2017, this is mostly
but not totally completed.

196 CHAPTER 11. VALIDATION

Listing 11.1: Using getrusage() to Detect Context Switches
1 #include <sys/time.h>
2 #include <sys/resource.h>
3
4 /* Return 0 if test results should be rejected. */
5 int runtest(void)
6 {
7 struct rusage ru1;
8 struct rusage ru2;
9

10 if (getrusage(RUSAGE_SELF, &ru1) != 0) {
11 perror("getrusage");
12 abort();
13 }
14 /* run test here. */
15 if (getrusage(RUSAGE_SELF, &ru2 != 0) {
16 perror("getrusage");
17 abort();
18 }
19 return (ru1.ru_nvcsw == ru2.ru_nvcsw &&
20 ru1.runivcsw == ru2.runivcsw);
21 }

have occurred. For example, if your test encountered
process-based interference, a context switch must have
occurred during the test. On Linux-based systems, this
context switch will be visible in /proc/<PID>/sched
in the nr_switches field. Similarly, interrupt-based in-
terference can be detected via the /proc/interrupts
file.

Opening and reading files is not the way to low over-
head, and it is possible to get the count of context switches
for a given thread by using the getrusage() system call,
as shown in Listing 11.1. This same system call can be
used to detect minor page faults (ru_minflt) and major
page faults (ru_majflt).

Unfortunately, detecting memory errors and firmware
interference is quite system-specific, as is the detection of
interference due to virtualization. Although avoidance is
better than detection, and detection is better than statistics,
there are times when one must avail oneself of statistics,
a topic addressed in the next section.

11.7.6.2 Detecting Interference Via Statistics

Any statistical analysis will be based on assumptions
about the data, and performance microbenchmarks often
support the following assumptions:

1. Smaller measurements are more likely to be accurate
than larger measurements.

2. The measurement uncertainty of good data is known.

3. A reasonable fraction of the test runs will result in
good data.

The fact that smaller measurements are more likely to
be accurate than larger measurements suggests that sort-
ing the measurements in increasing order is likely to be
productive.18 The fact that the measurement uncertainty
is known allows us to accept measurements within this
uncertainty of each other: If the effects of interference are
large compared to this uncertainty, this will ease rejection
of bad data. Finally, the fact that some fraction (for ex-
ample, one third) can be assumed to be good allows us
to blindly accept the first portion of the sorted list, and
this data can then be used to gain an estimate of the nat-
ural variation of the measured data, over and above the
assumed measurement error.

The approach is to take the specified number of leading
elements from the beginning of the sorted list, and use
these to estimate a typical inter-element delta, which in
turn may be multiplied by the number of elements in the
list to obtain an upper bound on permissible values. The
algorithm then repeatedly considers the next element of
the list. If it falls below the upper bound, and if the dis-
tance between the next element and the previous element
is not too much greater than the average inter-element
distance for the portion of the list accepted thus far, then
the next element is accepted and the process repeats. Oth-
erwise, the remainder of the list is rejected.

Listing 11.2 shows a simple sh/awk script implement-
ing this notion. Input consists of an x-value followed by
an arbitrarily long list of y-values, and output consists of
one line for each input line, with fields as follows:

1. The x-value.

2. The average of the selected data.

3. The minimum of the selected data.

4. The maximum of the selected data.

5. The number of selected data items.

6. The number of input data items.

This script takes three optional arguments as follows:

–divisor: Number of segments to divide the list into,
for example, a divisor of four means that the first
quarter of the data elements will be assumed to be
good. This defaults to three.

18 To paraphrase the old saying, “Sort first and ask questions later.”

11.7. PERFORMANCE ESTIMATION 197

Listing 11.2: Statistical Elimination of Interference
1 divisor=3
2 relerr=0.01
3 trendbreak=10
4 while test $# -gt 0
5 do
6 case "$1" in
7 --divisor)
8 shift
9 divisor=$1

10 ;;
11 --relerr)
12 shift
13 relerr=$1
14 ;;
15 --trendbreak)
16 shift
17 trendbreak=$1
18 ;;
19 esac
20 shift
21 done
22
23 awk -v divisor=$divisor -v relerr=$relerr \
24 -v trendbreak=$trendbreak ’{
25 for (i = 2; i <= NF; i++)
26 d[i - 1] = $i;
27 asort(d);
28 i = int((NF + divisor - 1) / divisor);
29 delta = d[i] - d[1];
30 maxdelta = delta * divisor;
31 maxdelta1 = delta + d[i] * relerr;
32 if (maxdelta1 > maxdelta)
33 maxdelta = maxdelta1;
34 for (j = i + 1; j < NF; j++) {
35 if (j <= 2)
36 maxdiff = d[NF - 1] - d[1];
37 else
38 maxdiff = trendbreak * \
39 (d[j - 1] - d[1]) / (j - 2);
40 if (d[j] - d[1] > maxdelta && \
41 d[j] - d[j - 1] > maxdiff)
42 break;
43 }
44 n = sum = 0;
45 for (k = 1; k < j; k++) {
46 sum += d[k];
47 n++;
48 }
49 min = d[1];
50 max = d[j - 1];
51 avg = sum / n;
52 print $1, avg, min, max, n, NF - 1;
53 }’

–relerr: Relative measurement error. The script as-
sumes that values that differ by less than this error
are for all intents and purposes equal. This defaults
to 0.01, which is equivalent to 1 %.

–trendbreak: Ratio of inter-element spacing constitut-
ing a break in the trend of the data. For example, if
the average spacing in the data accepted so far is 1.5,
then if the trend-break ratio is 2.0, then if the next
data value differs from the last one by more than
3.0, this constitutes a break in the trend. (Unless of
course, the relative error is greater than 3.0, in which

case the “break” will be ignored.)

Lines 1-3 of Listing 11.2 set the default values for
the parameters, and lines 4-21 parse any command-line
overriding of these parameters. The awk invocation on
lines 23 and 24 sets the values of the divisor, relerr,
and trendbreak variables to their sh counterparts. In the
usual awk manner, lines 25-52 are executed on each input
line. The loop spanning lines 24 and 26 copies the input
y-values to the d array, which line 27 sorts into increasing
order. Line 28 computes the number of y-values that
are to be trusted absolutely by applying divisor and
rounding up.

Lines 29-33 compute the maxdelta value used as a
lower bound on the upper bound of y-values. To this end,
lines 29 and 30 multiply the difference in values over the
trusted region of data by the divisor, which projects the
difference in values across the trusted region across the
entire set of y-values. However, this value might well be
much smaller than the relative error, so line 31 computes
the absolute error (d[i] * relerr) and adds that to the
difference delta across the trusted portion of the data.
Lines 32 and 33 then compute the maximum of these two
values.

Each pass through the loop spanning lines 34-43 at-
tempts to add another data value to the set of good data.
Lines 35-39 compute the trend-break delta, with line 36
disabling this limit if we don’t yet have enough values to
compute a trend, and with lines 38 and 39 multiplying
trendbreak by the average difference between pairs of
data values in the good set. If line 40 determines that the
candidate data value would exceed the lower bound on the
upper bound (maxdelta) and line 41 determines that the
difference between the candidate data value and its pre-
decessor exceeds the trend-break difference (maxdiff),
then line 42 exits the loop: We have the full good set of
data.

Lines 44-52 then compute and print the statistics for
the data set.

Quick Quiz 11.20: This approach is just plain weird!
Why not use means and standard deviations, like we were
taught in our statistics classes?

Quick Quiz 11.21: But what if all the y-values in the
trusted group of data are exactly zero? Won’t that cause
the script to reject any non-zero value?

Although statistical interference detection can be quite
useful, it should be used only as a last resort. It is far better
to avoid interference in the first place (Section 11.7.5),
or, failing that, detecting interference via measurement
(Section 11.7.6.1).

198 CHAPTER 11. VALIDATION

Figure 11.6: Choose Validation Methods Wisely

11.8 Summary

To err is human—but it feels devine.

Mae West

Although validation never will be an exact science, much
can be gained by taking an organized approach to it, as
an organized approach will help you choose the right
validation tools for your job, avoiding situations like the
one fancifully depicted in Figure 11.6.

A key choice is that of statistics. Although the meth-
ods described in this chapter work very well most of the
time, they do have their limitations. These limitations
are inherent because we are attempting to do something
that is in general impossible, courtesy of the Halting Prob-
lem [Tur37, Pul00]. Fortunately for us, there are a huge
number of special cases in which we can not only work
out whether a given program will halt, but also establish
estimates for how long it will run before halting, as dis-
cussed in Section 11.7. Furthermore, in cases where a
given program might or might not work correctly, we can
often establish estimates for what fraction of the time it
will work correctly, as discussed in Section 11.6.

Nevertheless, unthinking reliance on these estimates
is brave to the point of foolhardiness. After all, we are
summarizing a huge mass of complexity in code and data
structures down to a single solitary number. Even though
we can get away with such bravery a surprisingly large
fraction of the time, abstracting all that code and data
away will occasionally cause severe problems.

One possible problem is variability, where repeated
runs might give wildly different results. This is often
dealt with by maintaining a standard deviation as well
as a mean, but the fact is that attempting to summarize
the behavior of a large and complex program with two
numbers is almost as brave as summarizing its behavior
with only one number. In computer programming, the

surprising thing is that use of the mean or the mean and
standard deviation are often sufficient, but there are no
guarantees.

One cause of variation is confounding factors. For
example, the CPU time consumed by a linked-list search
will depend on the length of the list. Averaging together
runs with wildly different list lengths will probably not be
useful, and adding a standard deviation to the mean will
not be much better. The right thing to do would be control
for list length, either by holding the length constant or to
measure CPU time as a function of list length.

Of course, this advice assumes that you are aware of
the confounding factors, and Murphy says that you prob-
ably will not be. I have been involved in projects that
had confounding factors as diverse as air conditioners
(which drew considerable power at startup, thus caus-
ing the voltage supplied to the computer to momentarily
drop too low, sometimes resulting in failure), cache state
(resulting in odd variations in performance), I/O errors
(including disk errors, packet loss, and duplicate Ethernet
MAC addresses), and even porpoises (which could not
resist playing with an array of transponders, which, in the
absence of porpoises, could be used for high-precision
acoustic positioning and navigation). And this is but one
reason why a good night’s sleep is such an effective de-
bugging tool.

In short, validation always will require some measure
of the behavior of the system. Because this measure
must be a severe summarization of the system, it can be
misleading. So as the saying goes, “Be careful. It is a real
world out there.”

But what if you are working on the Linux kernel, which
as of 2017 is estimated to have more than 20 billion in-
stances running throughout the world? In that case, a bug
that occurs once every million years on a single system
will be encountered more than 50 times per day across the
installed base. A test with a 50 % chance of encountering
this bug in a one-hour run would need to increase that
bug’s probability of occurrence by more than ten orders
of magnitude, which poses a severe challenge to today’s
testing methodologies. One important tool that can some-
times be applied with good effect to such situations is
formal verification, the subject of the next chapter, and,
more speculatively, Section 17.4.

Beware of bugs in the above code; I have only
proved it correct, not tried it.

Donald KnuthChapter 12

Formal Verification

Parallel algorithms can be hard to write, and even harder
to debug. Testing, though essential, is insufficient, as
fatal race conditions can have extremely low probabilities
of occurrence. Proofs of correctness can be valuable,
but in the end are just as prone to human error as is the
original algorithm. In addition, a proof of correctness
cannot be expected to find errors in your assumptions,
shortcomings in the requirements, misunderstandings of
the underlying software or hardware primitives, or errors
that you did not think to construct a proof for. This means
that formal methods can never replace testing, however,
formal methods are nevertheless a valuable addition to
your validation toolbox.

It would be very helpful to have a tool that could some-
how locate all race conditions. A number of such tools
exist, for example, Section 12.1 provides an introduction
to the general-purpose state-space search tools Promela
and Spin, Section 12.2 similarly introduces the special-
purpose ppcmem and cppmem tools, Section 12.3 looks
at an example axiomatic approach, Section 12.4 briefly
overviews SAT solvers, Section 12.5 briefly overviews
stateless model checkers, and finally Section 12.6 sums
up use of formal-verification tools for verifying parallel
algorithms.

12.1 State-Space Search

Follow every byway / Every path you know.

“Climb Every Mountain”, Rodgers & Hammerstein

This section features the general-purpose Promela and
spin tools, which may be used to carry out a full state-
space search of many types of multi-threaded code. They
are also quite useful for verifying data communication
protocols. Section 12.1.1 introduces Promela and spin, in-

cluding a couple of warm-up exercises verifying both non-
atomic and atomic increment. Section 12.1.2 describes
use of Promela, including example command lines and a
comparison of Promela syntax to that of C. Section 12.1.3
shows how Promela may be used to verify locking, 12.1.4
uses Promela to verify an unusual implementation of
RCU named “QRCU”, and finally Section 12.1.5 applies
Promela to RCU’s dyntick-idle implementation.

12.1.1 Promela and Spin
Promela is a language designed to help verify protocols,
but which can also be used to verify small parallel al-
gorithms. You recode your algorithm and correctness
constraints in the C-like language Promela, and then use
Spin to translate it into a C program that you can compile
and run. The resulting program conducts a full state-
space search of your algorithm, either verifying or finding
counter-examples for assertions that you can include in
your Promela program.

This full-state search can be extremely powerful, but
can also be a two-edged sword. If your algorithm is
too complex or your Promela implementation is care-
less, there might be more states than fit in memory. Fur-
thermore, even given sufficient memory, the state-space
search might well run for longer than the expected life-
time of the universe. Therefore, use this tool for compact
but complex parallel algorithms. Attempts to naively ap-
ply it to even moderate-scale algorithms (let alone the full
Linux kernel) will end badly.

Promela and Spin may be downloaded from http:
//spinroot.com/spin/whatispin.html.

The above site also gives links to Gerard Holzmann’s
excellent book [Hol03] on Promela and Spin, as well as
searchable online references starting at: http://www.
spinroot.com/spin/Man/index.html.

The remainder of this section describes how to use

199

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://www.spinroot.com/spin/Man/index.html
http://www.spinroot.com/spin/Man/index.html

200 CHAPTER 12. FORMAL VERIFICATION

Listing 12.1: Promela Code for Non-Atomic Increment
1 #define NUMPROCS 2
2
3 byte counter = 0;
4 byte progress[NUMPROCS];
5
6 proctype incrementer(byte me)
7 {
8 int temp;
9

10 temp = counter;
11 counter = temp + 1;
12 progress[me] = 1;
13 }
14
15 init {
16 int i = 0;
17 int sum = 0;
18
19 atomic {
20 i = 0;
21 do
22 :: i < NUMPROCS ->
23 progress[i] = 0;
24 run incrementer(i);
25 i++
26 :: i >= NUMPROCS -> break
27 od;
28 }
29 atomic {
30 i = 0;
31 sum = 0;
32 do
33 :: i < NUMPROCS ->
34 sum = sum + progress[i];
35 i++
36 :: i >= NUMPROCS -> break
37 od;
38 assert(sum < NUMPROCS || counter == NUMPROCS)
39 }
40 }

Promela to debug parallel algorithms, starting with simple
examples and progressing to more complex uses.

12.1.1.1 Promela Warm-Up: Non-Atomic Incre-
ment

Listing 12.1 demonstrates the textbook race condition
resulting from non-atomic increment. Line 1 defines the
number of processes to run (we will vary this to see the
effect on state space), line 3 defines the counter, and line 4
is used to implement the assertion that appears on lines 29-
39.

Lines 6-13 define a process that increments the counter
non-atomically. The argument me is the process number,
set by the initialization block later in the code. Because
simple Promela statements are each assumed atomic, we
must break the increment into the two statements on
lines 10-11. The assignment on line 12 marks the pro-
cess’s completion. Because the Spin system will fully
search the state space, including all possible sequences of

states, there is no need for the loop that would be used for
conventional testing.

Lines 15-40 are the initialization block, which is ex-
ecuted first. Lines 19-28 actually do the initialization,
while lines 29-39 perform the assertion. Both are atomic
blocks in order to avoid unnecessarily increasing the state
space: because they are not part of the algorithm proper,
we lose no verification coverage by making them atomic.

The do-od construct on lines 21-27 implements a
Promela loop, which can be thought of as a C for (;;)
loop containing a switch statement that allows expres-
sions in case labels. The condition blocks (prefixed by
::) are scanned non-deterministically, though in this case
only one of the conditions can possibly hold at a given
time. The first block of the do-od from lines 22-25 ini-
tializes the i-th incrementer’s progress cell, runs the i-th
incrementer’s process, and then increments the variable i.
The second block of the do-od on line 26 exits the loop
once these processes have been started.

The atomic block on lines 29-39 also contains a simi-
lar do-od loop that sums up the progress counters. The
assert() statement on line 38 verifies that if all pro-
cesses have been completed, then all counts have been
correctly recorded.

You can build and run this program as follows:

spin -a increment.spin # Translate the model to C
cc -DSAFETY -o pan pan.c # Compile the model
./pan # Run the model

This will produce output as shown in Listing 12.2. The
first line tells us that our assertion was violated (as ex-
pected given the non-atomic increment!). The second line
that a trail file was written describing how the assertion
was violated. The “Warning” line reiterates that all was
not well with our model. The second paragraph describes
the type of state-search being carried out, in this case
for assertion violations and invalid end states. The third
paragraph gives state-size statistics: this small model had
only 45 states. The final line shows memory usage.

The trail file may be rendered human-readable as
follows:

spin -t -p increment.spin

This gives the output shown in Listing 12.3. As can
be seen, the first portion of the init block created both
incrementer processes, both of which first fetched the
counter, then both incremented and stored it, losing a
count. The assertion then triggered, after which the global
state is displayed.

12.1. STATE-SPACE SEARCH 201

Listing 12.2: Non-Atomic Increment spin Output
pan: assertion violated ((sum<2)||(counter==2)) (at depth 20)
pan: wrote increment.spin.trail
(Spin Version 4.2.5 -- 2 April 2005)
Warning: Search not completed

+ Partial Order Reduction
Full statespace search for:

never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 22, errors: 1
45 states, stored
13 states, matched
58 transitions (= stored+matched)
51 atomic steps

hash conflicts: 0 (resolved)
2.622 memory usage (Mbyte)

Listing 12.3: Non-Atomic Increment Error Trail
Starting :init: with pid 0
1: proc 0 (:init:) line 20 "increment.spin" (state 1) [i = 0]
2: proc 0 (:init:) line 22 "increment.spin" (state 2) [((i<2))]
2: proc 0 (:init:) line 23 "increment.spin" (state 3) [progress[i] = 0]

Starting incrementer with pid 1
3: proc 0 (:init:) line 24 "increment.spin" (state 4) [(run incrementer(i))]
3: proc 0 (:init:) line 25 "increment.spin" (state 5) [i = (i+1)]
4: proc 0 (:init:) line 22 "increment.spin" (state 2) [((i<2))]
4: proc 0 (:init:) line 23 "increment.spin" (state 3) [progress[i] = 0]

Starting incrementer with pid 2
5: proc 0 (:init:) line 24 "increment.spin" (state 4) [(run incrementer(i))]
5: proc 0 (:init:) line 25 "increment.spin" (state 5) [i = (i+1)]
6: proc 0 (:init:) line 26 "increment.spin" (state 6) [((i>=2))]
7: proc 0 (:init:) line 21 "increment.spin" (state 10) [break]
8: proc 2 (incrementer) line 10 "increment.spin" (state 1) [temp = counter]
9: proc 1 (incrementer) line 10 "increment.spin" (state 1) [temp = counter]

10: proc 2 (incrementer) line 11 "increment.spin" (state 2) [counter = (temp+1)]
11: proc 2 (incrementer) line 12 "increment.spin" (state 3) [progress[me] = 1]
12: proc 2 terminates
13: proc 1 (incrementer) line 11 "increment.spin" (state 2) [counter = (temp+1)]
14: proc 1 (incrementer) line 12 "increment.spin" (state 3) [progress[me] = 1]
15: proc 1 terminates
16: proc 0 (:init:) line 30 "increment.spin" (state 12) [i = 0]
16: proc 0 (:init:) line 31 "increment.spin" (state 13) [sum = 0]
17: proc 0 (:init:) line 33 "increment.spin" (state 14) [((i<2))]
17: proc 0 (:init:) line 34 "increment.spin" (state 15) [sum = (sum+progress[i])]
17: proc 0 (:init:) line 35 "increment.spin" (state 16) [i = (i+1)]
18: proc 0 (:init:) line 33 "increment.spin" (state 14) [((i<2))]
18: proc 0 (:init:) line 34 "increment.spin" (state 15) [sum = (sum+progress[i])]
18: proc 0 (:init:) line 35 "increment.spin" (state 16) [i = (i+1)]
19: proc 0 (:init:) line 36 "increment.spin" (state 17) [((i>=2))]
20: proc 0 (:init:) line 32 "increment.spin" (state 21) [break]
spin: line 38 "increment.spin", Error: assertion violated
spin: text of failed assertion: assert(((sum<2)||(counter==2)))
21: proc 0 (:init:) line 38 "increment.spin" (state 22) [assert(((sum<2)||(counter==2)))]

spin: trail ends after 21 steps
#processes: 1

counter = 1
progress[0] = 1
progress[1] = 1

21: proc 0 (:init:) line 40 "increment.spin" (state 24) <valid end state>
3 processes created

202 CHAPTER 12. FORMAL VERIFICATION

Table 12.1: Memory Usage of Increment Model

incrementers # states megabytes

1 11 2.6
2 52 2.6
3 372 2.6
4 3,496 2.7
5 40,221 5.0
6 545,720 40.5
7 8,521,450 652.7

12.1.1.2 Promela Warm-Up: Atomic Increment

Listing 12.4: Promela Code for Atomic Increment
1 proctype incrementer(byte me)
2 {
3 int temp;
4
5 atomic {
6 temp = counter;
7 counter = temp + 1;
8 }
9 progress[me] = 1;

10 }

Listing 12.5: Atomic Increment spin Output
(Spin Version 4.2.5 -- 2 April 2005)

+ Partial Order Reduction
Full statespace search for:

never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 20, errors: 0
52 states, stored
21 states, matched
73 transitions (= stored+matched)
66 atomic steps

hash conflicts: 0 (resolved)
2.622 memory usage (Mbyte)
unreached in proctype incrementer

(0 of 5 states)
unreached in proctype :init:

(0 of 24 states)

It is easy to fix this example by placing the body of the
incrementer processes in an atomic blocks as shown in
Listing 12.4. One could also have simply replaced the pair
of statements with counter = counter + 1, because
Promela statements are atomic. Either way, running this
modified model gives us an error-free traversal of the state
space, as shown in Listing 12.5.

Table 12.1 shows the number of states and memory con-
sumed as a function of number of incrementers modeled
(by redefining NUMPROCS):

Running unnecessarily large models is thus subtly dis-
couraged, although 652 MB is well within the limits of
modern desktop and laptop machines.

With this example under our belt, let’s take a closer
look at the commands used to analyze Promela models
and then look at more elaborate examples.

12.1.2 How to Use Promela
Given a source file qrcu.spin, one can use the following
commands:

spin -a qrcu.spin
Create a file pan.c that fully searches the state ma-
chine.

cc -DSAFETY -o pan pan.c
Compile the generated state-machine search. The
-DSAFETY generates optimizations that are appro-
priate if you have only assertions (and perhaps
never statements). If you have liveness, fairness,
or forward-progress checks, you may need to com-
pile without -DSAFETY. If you leave off -DSAFETY
when you could have used it, the program will let
you know.

The optimizations produced by -DSAFETY greatly
speed things up, so you should use it when you
can. An example situation where you cannot use
-DSAFETY is when checking for livelocks (AKA
“non-progress cycles”) via -DNP.

./pan
This actually searches the state space. The number
of states can reach into the tens of millions with very
small state machines, so you will need a machine
with large memory. For example, qrcu.spin with 3
readers and 2 updaters required 2.7 GB of memory.

If you aren’t sure whether your machine has enough
memory, run top in one window and ./pan in an-
other. Keep the focus on the ./pan window so that
you can quickly kill execution if need be. As soon
as CPU time drops much below 100 %, kill ./pan.
If you have removed focus from the window running
./pan, you may wait a long time for the windowing
system to grab enough memory to do anything for
you.

Don’t forget to capture the output, especially if you
are working on a remote machine.

If your model includes forward-progress checks, you
will likely need to enable “weak fairness” via the -f

12.1. STATE-SPACE SEARCH 203

command-line argument to ./pan. If your forward-
progress checks involve accept labels, you will also
need the -a argument.

spin -t -p qrcu.spin
Given trail file output by a run that encountered
an error, output the sequence of steps leading to that
error. The -g flag will also include the values of
changed global variables, and the -l flag will also
include the values of changed local variables.

12.1.2.1 Promela Peculiarities

Although all computer languages have underlying similar-
ities, Promela will provide some surprises to people used
to coding in C, C++, or Java.

1. In C, “;” terminates statements. In Promela it sep-
arates them. Fortunately, more recent versions of
Spin have become much more forgiving of “extra”
semicolons.

2. Promela’s looping construct, the do statement, takes
conditions. This do statement closely resembles a
looping if-then-else statement.

3. In C’s switch statement, if there is no matching
case, the whole statement is skipped. In Promela’s
equivalent, confusingly called if, if there is no
matching guard expression, you get an error without
a recognizable corresponding error message. So, if
the error output indicates an innocent line of code,
check to see if you left out a condition from an if
or do statement.

4. When creating stress tests in C, one usually races
suspect operations against each other repeatedly. In
Promela, one instead sets up a single race, because
Promela will search out all the possible outcomes
from that single race. Sometimes you do need to
loop in Promela, for example, if multiple operations
overlap, but doing so greatly increases the size of
your state space.

5. In C, the easiest thing to do is to maintain a loop
counter to track progress and terminate the loop. In
Promela, loop counters must be avoided like the
plague because they cause the state space to explode.
On the other hand, there is no penalty for infinite
loops in Promela as long as none of the variables
monotonically increase or decrease—Promela will
figure out how many passes through the loop really

matter, and automatically prune execution beyond
that point.

6. In C torture-test code, it is often wise to keep per-
task control variables. They are cheap to read, and
greatly aid in debugging the test code. In Promela,
per-task control variables should be used only when
there is no other alternative. To see this, consider
a 5-task verification with one bit each to indicate
completion. This gives 32 states. In contrast, a
simple counter would have only six states, more
than a five-fold reduction. That factor of five might
not seem like a problem, at least not until you are
struggling with a verification program possessing
more than 150 million states consuming more than
10 GB of memory!

7. One of the most challenging things both in C torture-
test code and in Promela is formulating good asser-
tions. Promela also allows never claims that act sort
of like an assertion replicated between every line of
code.

8. Dividing and conquering is extremely helpful in
Promela in keeping the state space under control.
Splitting a large model into two roughly equal halves
will result in the state space of each half being
roughly the square root of the whole. For exam-
ple, a million-state combined model might reduce
to a pair of thousand-state models. Not only will
Promela handle the two smaller models much more
quickly with much less memory, but the two smaller
algorithms are easier for people to understand.

12.1.2.2 Promela Coding Tricks

Promela was designed to analyze protocols, so using it on
parallel programs is a bit abusive. The following tricks
can help you to abuse Promela safely:

1. Memory reordering. Suppose you have a pair of
statements copying globals x and y to locals r1 and
r2, where ordering matters (e.g., unprotected by
locks), but where you have no memory barriers. This
can be modeled in Promela as follows:

1 if
2 :: 1 -> r1 = x;
3 r2 = y
4 :: 1 -> r2 = y;
5 r1 = x
6 fi

204 CHAPTER 12. FORMAL VERIFICATION

Listing 12.6: Complex Promela Assertion
1 i = 0;
2 sum = 0;
3 do
4 :: i < N_QRCU_READERS ->
5 sum = sum + (readerstart[i] == 1 &&
6 readerprogress[i] == 1);
7 i++
8 :: i >= N_QRCU_READERS ->
9 assert(sum == 0);

10 break
11 od

Listing 12.7: Atomic Block for Complex Promela Assertion
1 atomic {
2 i = 0;
3 sum = 0;
4 do
5 :: i < N_QRCU_READERS ->
6 sum = sum + (readerstart[i] == 1 &&
7 readerprogress[i] == 1);
8 i++
9 :: i >= N_QRCU_READERS ->

10 assert(sum == 0);
11 break
12 od
13 }

The two branches of the if statement will be selected
nondeterministically, since they both are available.
Because the full state space is searched, both choices
will eventually be made in all cases.

Of course, this trick will cause your state space to
explode if used too heavily. In addition, it requires
you to anticipate possible reorderings.

2. State reduction. If you have complex assertions,
evaluate them under atomic. After all, they are not
part of the algorithm. One example of a complex
assertion (to be discussed in more detail later) is as
shown in Listing 12.6.

There is no reason to evaluate this assertion non-
atomically, since it is not actually part of the algo-
rithm. Because each statement contributes to state,
we can reduce the number of useless states by enclos-
ing it in an atomic block as shown in Listing 12.7.

3. Promela does not provide functions. You must in-
stead use C preprocessor macros. However, you
must use them carefully in order to avoid combina-
torial explosion.

Now we are ready for more complex examples.

Listing 12.8: Promela Code for Spinlock
1 #define spin_lock(mutex) \
2 do \
3 :: 1 -> atomic { \
4 if \
5 :: mutex == 0 -> \
6 mutex = 1; \
7 break \
8 :: else -> skip \
9 fi \

10 } \
11 od
12
13 #define spin_unlock(mutex) \
14 mutex = 0

12.1.3 Promela Example: Locking
Since locks are generally useful, spin_lock() and
spin_unlock() macros are provided in lock.h, which
may be included from multiple Promela models, as shown
in Listing 12.8. The spin_lock() macro contains an infi-
nite do-od loop spanning lines 2-11, courtesy of the single
guard expression of “1” on line 3. The body of this loop is
a single atomic block that contains an if-fi statement. The
if-fi construct is similar to the do-od construct, except that
it takes a single pass rather than looping. If the lock is not
held on line 5, then line 6 acquires it and line 7 breaks
out of the enclosing do-od loop (and also exits the atomic
block). On the other hand, if the lock is already held on
line 8, we do nothing (skip), and fall out of the if-fi and
the atomic block so as to take another pass through the
outer loop, repeating until the lock is available.

The spin_unlock() macro simply marks the lock as
no longer held.

Note that memory barriers are not needed because
Promela assumes full ordering. In any given Promela
state, all processes agree on both the current state and
the order of state changes that caused us to arrive at the
current state. This is analogous to the “sequentially con-
sistent” memory model used by a few computer systems
(such as 1990s MIPS and PA-RISC). As noted earlier, and
as will be seen in a later example, weak memory ordering
must be explicitly coded.

These macros are tested by the Promela code shown in
Listing 12.9. This code is similar to that used to test the
increments, with the number of locking processes defined
by the N_LOCKERS macro definition on line 3. The mutex
itself is defined on line 5, an array to track the lock owner
on line 6, and line 7 is used by assertion code to verify
that only one process holds the lock.

The locker process is on lines 9-18, and simply loops
forever acquiring the lock on line 13, claiming it on
line 14, unclaiming it on line 15, and releasing it on

12.1. STATE-SPACE SEARCH 205

Listing 12.9: Promela Code to Test Spinlocks
1 #include "lock.h"
2
3 #define N_LOCKERS 3
4
5 bit mutex = 0;
6 bit havelock[N_LOCKERS];
7 int sum;
8
9 proctype locker(byte me)

10 {
11 do
12 :: 1 ->
13 spin_lock(mutex);
14 havelock[me] = 1;
15 havelock[me] = 0;
16 spin_unlock(mutex)
17 od
18 }
19
20 init {
21 int i = 0;
22 int j;
23
24 end: do
25 :: i < N_LOCKERS ->
26 havelock[i] = 0;
27 run locker(i);
28 i++
29 :: i >= N_LOCKERS ->
30 sum = 0;
31 j = 0;
32 atomic {
33 do
34 :: j < N_LOCKERS ->
35 sum = sum + havelock[j];
36 j = j + 1
37 :: j >= N_LOCKERS ->
38 break
39 od
40 }
41 assert(sum <= 1);
42 break
43 od
44 }

line 16.
The init block on lines 20-44 initializes the current

locker’s havelock array entry on line 26, starts the current
locker on line 27, and advances to the next locker on
line 28. Once all locker processes are spawned, the do-
od loop moves to line 29, which checks the assertion.
Lines 30 and 31 initialize the control variables, lines 32-
40 atomically sum the havelock array entries, line 41 is
the assertion, and line 42 exits the loop.

We can run this model by placing the two code frag-
ments of Listings 12.8 and 12.9 into files named lock.h
and lock.spin, respectively, and then running the fol-
lowing commands:

spin -a lock.spin
cc -DSAFETY -o pan pan.c
./pan

The output will look something like that shown in List-

Listing 12.10: Output for Spinlock Test
(Spin Version 4.2.5 -- 2 April 2005)

+ Partial Order Reduction
Full statespace search for:

never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 357, errors: 0
564 states, stored
929 states, matched

1493 transitions (= stored+matched)
368 atomic steps

hash conflicts: 0 (resolved)
2.622 memory usage (Mbyte)
unreached in proctype locker

line 18, state 20, "-end-"
(1 of 20 states)

unreached in proctype :init:
(0 of 22 states)

ing 12.10. As expected, this run has no assertion failures
(“errors: 0”).

Quick Quiz 12.1: Why is there an unreached statement
in locker? After all, isn’t this a full state-space search?

Quick Quiz 12.2: What are some Promela code-style
issues with this example?

12.1.4 Promela Example: QRCU
This final example demonstrates a real-world use of
Promela on Oleg Nesterov’s QRCU [Nes06a, Nes06b],
but modified to speed up the synchronize_qrcu() fast-
path.

But first, what is QRCU?
QRCU is a variant of SRCU [McK06] that trades some-

what higher read overhead (atomic increment and decre-
ment on a global variable) for extremely low grace-period
latencies. If there are no readers, the grace period will
be detected in less than a microsecond, compared to the
multi-millisecond grace-period latencies of most other
RCU implementations.

1. There is a qrcu_struct that defines a QRCU do-
main. Like SRCU (and unlike other variants of RCU)
QRCU’s action is not global, but instead focused on
the specified qrcu_struct.

2. There are qrcu_read_lock() and qrcu_read_
unlock() primitives that delimit QRCU read-side
critical sections. The corresponding qrcu_struct
must be passed into these primitives, and the return
value from qrcu_read_lock() must be passed to
qrcu_read_unlock().

For example:

206 CHAPTER 12. FORMAL VERIFICATION

idx = qrcu_read_lock(&my_qrcu_struct);
/* read-side critical section. */
qrcu_read_unlock(&my_qrcu_struct, idx);

3. There is a synchronize_qrcu() primitive that
blocks until all pre-existing QRCU read-side critical
sections complete, but, like SRCU’s synchronize_
srcu(), QRCU’s synchronize_qrcu() need wait
only for those read-side critical sections that are us-
ing the same qrcu_struct.

For example, synchronize_qrcu(&your_qrcu_
struct) would not need to wait on the earlier
QRCU read-side critical section. In contrast,
synchronize_qrcu(&my_qrcu_struct) would
need to wait, since it shares the same qrcu_struct.

A Linux-kernel patch for QRCU has been pro-
duced [McK07c], but has not yet been included in the
Linux kernel as of April 2008.

Listing 12.11: QRCU Global Variables
1 #include "lock.h"
2
3 #define N_QRCU_READERS 2
4 #define N_QRCU_UPDATERS 2
5
6 bit idx = 0;
7 byte ctr[2];
8 byte readerprogress[N_QRCU_READERS];
9 bit mutex = 0;

Returning to the Promela code for QRCU, the global
variables are as shown in Listing 12.11. This example
uses locking, hence including lock.h. Both the num-
ber of readers and writers can be varied using the two
#define statements, giving us not one but two ways to
create combinatorial explosion. The idx variable controls
which of the two elements of the ctr array will be used
by readers, and the readerprogress variable allows an
assertion to determine when all the readers are finished
(since a QRCU update cannot be permitted to complete
until all pre-existing readers have completed their QRCU
read-side critical sections). The readerprogress array
elements have values as follows, indicating the state of
the corresponding reader:

0: not yet started.

1: within QRCU read-side critical section.

2: finished with QRCU read-side critical section.

Finally, the mutex variable is used to serialize updaters’
slowpaths.

Listing 12.12: QRCU Reader Process
1 proctype qrcu_reader(byte me)
2 {
3 int myidx;
4
5 do
6 :: 1 ->
7 myidx = idx;
8 atomic {
9 if

10 :: ctr[myidx] > 0 ->
11 ctr[myidx]++;
12 break
13 :: else -> skip
14 fi
15 }
16 od;
17 readerprogress[me] = 1;
18 readerprogress[me] = 2;
19 atomic { ctr[myidx]-- }
20 }

QRCU readers are modeled by the qrcu_reader()
process shown in Listing 12.12. A do-od loop spans
lines 5-16, with a single guard of “1” on line 6 that makes
it an infinite loop. Line 7 captures the current value of
the global index, and lines 8-15 atomically increment it
(and break from the infinite loop) if its value was non-
zero (atomic_inc_not_zero()). Line 17 marks entry
into the RCU read-side critical section, and line 18 marks
exit from this critical section, both lines for the benefit
of the assert() statement that we shall encounter later.
Line 19 atomically decrements the same counter that we
incremented, thereby exiting the RCU read-side critical
section.

Listing 12.13: QRCU Unordered Summation
1 #define sum_unordered \
2 atomic { \
3 do \
4 :: 1 -> \
5 sum = ctr[0]; \
6 i = 1; \
7 break \
8 :: 1 -> \
9 sum = ctr[1]; \

10 i = 0; \
11 break \
12 od; \
13 } \
14 sum = sum + ctr[i]

The C-preprocessor macro shown in Listing 12.13 sums
the pair of counters so as to emulate weak memory or-
dering. Lines 2-13 fetch one of the counters, and line 14
fetches the other of the pair and sums them. The atomic
block consists of a single do-od statement. This do-od
statement (spanning lines 3-12) is unusual in that it con-
tains two unconditional branches with guards on lines 4
and 8, which causes Promela to non-deterministically

12.1. STATE-SPACE SEARCH 207

choose one of the two (but again, the full state-space
search causes Promela to eventually make all possible
choices in each applicable situation). The first branch
fetches the zero-th counter and sets i to 1 (so that line 14
will fetch the first counter), while the second branch does
the opposite, fetching the first counter and setting i to 0
(so that line 14 will fetch the second counter).

Quick Quiz 12.3: Is there a more straightforward way
to code the do-od statement?

With the sum_unordered macro in place, we can
now proceed to the update-side process shown in List-
ing 12.14. The update-side process repeats indefinitely,
with the corresponding do-od loop ranging over lines 7-
57. Each pass through the loop first snapshots the global
readerprogress array into the local readerstart ar-
ray on lines 12-21. This snapshot will be used for the
assertion on line 53. Line 23 invokes sum_unordered,
and then lines 24-27 re-invoke sum_unordered if the
fastpath is potentially usable.

Lines 28-40 execute the slowpath code if need be, with
lines 30 and 38 acquiring and releasing the update-side
lock, lines 31-33 flipping the index, and lines 34-37 wait-
ing for all pre-existing readers to complete.

Lines 44-56 then compare the current values in
the readerprogress array to those collected in the
readerstart array, forcing an assertion failure should
any readers that started before this update still be in
progress.

Quick Quiz 12.4: Why are there atomic blocks at
lines 12-21 and lines 44-56, when the operations within
those atomic blocks have no atomic implementation on
any current production microprocessor?

Quick Quiz 12.5: Is the re-summing of the counters
on lines 24-27 really necessary?

All that remains is the initialization block shown in
Listing 12.15. This block simply initializes the counter
pair on lines 5-6, spawns the reader processes on lines 7-
14, and spawns the updater processes on lines 15-21. This
is all done within an atomic block to reduce state space.

12.1.4.1 Running the QRCU Example

To run the QRCU example, combine the code fragments
in the previous section into a single file named qrcu.
spin, and place the definitions for spin_lock() and
spin_unlock() into a file named lock.h. Then use the
following commands to build and run the QRCU model:

spin -a qrcu.spin
cc -DSAFETY -o pan pan.c
./pan

Listing 12.14: QRCU Updater Process
1 proctype qrcu_updater(byte me)
2 {
3 int i;
4 byte readerstart[N_QRCU_READERS];
5 int sum;
6
7 do
8 :: 1 ->
9

10 /* Snapshot reader state. */
11
12 atomic {
13 i = 0;
14 do
15 :: i < N_QRCU_READERS ->
16 readerstart[i] = readerprogress[i];
17 i++
18 :: i >= N_QRCU_READERS ->
19 break
20 od
21 }
22
23 sum_unordered;
24 if
25 :: sum <= 1 -> sum_unordered
26 :: else -> skip
27 fi;
28 if
29 :: sum > 1 ->
30 spin_lock(mutex);
31 atomic { ctr[!idx]++ }
32 idx = !idx;
33 atomic { ctr[!idx]-- }
34 do
35 :: ctr[!idx] > 0 -> skip
36 :: ctr[!idx] == 0 -> break
37 od;
38 spin_unlock(mutex);
39 :: else -> skip
40 fi;
41
42 /* Verify reader progress. */
43
44 atomic {
45 i = 0;
46 sum = 0;
47 do
48 :: i < N_QRCU_READERS ->
49 sum = sum + (readerstart[i] == 1 &&
50 readerprogress[i] == 1);
51 i++
52 :: i >= N_QRCU_READERS ->
53 assert(sum == 0);
54 break
55 od
56 }
57 od
58 }

208 CHAPTER 12. FORMAL VERIFICATION

Listing 12.15: QRCU Initialization Process
1 init {
2 int i;
3
4 atomic {
5 ctr[idx] = 1;
6 ctr[!idx] = 0;
7 i = 0;
8 do
9 :: i < N_QRCU_READERS ->

10 readerprogress[i] = 0;
11 run qrcu_reader(i);
12 i++
13 :: i >= N_QRCU_READERS -> break
14 od;
15 i = 0;
16 do
17 :: i < N_QRCU_UPDATERS ->
18 run qrcu_updater(i);
19 i++
20 :: i >= N_QRCU_UPDATERS -> break
21 od
22 }
23 }

Table 12.2: Memory Usage of QRCU Model

updaters readers # states MB

1 1 376 2.6
1 2 6,177 2.9
1 3 82,127 7.5
2 1 29,399 4.5
2 2 1,071,180 75.4
2 3 33,866,700 2,715.2
3 1 258,605 22.3
3 2 169,533,000 14,979.9

The resulting output shows that this model passes all
of the cases shown in Table 12.2. Now, it would be nice
to run the case with three readers and three updaters, how-
ever, simple extrapolation indicates that this will require
on the order of a terabyte of memory best case. So, what
to do? Here are some possible approaches:

1. See whether a smaller number of readers and up-
daters suffice to prove the general case.

2. Manually construct a proof of correctness.

3. Use a more capable tool.

4. Divide and conquer.

The following sections discuss each of these ap-
proaches.

12.1.4.2 How Many Readers and Updaters Are Re-
ally Needed?

One approach is to look carefully at the Promela code for
qrcu_updater() and notice that the only global state
change is happening under the lock. Therefore, only one
updater at a time can possibly be modifying state visible
to either readers or other updaters. This means that any
sequences of state changes can be carried out serially by
a single updater due to the fact that Promela does a full
state-space search. Therefore, at most two updaters are
required: one to change state and a second to become
confused.

The situation with the readers is less clear-cut, as each
reader does only a single read-side critical section then
terminates. It is possible to argue that the useful number
of readers is limited, due to the fact that the fastpath must
see at most a zero and a one in the counters. This is a
fruitful avenue of investigation, in fact, it leads to the full
proof of correctness described in the next section.

12.1.4.3 Alternative Approach: Proof of Correct-
ness

An informal proof [McK07c] follows:

1. For synchronize_qrcu() to exit too early, then by
definition there must have been at least one reader
present during synchronize_qrcu()’s full execu-
tion.

2. The counter corresponding to this reader will have
been at least 1 during this time interval.

3. The synchronize_qrcu() code forces at least one
of the counters to be at least 1 at all times.

4. Therefore, at any given point in time, either one of
the counters will be at least 2, or both of the counters
will be at least one.

5. However, the synchronize_qrcu() fastpath code
can read only one of the counters at a given time. It
is therefore possible for the fastpath code to fetch the
first counter while zero, but to race with a counter
flip so that the second counter is seen as one.

6. There can be at most one reader persisting through
such a race condition, as otherwise the sum would
be two or greater, which would cause the updater to
take the slowpath.

12.1. STATE-SPACE SEARCH 209

7. But if the race occurs on the fastpath’s first read of
the counters, and then again on its second read, there
have to have been two counter flips.

8. Because a given updater flips the counter only once,
and because the update-side lock prevents a pair of
updaters from concurrently flipping the counters, the
only way that the fastpath code can race with a flip
twice is if the first updater completes.

9. But the first updater will not complete until after all
pre-existing readers have completed.

10. Therefore, if the fastpath races with a counter flip
twice in succession, all pre-existing readers must
have completed, so that it is safe to take the fastpath.

Of course, not all parallel algorithms have such simple
proofs. In such cases, it may be necessary to enlist more
capable tools.

12.1.4.4 Alternative Approach: More Capable Tools

Although Promela and Spin are quite useful, much more
capable tools are available, particularly for verifying hard-
ware. This means that if it is possible to translate your
algorithm to the hardware-design VHDL language, as
it often will be for low-level parallel algorithms, then it
is possible to apply these tools to your code (for exam-
ple, this was done for the first realtime RCU algorithm).
However, such tools can be quite expensive.

Although the advent of commodity multiprocessing
might eventually result in powerful free-software model-
checkers featuring fancy state-space-reduction capabili-
ties, this does not help much in the here and now.

As an aside, there are Spin features that support ap-
proximate searches that require fixed amounts of memory,
however, I have never been able to bring myself to trust
approximations when verifying parallel algorithms.

Another approach might be to divide and conquer.

12.1.4.5 Alternative Approach: Divide and Con-
quer

It is often possible to break down a larger parallel al-
gorithm into smaller pieces, which can then be proven
separately. For example, a 10-billion-state model might
be broken into a pair of 100,000-state models. Taking
this approach not only makes it easier for tools such as
Promela to verify your algorithms, it can also make your
algorithms easier to understand.

12.1.4.6 Is QRCU Really Correct?

Is QRCU really correct? We have a Promela-based me-
chanical proof and a by-hand proof that both say that it is.
However, a recent paper by Alglave et al. [AKT13] says
otherwise (see Section 5.1 of the paper at the bottom of
page 12). Which is it?

It turns out that both are correct! When QRCU was
added to a suite of formal-verification benchmarks, its
memory barriers were omitted, thus resulting in a buggy
version of QRCU. So the real news here is that a number
of formal-verification tools incorrectly proved this buggy
QRCU correct. And this is why formal-verification tools
themselves should be tested using bug-injected versions
of the code being verified. If a given tool cannot find the
injected bugs, then that tool is clearly untrustworthy.

Quick Quiz 12.6: But different formal-verification
tools are often designed to locate particular classes of
bugs. For example, very few formal-verification tools
will find an error in the specification. So isn’t this “clearly
untrustworthy” judgment a bit harsh?

Therefore, if you do intend to use QRCU, please take
care. Its proofs of correctness might or might not them-
selves be correct. Which is one reason why formal verifi-
cation is unlikely to completely replace testing, as Donald
Knuth pointed out so long ago.

Quick Quiz 12.7: Given that we have two independent
proofs of correctness for the QRCU algorithm described
herein, and given that the proof of incorrectness covers
what is known to be a different algorithm, why is there
any room for doubt?

12.1.5 Promela Parable: dynticks and Pre-
emptible RCU

In early 2008, a preemptible variant of RCU was accepted
into mainline Linux in support of real-time workloads,
a variant similar to the RCU implementations in the -rt
patchset [Mol05] since August 2005. Preemptible RCU
is needed for real-time workloads because older RCU im-
plementations disable preemption across RCU read-side
critical sections, resulting in excessive real-time latencies.

However, one disadvantage of the older -rt implemen-
tation was that each grace period requires work to be
done on each CPU, even if that CPU is in a low-power
“dynticks-idle” state, and thus incapable of executing RCU
read-side critical sections. The idea behind the dynticks-
idle state is that idle CPUs should be physically powered
down in order to conserve energy. In short, preemptible
RCU can disable a valuable energy-conservation feature

210 CHAPTER 12. FORMAL VERIFICATION

of recent Linux kernels. Although Josh Triplett and Paul
McKenney had discussed some approaches for allowing
CPUs to remain in low-power state throughout an RCU
grace period (thus preserving the Linux kernel’s ability
to conserve energy), matters did not come to a head until
Steve Rostedt integrated a new dyntick implementation
with preemptible RCU in the -rt patchset.

This combination caused one of Steve’s systems to
hang on boot, so in October, Paul coded up a dynticks-
friendly modification to preemptible RCU’s grace-period
processing. Steve coded up rcu_irq_enter() and rcu_
irq_exit() interfaces called from the irq_enter()
and irq_exit() interrupt entry/exit functions. These
rcu_irq_enter() and rcu_irq_exit() functions are
needed to allow RCU to reliably handle situations where
a dynticks-idle CPUs is momentarily powered up for an
interrupt handler containing RCU read-side critical sec-
tions. With these changes in place, Steve’s system booted
reliably, but Paul continued inspecting the code periodi-
cally on the assumption that we could not possibly have
gotten the code right on the first try.

Paul reviewed the code repeatedly from October 2007
to February 2008, and almost always found at least one
bug. In one case, Paul even coded and tested a fix before
realizing that the bug was illusory, and in fact in all cases,
the “bug” turned out to be illusory.

Near the end of February, Paul grew tired of this game.
He therefore decided to enlist the aid of Promela and
spin [Hol03], as described in Chapter 12. The following
presents a series of seven increasingly realistic Promela
models, the last of which passes, consuming about 40 GB
of main memory for the state space.

More important, Promela and Spin did find a very sub-
tle bug for me!

Quick Quiz 12.8: Yeah, that’s just great! Now, just
what am I supposed to do if I don’t happen to have a
machine with 40 GB of main memory???

Still better would be to come up with a simpler and
faster algorithm that has a smaller state space. Even better
would be an algorithm so simple that its correctness was
obvious to the casual observer!

Section 12.1.5.1 gives an overview of preemptible
RCU’s dynticks interface, Section 12.1.6, and Sec-
tion 12.1.6.8 lists lessons (re)learned during this effort.

12.1.5.1 Introduction to Preemptible RCU and
dynticks

The per-CPU dynticks_progress_counter variable
is central to the interface between dynticks and pre-

emptible RCU. This variable has an even value whenever
the corresponding CPU is in dynticks-idle mode, and an
odd value otherwise. A CPU exits dynticks-idle mode for
the following three reasons:

1. to start running a task,

2. when entering the outermost of a possibly nested set
of interrupt handlers, and

3. when entering an NMI handler.

Preemptible RCU’s grace-period machinery samples
the value of the dynticks_progress_counter variable
in order to determine when a dynticks-idle CPU may
safely be ignored.

The following three sections give an overview of the
task interface, the interrupt/NMI interface, and the use
of the dynticks_progress_counter variable by the
grace-period machinery.

12.1.5.2 Task Interface

When a given CPU enters dynticks-idle mode because it
has no more tasks to run, it invokes rcu_enter_nohz():

1 static inline void rcu_enter_nohz(void)
2 {
3 mb();
4 __get_cpu_var(dynticks_progress_counter)++;
5 WARN_ON(__get_cpu_var(dynticks_progress_counter) &
6 0x1);
7 }

This function simply increments dynticks_
progress_counter and checks that the result is even,
but first executing a memory barrier to ensure that
any other CPU that sees the new value of dynticks_
progress_counter will also see the completion of any
prior RCU read-side critical sections.

Similarly, when a CPU that is in dynticks-idle mode
prepares to start executing a newly runnable task, it in-
vokes rcu_exit_nohz():

1 static inline void rcu_exit_nohz(void)
2 {
3 __get_cpu_var(dynticks_progress_counter)++;
4 mb();
5 WARN_ON(!(__get_cpu_var(dynticks_progress_counter) &
6 0x1));
7 }

This function again increments dynticks_
progress_counter, but follows it with a memory
barrier to ensure that if any other CPU sees the result
of any subsequent RCU read-side critical section, then

12.1. STATE-SPACE SEARCH 211

that other CPU will also see the incremented value of
dynticks_progress_counter. Finally, rcu_exit_
nohz() checks that the result of the increment is an odd
value.

The rcu_enter_nohz() and rcu_exit_nohz()
functions handle the case where a CPU enters and ex-
its dynticks-idle mode due to task execution, but does
not handle interrupts, which are covered in the following
section.

12.1.5.3 Interrupt Interface

The rcu_irq_enter() and rcu_irq_exit() functions
handle interrupt/NMI entry and exit, respectively. Of
course, nested interrupts must also be properly accounted
for. The possibility of nested interrupts is handled by a
second per-CPU variable, rcu_update_flag, which is
incremented upon entry to an interrupt or NMI handler
(in rcu_irq_enter()) and is decremented upon exit
(in rcu_irq_exit()). In addition, the pre-existing in_
interrupt() primitive is used to distinguish between
an outermost or a nested interrupt/NMI.

Interrupt entry is handled by the rcu_irq_enter()
shown below:

1 void rcu_irq_enter(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu))
6 per_cpu(rcu_update_flag, cpu)++;
7 if (!in_interrupt() &&
8 (per_cpu(dynticks_progress_counter,
9 cpu) & 0x1) == 0) {

10 per_cpu(dynticks_progress_counter, cpu)++;
11 smp_mb();
12 per_cpu(rcu_update_flag, cpu)++;
13 }
14 }

Line 3 fetches the current CPU’s number, while
lines 5 and 6 increment the rcu_update_flag nesting
counter if it is already non-zero. Lines 7-9 check to
see whether we are the outermost level of interrupt, and,
if so, whether dynticks_progress_counter needs to
be incremented. If so, line 10 increments dynticks_
progress_counter, line 11 executes a memory bar-
rier, and line 12 increments rcu_update_flag. As with
rcu_exit_nohz(), the memory barrier ensures that any
other CPU that sees the effects of an RCU read-side crit-
ical section in the interrupt handler (following the rcu_
irq_enter() invocation) will also see the increment of
dynticks_progress_counter.

Quick Quiz 12.9: Why not simply increment rcu_
update_flag, and then only increment dynticks_

progress_counter if the old value of rcu_update_
flag was zero???

Quick Quiz 12.10: But if line 7 finds that we are the
outermost interrupt, wouldn’t we always need to incre-
ment dynticks_progress_counter?

Interrupt exit is handled similarly by rcu_irq_
exit():

1 void rcu_irq_exit(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu)) {
6 if (--per_cpu(rcu_update_flag, cpu))
7 return;
8 WARN_ON(in_interrupt());
9 smp_mb();

10 per_cpu(dynticks_progress_counter, cpu)++;
11 WARN_ON(per_cpu(dynticks_progress_counter,
12 cpu) & 0x1);
13 }
14 }

Line 3 fetches the current CPU’s number, as before.
Line 5 checks to see if the rcu_update_flag is non-
zero, returning immediately (via falling off the end of the
function) if not. Otherwise, lines 6 through 12 come into
play. Line 6 decrements rcu_update_flag, returning if
the result is not zero. Line 8 verifies that we are indeed
leaving the outermost level of nested interrupts, line 9 ex-
ecutes a memory barrier, line 10 increments dynticks_
progress_counter, and lines 11 and 12 verify that this
variable is now even. As with rcu_enter_nohz(), the
memory barrier ensures that any other CPU that sees the
increment of dynticks_progress_counter will also
see the effects of an RCU read-side critical section in
the interrupt handler (preceding the rcu_irq_exit()
invocation).

These two sections have described how the dynticks_
progress_counter variable is maintained during entry
to and exit from dynticks-idle mode, both by tasks and by
interrupts and NMIs. The following section describes how
this variable is used by preemptible RCU’s grace-period
machinery.

12.1.5.4 Grace-Period Interface

Of the four preemptible RCU grace-period states shown
in Figure 12.1, only the rcu_try_flip_waitack_
state() and rcu_try_flip_waitmb_state() states
need to wait for other CPUs to respond.

Of course, if a given CPU is in dynticks-idle state, we
shouldn’t wait for it. Therefore, just before entering one
of these two states, the preceding state takes a snapshot
of each CPU’s dynticks_progress_counter variable,

212 CHAPTER 12. FORMAL VERIFICATION

rcu_try_flip_idle_state

(No RCU activity)

Increment grace−period counter
Request counter−flip acknowledgement

rcu_try_flip_waitack_state

(Wait for acknowledgements)

Memory barrier

(Wait for RCU read−side
rcu_try_flip_waitzero_state

critical sections to complete)

Request memory barriers

rcu_try_flip_waitmb_state

(Wait for memory barriers)

Still no activity

Figure 12.1: Preemptible RCU State Machine

placing the snapshot in another per-CPU variable, rcu_
dyntick_snapshot. This is accomplished by invoking
dyntick_save_progress_counter(), shown below:

1 static void dyntick_save_progress_counter(int cpu)
2 {
3 per_cpu(rcu_dyntick_snapshot, cpu) =
4 per_cpu(dynticks_progress_counter, cpu);
5 }

The rcu_try_flip_waitack_state() state invokes
rcu_try_flip_waitack_needed(), shown below:

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (snap & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 7 and 8 pick up current and snapshot versions
of dynticks_progress_counter, respectively. The

memory barrier on line 9 ensures that the counter checks
in the later rcu_try_flip_waitzero_state() follow
the fetches of these counters. Lines 10 and 11 return zero
(meaning no communication with the specified CPU is
required) if that CPU has remained in dynticks-idle state
since the time that the snapshot was taken. Similarly,
lines 12 and 13 return zero if that CPU was initially in
dynticks-idle state or if it has completely passed through
a dynticks-idle state. In both these cases, there is no
way that that CPU could have retained the old value of
the grace-period counter. If neither of these conditions
hold, line 14 returns one, meaning that the CPU needs to
explicitly respond.

For its part, the rcu_try_flip_waitmb_state()
state invokes rcu_try_flip_waitmb_needed(),
shown below:

1 static inline int
2 rcu_try_flip_waitmb_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if (curr != snap)
13 return 0;
14 return 1;
15 }

This is quite similar to rcu_try_flip_waitack_
needed(), the difference being in lines 12 and 13, be-
cause any transition either to or from dynticks-idle state
executes the memory barrier needed by the rcu_try_
flip_waitmb_state() state.

We now have seen all the code involved in the inter-
face between RCU and the dynticks-idle state. The next
section builds up the Promela model used to verify this
code.

Quick Quiz 12.11: Can you spot any bugs in any of
the code in this section?

12.1.6 Validating Preemptible RCU and
dynticks

This section develops a Promela model for the interface
between dynticks and RCU step by step, with each of
the following sections illustrating one step, starting with
the process-level code, adding assertions, interrupts, and
finally NMIs.

12.1. STATE-SPACE SEARCH 213

12.1.6.1 Basic Model

This section translates the process-level dynticks en-
try/exit code and the grace-period processing into
Promela [Hol03]. We start with rcu_exit_nohz() and
rcu_enter_nohz() from the 2.6.25-rc4 kernel, placing
these in a single Promela process that models exiting and
entering dynticks-idle mode in a loop as follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5
6 do
7 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
8 :: i < MAX_DYNTICK_LOOP_NOHZ ->
9 tmp = dynticks_progress_counter;

10 atomic {
11 dynticks_progress_counter = tmp + 1;
12 assert((dynticks_progress_counter & 1) == 1);
13 }
14 tmp = dynticks_progress_counter;
15 atomic {
16 dynticks_progress_counter = tmp + 1;
17 assert((dynticks_progress_counter & 1) == 0);
18 }
19 i++;
20 od;
21 }

Lines 6 and 20 define a loop. Line 7 exits the loop
once the loop counter i has exceeded the limit MAX_
DYNTICK_LOOP_NOHZ. Line 8 tells the loop construct
to execute lines 9-19 for each pass through the loop.
Because the conditionals on lines 7 and 8 are exclusive
of each other, the normal Promela random selection of
true conditions is disabled. Lines 9 and 11 model rcu_
exit_nohz()’s non-atomic increment of dynticks_
progress_counter, while line 12 models the WARN_
ON(). The atomic construct simply reduces the Promela
state space, given that the WARN_ON() is not strictly speak-
ing part of the algorithm. Lines 14-18 similarly models
the increment and WARN_ON() for rcu_enter_nohz().
Finally, line 19 increments the loop counter.

Each pass through the loop therefore models a CPU ex-
iting dynticks-idle mode (for example, starting to execute
a task), then re-entering dynticks-idle mode (for example,
that same task blocking).

Quick Quiz 12.12: Why isn’t the memory barrier in
rcu_exit_nohz() and rcu_enter_nohz() modeled
in Promela?

Quick Quiz 12.13: Isn’t it a bit strange to model
rcu_exit_nohz() followed by rcu_enter_nohz()?
Wouldn’t it be more natural to instead model entry before
exit?

The next step is to model the interface to
RCU’s grace-period processing. For this, we

need to model dyntick_save_progress_counter(),
rcu_try_flip_waitack_needed(), rcu_try_flip_
waitmb_needed(), as well as portions of rcu_try_
flip_waitack() and rcu_try_flip_waitmb(), all
from the 2.6.25-rc4 kernel. The following grace_
period() Promela process models these functions as
they would be invoked during a single pass through pre-
emptible RCU’s grace-period processing.

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5
6 atomic {
7 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
8 snap = dynticks_progress_counter;
9 }

10 do
11 :: 1 ->
12 atomic {
13 curr = dynticks_progress_counter;
14 if
15 :: (curr == snap) && ((curr & 1) == 0) ->
16 break;
17 :: (curr - snap) > 2 || (snap & 1) == 0 ->
18 break;
19 :: 1 -> skip;
20 fi;
21 }
22 od;
23 snap = dynticks_progress_counter;
24 do
25 :: 1 ->
26 atomic {
27 curr = dynticks_progress_counter;
28 if
29 :: (curr == snap) && ((curr & 1) == 0) ->
30 break;
31 :: (curr != snap) ->
32 break;
33 :: 1 -> skip;
34 fi;
35 }
36 od;
37 }

Lines 6-9 print out the loop limit (but only into the
.trail file in case of error) and models a line of code from
rcu_try_flip_idle() and its call to dyntick_save_
progress_counter(), which takes a snapshot of the
current CPU’s dynticks_progress_counter variable.
These two lines are executed atomically to reduce state
space.

Lines 10-22 model the relevant code in rcu_
try_flip_waitack() and its call to rcu_try_flip_
waitack_needed(). This loop is modeling the grace-
period state machine waiting for a counter-flip acknowl-
edgement from each CPU, but only that part that interacts
with dynticks-idle CPUs.

Line 23 models a line from rcu_try_flip_
waitzero() and its call to dyntick_save_progress_

214 CHAPTER 12. FORMAL VERIFICATION

counter(), again taking a snapshot of the CPU’s
dynticks_progress_counter variable.

Finally, lines 24-36 model the relevant code in rcu_
try_flip_waitack() and its call to rcu_try_flip_
waitack_needed(). This loop is modeling the grace-
period state-machine waiting for each CPU to execute
a memory barrier, but again only that part that interacts
with dynticks-idle CPUs.

Quick Quiz 12.14: Wait a minute! In the Linux
kernel, both dynticks_progress_counter and rcu_
dyntick_snapshot are per-CPU variables. So why are
they instead being modeled as single global variables?

The resulting model (dyntickRCU-base.spin),
when run with the runspin.sh script, generates 691
states and passes without errors, which is not at all sur-
prising given that it completely lacks the assertions that
could find failures. The next section therefore adds safety
assertions.

12.1.6.2 Validating Safety

A safe RCU implementation must never permit a grace
period to complete before the completion of any RCU
readers that started before the start of the grace period.
This is modeled by a gp_state variable that can take on
three states as follows:

1 #define GP_IDLE 0
2 #define GP_WAITING 1
3 #define GP_DONE 2
4 byte gp_state = GP_DONE;

The grace_period() process sets this variable as it
progresses through the grace-period phases, as shown
below:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5
6 gp_state = GP_IDLE;
7 atomic {
8 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
9 snap = dynticks_progress_counter;

10 gp_state = GP_WAITING;
11 }
12 do
13 :: 1 ->
14 atomic {
15 curr = dynticks_progress_counter;
16 if
17 :: (curr == snap) && ((curr & 1) == 0) ->
18 break;
19 :: (curr - snap) > 2 || (snap & 1) == 0 ->
20 break;
21 :: 1 -> skip;
22 fi;

23 }
24 od;
25 gp_state = GP_DONE;
26 gp_state = GP_IDLE;
27 atomic {
28 snap = dynticks_progress_counter;
29 gp_state = GP_WAITING;
30 }
31 do
32 :: 1 ->
33 atomic {
34 curr = dynticks_progress_counter;
35 if
36 :: (curr == snap) && ((curr & 1) == 0) ->
37 break;
38 :: (curr != snap) ->
39 break;
40 :: 1 -> skip;
41 fi;
42 }
43 od;
44 gp_state = GP_DONE;
45 }

Lines 6, 10, 25, 26, 29, and 44 update this variable
(combining atomically with algorithmic operations where
feasible) to allow the dyntick_nohz() process to verify
the basic RCU safety property. The form of this verifica-
tion is to assert that the value of the gp_state variable
cannot jump from GP_IDLE to GP_DONE during a time
period over which RCU readers could plausibly persist.

Quick Quiz 12.15: Given there are a pair of back-to-
back changes to gp_state on lines 25 and 26, how can
we be sure that line 25’s changes won’t be lost?

The dyntick_nohz() Promela process implements
this verification as shown below:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->

10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (gp_state == GP_IDLE);
14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 gp_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 }

Line 13 sets a new old_gp_idle flag if the value of the
gp_state variable is GP_IDLE at the beginning of task

12.1. STATE-SPACE SEARCH 215

execution, and the assertion at lines 18 and 19 fire if the
gp_state variable has advanced to GP_DONE during task
execution, which would be illegal given that a single RCU
read-side critical section could span the entire intervening
time period.

The resulting model (dyntickRCU-base-s.spin),
when run with the runspin.sh script, generates 964
states and passes without errors, which is reassuring. That
said, although safety is critically important, it is also quite
important to avoid indefinitely stalling grace periods. The
next section therefore covers verifying liveness.

12.1.6.3 Validating Liveness

Although liveness can be difficult to prove, there is a
simple trick that applies here. The first step is to make
dyntick_nohz() indicate that it is done via a dyntick_
nohz_done variable, as shown on line 27 of the follow-
ing:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->

10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (gp_state == GP_IDLE);
14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 gp_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 dyntick_nohz_done = 1;
28 }

With this variable in place, we can add assertions to
grace_period() to check for unnecessary blockage as
follows:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 gp_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);

10 shouldexit = 0;

11 snap = dynticks_progress_counter;
12 gp_state = GP_WAITING;
13 }
14 do
15 :: 1 ->
16 atomic {
17 assert(!shouldexit);
18 shouldexit = dyntick_nohz_done;
19 curr = dynticks_progress_counter;
20 if
21 :: (curr == snap) && ((curr & 1) == 0) ->
22 break;
23 :: (curr - snap) > 2 || (snap & 1) == 0 ->
24 break;
25 :: else -> skip;
26 fi;
27 }
28 od;
29 gp_state = GP_DONE;
30 gp_state = GP_IDLE;
31 atomic {
32 shouldexit = 0;
33 snap = dynticks_progress_counter;
34 gp_state = GP_WAITING;
35 }
36 do
37 :: 1 ->
38 atomic {
39 assert(!shouldexit);
40 shouldexit = dyntick_nohz_done;
41 curr = dynticks_progress_counter;
42 if
43 :: (curr == snap) && ((curr & 1) == 0) ->
44 break;
45 :: (curr != snap) ->
46 break;
47 :: else -> skip;
48 fi;
49 }
50 od;
51 gp_state = GP_DONE;
52 }

We have added the shouldexit variable on line 5,
which we initialize to zero on line 10. Line 17 as-
serts that shouldexit is not set, while line 18 sets
shouldexit to the dyntick_nohz_done variable main-
tained by dyntick_nohz(). This assertion will there-
fore trigger if we attempt to take more than one pass
through the wait-for-counter-flip-acknowledgement loop
after dyntick_nohz() has completed execution. After
all, if dyntick_nohz() is done, then there cannot be any
more state changes to force us out of the loop, so going
through twice in this state means an infinite loop, which
in turn means no end to the grace period.

Lines 32, 39, and 40 operate in a similar manner for
the second (memory-barrier) loop.

However, running this model (dyntickRCU-base-
sl-busted.spin) results in failure, as line 23 is check-
ing that the wrong variable is even. Upon failure,
spin writes out a “trail” file (dyntickRCU-base-sl-
busted.spin.trail), which records the sequence of
states that lead to the failure. Use the spin -t -p -g
-l dyntickRCU-base-sl-busted.spin command to

216 CHAPTER 12. FORMAL VERIFICATION

cause spin to retrace this sequence of states, print-
ing the statements executed and the values of vari-
ables (dyntickRCU-base-sl-busted.spin.trail.
txt). Note that the line numbers do not match the listing
above due to the fact that spin takes both functions in a
single file. However, the line numbers do match the full
model (dyntickRCU-base-sl-busted.spin).

We see that the dyntick_nohz() process completed
at step 34 (search for “34:”), but that the grace_
period() process nonetheless failed to exit the loop. The
value of curr is 6 (see step 35) and that the value of snap
is 5 (see step 17). Therefore the first condition on line 21
above does not hold because curr != snap, and the sec-
ond condition on line 23 does not hold either because
snap is odd and because curr is only one greater than
snap.

So one of these two conditions has to be incorrect.
Referring to the comment block in rcu_try_flip_
waitack_needed() for the first condition:

If the CPU remained in dynticks mode for the
entire time and didn’t take any interrupts, NMIs,
SMIs, or whatever, then it cannot be in the mid-
dle of an rcu_read_lock(), so the next rcu_
read_lock() it executes must use the new
value of the counter. So we can safely pre-
tend that this CPU already acknowledged the
counter.

The first condition does match this, because if curr
== snap and if curr is even, then the corresponding
CPU has been in dynticks-idle mode the entire time, as
required. So let’s look at the comment block for the
second condition:

If the CPU passed through or entered a dynticks
idle phase with no active irq handlers, then, as
above, we can safely pretend that this CPU
already acknowledged the counter.

The first part of the condition is correct, because if
curr and snap differ by two, there will be at least one
even number in between, corresponding to having passed
completely through a dynticks-idle phase. However, the
second part of the condition corresponds to having started
in dynticks-idle mode, not having finished in this mode.
We therefore need to be testing curr rather than snap for
being an even number.

The corrected C code is as follows:

1 static inline int

2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (curr & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 10-13 can now be combined and simplified, re-
sulting in the following. A similar simplification can be
applied to rcu_try_flip_waitmb_needed().

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr - snap) >= 2 || (curr & 0x1) == 0)
11 return 0;
12 return 1;
13 }

Making the corresponding correction in the model
(dyntickRCU-base-sl.spin) results in a correct veri-
fication with 661 states that passes without errors. How-
ever, it is worth noting that the first version of the live-
ness verification failed to catch this bug, due to a bug in
the liveness verification itself. This liveness-verification
bug was located by inserting an infinite loop in the
grace_period() process, and noting that the liveness-
verification code failed to detect this problem!

We have now successfully verified both safety and live-
ness conditions, but only for processes running and block-
ing. We also need to handle interrupts, a task taken up in
the next section.

12.1.6.4 Interrupts

There are a couple of ways to model interrupts in Promela:

1. using C-preprocessor tricks to insert the interrupt
handler between each and every statement of the
dynticks_nohz() process, or

2. modeling the interrupt handler with a separate pro-
cess.

A bit of thought indicated that the second approach
would have a smaller state space, though it requires that

12.1. STATE-SPACE SEARCH 217

the interrupt handler somehow run atomically with respect
to the dynticks_nohz() process, but not with respect
to the grace_period() process.

Fortunately, it turns out that Promela permits you
to branch out of atomic statements. This trick allows
us to have the interrupt handler set a flag, and recode
dynticks_nohz() to atomically check this flag and ex-
ecute only when the flag is not set. This can be accom-
plished with a C-preprocessor macro that takes a label
and a Promela statement as follows:

1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_irq -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 } \

One might use this macro as follows:

EXECUTE_MAINLINE(stmt1,
tmp = dynticks_progress_counter)

Line 2 of the macro creates the specified statement
label. Lines 3-8 are an atomic block that tests the in_
dyntick_irq variable, and if this variable is set (indi-
cating that the interrupt handler is active), branches out
of the atomic block back to the label. Otherwise, line 6
executes the specified statement. The overall effect is that
mainline execution stalls any time an interrupt is active,
as required.

12.1.6.5 Validating Interrupt Handlers

The first step is to convert dyntick_nohz() to
EXECUTE_MAINLINE() form, as follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->

10 EXECUTE_MAINLINE(stmt1,
11 tmp = dynticks_progress_counter)
12 EXECUTE_MAINLINE(stmt2,
13 dynticks_progress_counter = tmp + 1;
14 old_gp_idle = (gp_state == GP_IDLE);
15 assert((dynticks_progress_counter & 1) == 1))
16 EXECUTE_MAINLINE(stmt3,
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 gp_state != GP_DONE))
20 EXECUTE_MAINLINE(stmt4,
21 dynticks_progress_counter = tmp + 1;
22 assert((dynticks_progress_counter & 1) == 0))
23 i++;

24 od;
25 dyntick_nohz_done = 1;
26 }

It is important to note that when a group of statements
is passed to EXECUTE_MAINLINE(), as in lines 12-15, all
statements in that group execute atomically.

Quick Quiz 12.16: But what would you do if you
needed the statements in a single EXECUTE_MAINLINE()
group to execute non-atomically?

Quick Quiz 12.17: But what if the dynticks_
nohz() process had “if” or “do” statements with con-
ditions, where the statement bodies of these constructs
needed to execute non-atomically?

The next step is to write a dyntick_irq() process to
model an interrupt handler:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_IRQ -> break;
9 :: i < MAX_DYNTICK_LOOP_IRQ ->

10 in_dyntick_irq = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (gp_state == GP_IDLE);
29 assert(!old_gp_idle || gp_state != GP_DONE);
30 tmp = in_interrupt;
31 in_interrupt = tmp - 1;
32 if
33 :: rcu_update_flag != 0 ->
34 tmp = rcu_update_flag;
35 rcu_update_flag = tmp - 1;
36 if
37 :: rcu_update_flag == 0 ->
38 tmp = dynticks_progress_counter;
39 dynticks_progress_counter = tmp + 1;
40 :: else -> skip;
41 fi;
42 :: else -> skip;
43 fi;
44 atomic {
45 in_dyntick_irq = 0;
46 i++;
47 }
48 od;
49 dyntick_irq_done = 1;
50 }

218 CHAPTER 12. FORMAL VERIFICATION

The loop from lines 7-48 models up to MAX_DYNTICK_
LOOP_IRQ interrupts, with lines 8 and 9 forming the loop
condition and line 46 incrementing the control variable.
Line 10 tells dyntick_nohz() that an interrupt handler
is running, and line 45 tells dyntick_nohz() that this
handler has completed. Line 49 is used for liveness ver-
ification, just like the corresponding line of dyntick_
nohz().

Quick Quiz 12.18: Why are lines 45 and 46 (the in_
dyntick_irq = 0; and the i++;) executed atomically?

Lines 11-25 model rcu_irq_enter(), and lines 26
and 27 model the relevant snippet of __irq_enter().
Lines 28 and 29 verifies safety in much the same man-
ner as do the corresponding lines of dynticks_nohz().
Lines 30 and 31 model the relevant snippet of __
irq_exit(), and finally lines 32-43 model rcu_irq_
exit().

Quick Quiz 12.19: What property of interrupts is this
dynticks_irq() process unable to model?

The grace_period() process then becomes as fol-
lows:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 gp_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);

10 printf("MDLI = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 shouldexit = 0;
12 snap = dynticks_progress_counter;
13 gp_state = GP_WAITING;
14 }
15 do
16 :: 1 ->
17 atomic {
18 assert(!shouldexit);
19 shouldexit = dyntick_nohz_done && dyntick_irq_done;
20 curr = dynticks_progress_counter;
21 if
22 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
23 break;
24 :: else -> skip;
25 fi;
26 }
27 od;
28 gp_state = GP_DONE;
29 gp_state = GP_IDLE;
30 atomic {
31 shouldexit = 0;
32 snap = dynticks_progress_counter;
33 gp_state = GP_WAITING;
34 }
35 do
36 :: 1 ->
37 atomic {
38 assert(!shouldexit);
39 shouldexit = dyntick_nohz_done && dyntick_irq_done;
40 curr = dynticks_progress_counter;

41 if
42 :: (curr != snap) || ((curr & 1) == 0) ->
43 break;
44 :: else -> skip;
45 fi;
46 }
47 od;
48 gp_state = GP_DONE;
49 }

The implementation of grace_period() is very simi-
lar to the earlier one. The only changes are the addition of
line 10 to add the new interrupt-count parameter, changes
to lines 19 and 39 to add the new dyntick_irq_done
variable to the liveness checks, and of course the opti-
mizations on lines 22 and 42.

This model (dyntickRCU-irqnn-ssl.spin) results
in a correct verification with roughly half a million states,
passing without errors. However, this version of the model
does not handle nested interrupts. This topic is taken up
in the next section.

12.1.6.6 Validating Nested Interrupt Handlers

Nested interrupt handlers may be modeled by splitting
the body of the loop in dyntick_irq() as follows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
8
9 do

10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 if
18 :: rcu_update_flag > 0 ->
19 tmp = rcu_update_flag;
20 rcu_update_flag = tmp + 1;
21 :: else -> skip;
22 fi;
23 if
24 :: !in_interrupt &&
25 (dynticks_progress_counter & 1) == 0 ->
26 tmp = dynticks_progress_counter;
27 dynticks_progress_counter = tmp + 1;
28 tmp = rcu_update_flag;
29 rcu_update_flag = tmp + 1;
30 :: else -> skip;
31 fi;
32 tmp = in_interrupt;
33 in_interrupt = tmp + 1;
34 atomic {
35 if
36 :: outermost ->
37 old_gp_idle = (gp_state == GP_IDLE);
38 :: else -> skip;
39 fi;

12.1. STATE-SPACE SEARCH 219

40 }
41 i++;
42 :: j < i ->
43 atomic {
44 if
45 :: j + 1 == i ->
46 assert(!old_gp_idle ||
47 gp_state != GP_DONE);
48 :: else -> skip;
49 fi;
50 }
51 tmp = in_interrupt;
52 in_interrupt = tmp - 1;
53 if
54 :: rcu_update_flag != 0 ->
55 tmp = rcu_update_flag;
56 rcu_update_flag = tmp - 1;
57 if
58 :: rcu_update_flag == 0 ->
59 tmp = dynticks_progress_counter;
60 dynticks_progress_counter = tmp + 1;
61 :: else -> skip;
62 fi;
63 :: else -> skip;
64 fi;
65 atomic {
66 j++;
67 in_dyntick_irq = (i != j);
68 }
69 od;
70 dyntick_irq_done = 1;
71 }

This is similar to the earlier dynticks_irq() process.
It adds a second counter variable j on line 5, so that i
counts entries to interrupt handlers and j counts exits.
The outermost variable on line 7 helps determine when
the gp_state variable needs to be sampled for the safety
checks. The loop-exit check on lines 10 and 11 is updated
to require that the specified number of interrupt handlers
are exited as well as entered, and the increment of i
is moved to line 41, which is the end of the interrupt-
entry model. Lines 13-16 set the outermost variable to
indicate whether this is the outermost of a set of nested
interrupts and to set the in_dyntick_irq variable that
is used by the dyntick_nohz() process. Lines 34-40
capture the state of the gp_state variable, but only when
in the outermost interrupt handler.

Line 42 has the do-loop conditional for interrupt-exit
modeling: as long as we have exited fewer interrupts
than we have entered, it is legal to exit another interrupt.
Lines 43-50 check the safety criterion, but only if we
are exiting from the outermost interrupt level. Finally,
lines 65-68 increment the interrupt-exit count j and, if
this is the outermost interrupt level, clears in_dyntick_
irq.

This model (dyntickRCU-irq-ssl.spin) results in
a correct verification with a bit more than half a million
states, passing without errors. However, this version of
the model does not handle NMIs, which are taken up in

the next section.

12.1.6.7 Validating NMI Handlers

We take the same general approach for NMIs as we do for
interrupts, keeping in mind that NMIs do not nest. This
results in a dyntick_nmi() process as follows:

1 proctype dyntick_nmi()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NMI -> break;
9 :: i < MAX_DYNTICK_LOOP_NMI ->

10 in_dyntick_nmi = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (gp_state == GP_IDLE);
29 assert(!old_gp_idle || gp_state != GP_DONE);
30 tmp = in_interrupt;
31 in_interrupt = tmp - 1;
32 if
33 :: rcu_update_flag != 0 ->
34 tmp = rcu_update_flag;
35 rcu_update_flag = tmp - 1;
36 if
37 :: rcu_update_flag == 0 ->
38 tmp = dynticks_progress_counter;
39 dynticks_progress_counter = tmp + 1;
40 :: else -> skip;
41 fi;
42 :: else -> skip;
43 fi;
44 atomic {
45 i++;
46 in_dyntick_nmi = 0;
47 }
48 od;
49 dyntick_nmi_done = 1;
50 }

Of course, the fact that we have NMIs requires ad-
justments in the other components. For example, the
EXECUTE_MAINLINE() macro now needs to pay atten-
tion to the NMI handler (in_dyntick_nmi) as well as
the interrupt handler (in_dyntick_irq) by checking the
dyntick_nmi_done variable as follows:

1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \

220 CHAPTER 12. FORMAL VERIFICATION

3 atomic { \
4 if \
5 :: in_dyntick_irq || \
6 in_dyntick_nmi -> goto label; \
7 :: else -> stmt; \
8 fi; \
9 } \

We will also need to introduce an EXECUTE_IRQ()
macro that checks in_dyntick_nmi in order to allow
dyntick_irq() to exclude dyntick_nmi():

1 #define EXECUTE_IRQ(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_nmi -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 } \

It is further necessary to convert dyntick_irq() to
EXECUTE_IRQ() as follows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
8
9 do

10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 stmt1: skip;
18 atomic {
19 if
20 :: in_dyntick_nmi -> goto stmt1;
21 :: !in_dyntick_nmi && rcu_update_flag ->
22 goto stmt1_then;
23 :: else -> goto stmt1_else;
24 fi;
25 }
26 stmt1_then: skip;
27 EXECUTE_IRQ(stmt1_1, tmp = rcu_update_flag)
28 EXECUTE_IRQ(stmt1_2, rcu_update_flag = tmp + 1)
29 stmt1_else: skip;
30 stmt2: skip; atomic {
31 if
32 :: in_dyntick_nmi -> goto stmt2;
33 :: !in_dyntick_nmi &&
34 !in_interrupt &&
35 (dynticks_progress_counter & 1) == 0 ->
36 goto stmt2_then;
37 :: else -> goto stmt2_else;
38 fi;
39 }
40 stmt2_then: skip;
41 EXECUTE_IRQ(stmt2_1, tmp = dynticks_progress_counter)
42 EXECUTE_IRQ(stmt2_2,
43 dynticks_progress_counter = tmp + 1)
44 EXECUTE_IRQ(stmt2_3, tmp = rcu_update_flag)
45 EXECUTE_IRQ(stmt2_4, rcu_update_flag = tmp + 1)
46 stmt2_else: skip;
47 EXECUTE_IRQ(stmt3, tmp = in_interrupt)

48 EXECUTE_IRQ(stmt4, in_interrupt = tmp + 1)
49 stmt5: skip;
50 atomic {
51 if
52 :: in_dyntick_nmi -> goto stmt4;
53 :: !in_dyntick_nmi && outermost ->
54 old_gp_idle = (gp_state == GP_IDLE);
55 :: else -> skip;
56 fi;
57 }
58 i++;
59 :: j < i ->
60 stmt6: skip;
61 atomic {
62 if
63 :: in_dyntick_nmi -> goto stmt6;
64 :: !in_dyntick_nmi && j + 1 == i ->
65 assert(!old_gp_idle ||
66 gp_state != GP_DONE);
67 :: else -> skip;
68 fi;
69 }
70 EXECUTE_IRQ(stmt7, tmp = in_interrupt);
71 EXECUTE_IRQ(stmt8, in_interrupt = tmp - 1);
72
73 stmt9: skip;
74 atomic {
75 if
76 :: in_dyntick_nmi -> goto stmt9;
77 :: !in_dyntick_nmi && rcu_update_flag != 0 ->
78 goto stmt9_then;
79 :: else -> goto stmt9_else;
80 fi;
81 }
82 stmt9_then: skip;
83 EXECUTE_IRQ(stmt9_1, tmp = rcu_update_flag)
84 EXECUTE_IRQ(stmt9_2, rcu_update_flag = tmp - 1)
85 stmt9_3: skip;
86 atomic {
87 if
88 :: in_dyntick_nmi -> goto stmt9_3;
89 :: !in_dyntick_nmi && rcu_update_flag == 0 ->
90 goto stmt9_3_then;
91 :: else -> goto stmt9_3_else;
92 fi;
93 }
94 stmt9_3_then: skip;
95 EXECUTE_IRQ(stmt9_3_1,
96 tmp = dynticks_progress_counter)
97 EXECUTE_IRQ(stmt9_3_2,
98 dynticks_progress_counter = tmp + 1)
99 stmt9_3_else:

100 stmt9_else: skip;
101 atomic {
102 j++;
103 in_dyntick_irq = (i != j);
104 }
105 od;
106 dyntick_irq_done = 1;
107 }

Note that we have open-coded the “if” statements (for
example, lines 17-29). In addition, statements that process
strictly local state (such as line 58) need not exclude
dyntick_nmi().

Finally, grace_period() requires only a few
changes:

1 proctype grace_period()
2 {
3 byte curr;

12.1. STATE-SPACE SEARCH 221

4 byte snap;
5 bit shouldexit;
6
7 gp_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);

10 printf("MDLI = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NMI);
12 shouldexit = 0;
13 snap = dynticks_progress_counter;
14 gp_state = GP_WAITING;
15 }
16 do
17 :: 1 ->
18 atomic {
19 assert(!shouldexit);
20 shouldexit = dyntick_nohz_done &&
21 dyntick_irq_done &&
22 dyntick_nmi_done;
23 curr = dynticks_progress_counter;
24 if
25 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
26 break;
27 :: else -> skip;
28 fi;
29 }
30 od;
31 gp_state = GP_DONE;
32 gp_state = GP_IDLE;
33 atomic {
34 shouldexit = 0;
35 snap = dynticks_progress_counter;
36 gp_state = GP_WAITING;
37 }
38 do
39 :: 1 ->
40 atomic {
41 assert(!shouldexit);
42 shouldexit = dyntick_nohz_done &&
43 dyntick_irq_done &&
44 dyntick_nmi_done;
45 curr = dynticks_progress_counter;
46 if
47 :: (curr != snap) || ((curr & 1) == 0) ->
48 break;
49 :: else -> skip;
50 fi;
51 }
52 od;
53 gp_state = GP_DONE;
54 }

We have added the printf() for the new MAX_
DYNTICK_LOOP_NMI parameter on line 11 and added
dyntick_nmi_done to the shouldexit assignments on
lines 22 and 44.

The model (dyntickRCU-irq-nmi-ssl.spin) re-
sults in a correct verification with several hundred million
states, passing without errors.

Quick Quiz 12.20: Does Paul always write his code
in this painfully incremental manner?

12.1.6.8 Lessons (Re)Learned

This effort provided some lessons (re)learned:

Listing 12.16: Memory-Barrier Fix Patch
static inline void rcu_enter_nohz(void)
{

+ mb();
__get_cpu_var(dynticks_progress_counter)++;

- mb();
}
static inline void rcu_exit_nohz(void)
{

- mb();
__get_cpu_var(dynticks_progress_counter)++;

+ mb();
}

Listing 12.17: Variable-Name-Typo Fix Patch
- if ((curr - snap) > 2 || (snap & 0x1) == 0)
+ if ((curr - snap) > 2 || (curr & 0x1) == 0)

1. Promela and spin can verify interrupt/NMI-
handler interactions.

2. Documenting code can help locate bugs. In
this case, the documentation effort located a mis-
placed memory barrier in rcu_enter_nohz() and
rcu_exit_nohz(), as shown by the patch in List-
ing 12.16.

3. Validate your code early, often, and up to the
point of destruction. This effort located one subtle
bug in rcu_try_flip_waitack_needed() that
would have been quite difficult to test or debug, as
shown by the patch in Listing 12.17.

4. Always verify your verification code. The usual
way to do this is to insert a deliberate bug and ver-
ify that the verification code catches it. Of course,
if the verification code fails to catch this bug, you
may also need to verify the bug itself, and so on,
recursing infinitely. However, if you find yourself
in this position, getting a good night’s sleep can be
an extremely effective debugging technique. You
will then see that the obvious verify-the-verification
technique is to deliberately insert bugs in the code
being verified. If the verification fails to find them,
the verification clearly is buggy.

5. Use of atomic instructions can simplify verifica-
tion. Unfortunately, use of the cmpxchg atomic in-
struction would also slow down the critical IRQ fast-
path, so they are not appropriate in this case.

6. The need for complex formal verification often
indicates a need to re-think your design.

222 CHAPTER 12. FORMAL VERIFICATION

Listing 12.18: Variables for Simple Dynticks Interface
1 struct rcu_dynticks {
2 int dynticks_nesting;
3 int dynticks;
4 int dynticks_nmi;
5 };
6
7 struct rcu_data {
8 ...
9 int dynticks_snap;

10 int dynticks_nmi_snap;
11 ...
12 };

To this last point, it turn out that there is a much simpler
solution to the dynticks problem, which is presented in
the next section.

12.1.6.9 Simplicity Avoids Formal Verification

The complexity of the dynticks interface for preemptible
RCU is primarily due to the fact that both IRQs and NMIs
use the same code path and the same state variables. This
leads to the notion of providing separate code paths and
variables for IRQs and NMIs, as has been done for hier-
archical RCU [McK08a] as indirectly suggested by Man-
fred Spraul [Spr08].

12.1.6.10 State Variables for Simplified Dynticks In-
terface

Listing 12.18 shows the new per-CPU state variables.
These variables are grouped into structs to allow multiple
independent RCU implementations (e.g., rcu and rcu_
bh) to conveniently and efficiently share dynticks state.
In what follows, they can be thought of as independent
per-CPU variables.

The dynticks_nesting, dynticks, and dynticks_
snap variables are for the IRQ code paths, and the
dynticks_nmi and dynticks_nmi_snap variables are
for the NMI code paths, although the NMI code path will
also reference (but not modify) the dynticks_nesting
variable. These variables are used as follows:

dynticks_nesting
This counts the number of reasons that the corre-
sponding CPU should be monitored for RCU read-
side critical sections. If the CPU is in dynticks-idle
mode, then this counts the IRQ nesting level, other-
wise it is one greater than the IRQ nesting level.

dynticks
This counter’s value is even if the corresponding
CPU is in dynticks-idle mode and there are no IRQ

handlers currently running on that CPU, otherwise
the counter’s value is odd. In other words, if this
counter’s value is odd, then the corresponding CPU
might be in an RCU read-side critical section.

dynticks_nmi
This counter’s value is odd if the corresponding CPU
is in an NMI handler, but only if the NMI arrived
while this CPU was in dyntick-idle mode with no
IRQ handlers running. Otherwise, the counter’s
value will be even.

dynticks_snap
This will be a snapshot of the dynticks counter, but
only if the current RCU grace period has extended
for too long a duration.

dynticks_nmi_snap
This will be a snapshot of the dynticks_nmi
counter, but again only if the current RCU grace
period has extended for too long a duration.

If both dynticks and dynticks_nmi have taken on
an even value during a given time interval, then the corre-
sponding CPU has passed through a quiescent state during
that interval.

Quick Quiz 12.21: But what happens if an NMI han-
dler starts running before an IRQ handler completes, and
if that NMI handler continues running until a second IRQ
handler starts?

12.1.6.11 Entering and Leaving Dynticks-Idle Mode

Listing 12.19 shows the rcu_enter_nohz() and rcu_
exit_nohz(), which enter and exit dynticks-idle mode,
also known as “nohz” mode. These two functions are
invoked from process context.

Line 6 ensures that any prior memory accesses (which
might include accesses from RCU read-side critical sec-
tions) are seen by other CPUs before those marking entry
to dynticks-idle mode. Lines 7 and 12 disable and reen-
able IRQs. Line 8 acquires a pointer to the current CPU’s
rcu_dynticks structure, and line 9 increments the cur-
rent CPU’s dynticks counter, which should now be even,
given that we are entering dynticks-idle mode in process
context. Finally, line 10 decrements dynticks_nesting,
which should now be zero.

The rcu_exit_nohz() function is quite similar, but
increments dynticks_nesting rather than decrement-
ing it and checks for the opposite dynticks polarity.

12.1. STATE-SPACE SEARCH 223

Listing 12.19: Entering and Exiting Dynticks-Idle Mode
1 void rcu_enter_nohz(void)
2 {
3 unsigned long flags;
4 struct rcu_dynticks *rdtp;
5
6 smp_mb();
7 local_irq_save(flags);
8 rdtp = &__get_cpu_var(rcu_dynticks);
9 rdtp->dynticks++;

10 rdtp->dynticks_nesting--;
11 WARN_ON(rdtp->dynticks & 0x1);
12 local_irq_restore(flags);
13 }
14
15 void rcu_exit_nohz(void)
16 {
17 unsigned long flags;
18 struct rcu_dynticks *rdtp;
19
20 local_irq_save(flags);
21 rdtp = &__get_cpu_var(rcu_dynticks);
22 rdtp->dynticks++;
23 rdtp->dynticks_nesting++;
24 WARN_ON(!(rdtp->dynticks & 0x1));
25 local_irq_restore(flags);
26 smp_mb();
27 }

12.1.6.12 NMIs From Dynticks-Idle Mode

Listing 12.20 shows the rcu_nmi_enter() and rcu_
nmi_exit() functions, which inform RCU of NMI entry
and exit, respectively, from dynticks-idle mode. How-
ever, if the NMI arrives during an IRQ handler, then
RCU will already be on the lookout for RCU read-side
critical sections from this CPU, so lines 6 and 7 of
rcu_nmi_enter() and lines 18 and 19 of rcu_nmi_
exit() silently return if dynticks is odd. Otherwise,
the two functions increment dynticks_nmi, with rcu_
nmi_enter() leaving it with an odd value and rcu_nmi_
exit() leaving it with an even value. Both functions
execute memory barriers between this increment and pos-
sible RCU read-side critical sections on lines 10 and 20,
respectively.

12.1.6.13 Interrupts From Dynticks-Idle Mode

Listing 12.21 shows rcu_irq_enter() and rcu_irq_
exit(), which inform RCU of entry to and exit from,
respectively, IRQ context. Line 6 of rcu_irq_enter()
increments dynticks_nesting, and if this variable was
already non-zero, line 7 silently returns. Otherwise, line 8
increments dynticks, which will then have an odd value,
consistent with the fact that this CPU can now execute
RCU read-side critical sections. Line 10 therefore exe-
cutes a memory barrier to ensure that the increment of
dynticks is seen before any RCU read-side critical sec-

Listing 12.20: NMIs From Dynticks-Idle Mode
1 void rcu_nmi_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks & 0x1)
7 return;
8 rdtp->dynticks_nmi++;
9 WARN_ON(!(rdtp->dynticks_nmi & 0x1));

10 smp_mb();
11 }
12
13 void rcu_nmi_exit(void)
14 {
15 struct rcu_dynticks *rdtp;
16
17 rdtp = &__get_cpu_var(rcu_dynticks);
18 if (rdtp->dynticks & 0x1)
19 return;
20 smp_mb();
21 rdtp->dynticks_nmi++;
22 WARN_ON(rdtp->dynticks_nmi & 0x1);
23 }

Listing 12.21: Interrupts From Dynticks-Idle Mode
1 void rcu_irq_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks_nesting++)
7 return;
8 rdtp->dynticks++;
9 WARN_ON(!(rdtp->dynticks & 0x1));

10 smp_mb();
11 }
12
13 void rcu_irq_exit(void)
14 {
15 struct rcu_dynticks *rdtp;
16
17 rdtp = &__get_cpu_var(rcu_dynticks);
18 if (--rdtp->dynticks_nesting)
19 return;
20 smp_mb();
21 rdtp->dynticks++;
22 WARN_ON(rdtp->dynticks & 0x1);
23 if (__get_cpu_var(rcu_data).nxtlist ||
24 __get_cpu_var(rcu_bh_data).nxtlist)
25 set_need_resched();
26 }

tions that the subsequent IRQ handler might execute.
Line 18 of rcu_irq_exit() decrements dynticks_

nesting, and if the result is non-zero, line 19 silently
returns. Otherwise, line 20 executes a memory barrier to
ensure that the increment of dynticks on line 21 is seen
after any RCU read-side critical sections that the prior
IRQ handler might have executed. Line 22 verifies that
dynticks is now even, consistent with the fact that no
RCU read-side critical sections may appear in dynticks-
idle mode. Lines 23-25 check to see if the prior IRQ
handlers enqueued any RCU callbacks, forcing this CPU
out of dynticks-idle mode via a reschedule API if so.

224 CHAPTER 12. FORMAL VERIFICATION

Listing 12.22: Saving Dyntick Progress Counters
1 static int
2 dyntick_save_progress_counter(struct rcu_data *rdp)
3 {
4 int ret;
5 int snap;
6 int snap_nmi;
7
8 snap = rdp->dynticks->dynticks;
9 snap_nmi = rdp->dynticks->dynticks_nmi;

10 smp_mb();
11 rdp->dynticks_snap = snap;
12 rdp->dynticks_nmi_snap = snap_nmi;
13 ret = ((snap & 0x1) == 0) &&
14 ((snap_nmi & 0x1) == 0);
15 if (ret)
16 rdp->dynticks_fqs++;
17 return ret;
18 }

Listing 12.23: Checking Dyntick Progress Counters
1 static int
2 rcu_implicit_dynticks_qs(struct rcu_data *rdp)
3 {
4 long curr;
5 long curr_nmi;
6 long snap;
7 long snap_nmi;
8
9 curr = rdp->dynticks->dynticks;

10 snap = rdp->dynticks_snap;
11 curr_nmi = rdp->dynticks->dynticks_nmi;
12 snap_nmi = rdp->dynticks_nmi_snap;
13 smp_mb();
14 if ((curr != snap || (curr & 0x1) == 0) &&
15 (curr_nmi != snap_nmi ||
16 (curr_nmi & 0x1) == 0)) {
17 rdp->dynticks_fqs++;
18 return 1;
19 }
20 return rcu_implicit_offline_qs(rdp);
21 }

12.1.6.14 Checking For Dynticks Quiescent States

Listing 12.22 shows dyntick_save_progress_
counter(), which takes a snapshot of the specified
CPU’s dynticks and dynticks_nmi counters. Lines 8
and 9 snapshot these two variables to locals, line 10
executes a memory barrier to pair with the memory
barriers in the functions in Listings 12.19, 12.20, and
12.21. Lines 11 and 12 record the snapshots for later
calls to rcu_implicit_dynticks_qs(), and lines 13
and 14 check to see if the CPU is in dynticks-idle mode
with neither IRQs nor NMIs in progress (in other words,
both snapshots have even values), hence in an extended
quiescent state. If so, lines 15 and 16 count this event,
and line 17 returns true if the CPU was in a quiescent
state.

Listing 12.23 shows rcu_implicit_dynticks_
qs(), which is called to check whether a CPU has entered
dyntick-idle mode subsequent to a call to dynticks_

save_progress_counter(). Lines 9 and 11 take new
snapshots of the corresponding CPU’s dynticks and
dynticks_nmi variables, while lines 10 and 12 re-
trieve the snapshots saved earlier by dynticks_save_
progress_counter(). Line 13 then executes a memory
barrier to pair with the memory barriers in the functions
in Listings 12.19, 12.20, and 12.21. Lines 14-16 then
check to see if the CPU is either currently in a quies-
cent state (curr and curr_nmi having even values) or
has passed through a quiescent state since the last call
to dynticks_save_progress_counter() (the values
of dynticks and dynticks_nmi having changed). If
these checks confirm that the CPU has passed through a
dyntick-idle quiescent state, then line 17 counts that fact
and line 18 returns an indication of this fact. Either way,
line 20 checks for race conditions that can result in RCU
waiting for a CPU that is offline.

Quick Quiz 12.22: This is still pretty complicated.
Why not just have a cpumask_t that has a bit set for each
CPU that is in dyntick-idle mode, clearing the bit when
entering an IRQ or NMI handler, and setting it upon exit?

12.1.6.15 Discussion

A slight shift in viewpoint resulted in a substantial simpli-
fication of the dynticks interface for RCU. The key change
leading to this simplification was minimizing of sharing
between IRQ and NMI contexts. The only sharing in this
simplified interface is references from NMI context to
IRQ variables (the dynticks variable). This type of shar-
ing is benign, because the NMI functions never update
this variable, so that its value remains constant through
the lifetime of the NMI handler. This limitation of shar-
ing allows the individual functions to be understood one
at a time, in happy contrast to the situation described in
Section 12.1.5, where an NMI might change shared state
at any point during execution of the IRQ functions.

Verification can be a good thing, but simplicity is even
better.

12.2 Special-Purpose State-Space
Search

Jack of all trades, master of none.

Unknown

Although Promela and spin allow you to verify pretty

12.2. SPECIAL-PURPOSE STATE-SPACE SEARCH 225

much any (smallish) algorithm, their very generality can
sometimes be a curse. For example, Promela does not un-
derstand memory models or any sort of reordering seman-
tics. This section therefore describes some state-space
search tools that understand memory models used by pro-
duction systems, greatly simplifying the verification of
weakly ordered code.

For example, Section 12.1.4 showed how to convince
Promela to account for weak memory ordering. Although
this approach can work well, it requires that the devel-
oper fully understand the system’s memory model. Un-
fortunately, few (if any) developers fully understand the
complex memory models of modern CPUs.

Therefore, another approach is to use a tool that al-
ready understands this memory ordering, such as the
PPCMEM tool produced by Peter Sewell and Susmit
Sarkar at the University of Cambridge, Luc Maranget,
Francesco Zappa Nardelli, and Pankaj Pawan at INRIA,
and Jade Alglave at Oxford University, in cooperation
with Derek Williams of IBM [AMP+11]. This group for-
malized the memory models of Power, ARM, x86, as
well as that of the C/C++11 standard [Bec11], and pro-
duced the PPCMEM tool based on the Power and ARM
formalizations.

Quick Quiz 12.23: But x86 has strong memory or-
dering! Why would you need to formalize its memory
model?

The PPCMEM tool takes litmus tests as input. A
sample litmus test is presented in Section 12.2.1. Sec-
tion 12.2.2 relates this litmus test to the equivalent C-
language program, Section 12.2.3 describes how to apply
PPCMEM to this litmus test, and Section 12.2.4 discusses
the implications.

12.2.1 Anatomy of a Litmus Test

An example PowerPC litmus test for PPCMEM is shown
in Listing 12.24. The ARM interface works exactly the
same way, but with ARM instructions substituted for the
Power instructions and with the initial “PPC” replaced
by “ARM”. You can select the ARM interface by clicking
on “Change to ARM Model” at the web page called out
above.

In the example, line 1 identifies the type of system
(“ARM” or “PPC”) and contains the title for the model.
Line 2 provides a place for an alternative name for the
test, which you will usually want to leave blank as shown
in the above example. Comments can be inserted be-
tween lines 2 and 3 using the OCaml (or Pascal) syntax

Listing 12.24: PPCMEM Litmus Test
1 PPC SB+lwsync-RMW-lwsync+isync-simple
2 ""
3 {
4 0:r2=x; 0:r3=2; 0:r4=y; 0:r10=0; 0:r11=0; 0:r12=z;
5 1:r2=y; 1:r4=x;
6 }
7 P0 | P1 ;
8 li r1,1 | li r1,1 ;
9 stw r1,0(r2) | stw r1,0(r2) ;

10 lwsync | sync ;
11 | lwz r3,0(r4) ;
12 lwarx r11,r10,r12 | ;
13 stwcx. r11,r10,r12 | ;
14 bne Fail1 | ;
15 isync | ;
16 lwz r3,0(r4) | ;
17 Fail1: | ;
18
19 exists
20 (0:r3=0 /\ 1:r3=0)

of (* *).
Lines 3-6 give initial values for all registers; each is

of the form P:R=V, where P is the process identifier, R is
the register identifier, and V is the value. For example,
process 0’s register r3 initially contains the value 2. If
the value is a variable (x, y, or z in the example) then
the register is initialized to the address of the variable. It
is also possible to initialize the contents of variables, for
example, x=1 initializes the value of x to 1. Uninitialized
variables default to the value zero, so that in the example,
x, y, and z are all initially zero.

Line 7 provides identifiers for the two processes, so
that the 0:r3=2 on line 4 could instead have been written
P0:r3=2. Line 7 is required, and the identifiers must be
of the form Pn, where n is the column number, starting
from zero for the left-most column. This may seem unnec-
essarily strict, but it does prevent considerable confusion
in actual use.

Quick Quiz 12.24: Why does line 8 of Listing 12.24
initialize the registers? Why not instead initialize them
on lines 4 and 5?

Lines 8-17 are the lines of code for each process. A
given process can have empty lines, as is the case for P0’s
line 11 and P1’s lines 12-17. Labels and branches are
permitted, as demonstrated by the branch on line 14 to
the label on line 17. That said, too-free use of branches
will expand the state space. Use of loops is a particularly
good way to explode your state space.

Lines 19-20 show the assertion, which in this case
indicates that we are interested in whether P0’s and P1’s r3
registers can both contain zero after both threads complete
execution. This assertion is important because there are a
number of use cases that would fail miserably if both P0

226 CHAPTER 12. FORMAL VERIFICATION

Listing 12.25: Meaning of PPCMEM Litmus Test
1 void P0(void)
2 {
3 int r3;
4
5 x = 1; /* Lines 8 and 9 */
6 atomic_add_return(&z, 0); /* Lines 10-15 */
7 r3 = y; /* Line 16 */
8 }
9

10 void P1(void)
11 {
12 int r3;
13
14 y = 1; /* Lines 8-9 */
15 smp_mb(); /* Line 10 */
16 r3 = x; /* Line 11 */
17 }

and P1 saw zero in their respective r3 registers.
This should give you enough information to construct

simple litmus tests. Some additional documentation is
available, though much of this additional documentation
is intended for a different research tool that runs tests
on actual hardware. Perhaps more importantly, a large
number of pre-existing litmus tests are available with
the online tool (available via the “Select ARM Test” and
“Select POWER Test” buttons). It is quite likely that one
of these pre-existing litmus tests will answer your Power
or ARM memory-ordering question.

12.2.2 What Does This Litmus Test Mean?

P0’s lines 8 and 9 are equivalent to the C statement x=1
because line 4 defines P0’s register r2 to be the address
of x. P0’s lines 12 and 13 are the mnemonics for load-
linked (“load register exclusive” in ARM parlance and
“load reserve” in Power parlance) and store-conditional
(“store register exclusive” in ARM parlance), respectively.
When these are used together, they form an atomic in-
struction sequence, roughly similar to the compare-and-
swap sequences exemplified by the x86 lock;cmpxchg
instruction. Moving to a higher level of abstraction, the
sequence from lines 10-15 is equivalent to the Linux ker-
nel’s atomic_add_return(&z, 0). Finally, line 16 is
roughly equivalent to the C statement r3=y.

P1’s lines 8 and 9 are equivalent to the C statement
y=1, line 10 is a memory barrier, equivalent to the Linux
kernel statement smp_mb(), and line 11 is equivalent to
the C statement r3=x.

Quick Quiz 12.25: But whatever happened to line 17
of Listing 12.24, the one that is the Fail: label?

Putting all this together, the C-language equivalent to
the entire litmus test is as shown in Listing 12.25. The

Listing 12.26: PPCMEM Detects an Error
./ppcmem -model lwsync_read_block \

-model coherence_points filename.litmus
...
States 6
0:r3=0; 1:r3=0;
0:r3=0; 1:r3=1;
0:r3=1; 1:r3=0;
0:r3=1; 1:r3=1;
0:r3=2; 1:r3=0;
0:r3=2; 1:r3=1;
Ok
Condition exists (0:r3=0 /\ 1:r3=0)
Hash=e2240ce2072a2610c034ccd4fc964e77
Observation SB+lwsync-RMW-lwsync+isync Sometimes 1

key point is that if atomic_add_return() acts as a full
memory barrier (as the Linux kernel requires it to), then it
should be impossible for P0()’s and P1()’s r3 variables
to both be zero after execution completes.

The next section describes how to run this litmus test.

12.2.3 Running a Litmus Test

Litmus tests may be run interactively via http://
www.cl.cam.ac.uk/~pes20/ppcmem/, which can help
build an understanding of the memory model. How-
ever, this approach requires that the user manually carry
out the full state-space search. Because it is very dif-
ficult to be sure that you have checked every possible
sequence of events, a separate tool is provided for this
purpose [McK11c].

Because the litmus test shown in Listing 12.24 contains
read-modify-write instructions, we must add -model
arguments to the command line. If the litmus test is
stored in filename.litmus, this will result in the output
shown in Listing 12.26, where the ... stands for volumi-
nous making-progress output. The list of states includes
0:r3=0; 1:r3=0;, indicating once again that the old
PowerPC implementation of atomic_add_return()
does not act as a full barrier. The “Sometimes” on the
last line confirms this: the assertion triggers for some
executions, but not all of the time.

The fix to this Linux-kernel bug is to replace P0’s
isync with sync, which results in the output shown in
Listing 12.27. As you can see, 0:r3=0; 1:r3=0; does
not appear in the list of states, and the last line calls out
“Never”. Therefore, the model predicts that the offending
execution sequence cannot happen.

Quick Quiz 12.26: Does the ARM Linux kernel have
a similar bug?

http://www.cl.cam.ac.uk/~pes20/ppcmem/
http://www.cl.cam.ac.uk/~pes20/ppcmem/

12.2. SPECIAL-PURPOSE STATE-SPACE SEARCH 227

Listing 12.27: PPCMEM on Repaired Litmus Test
./ppcmem -model lwsync_read_block \

-model coherence_points filename.litmus
...
States 5
0:r3=0; 1:r3=1;
0:r3=1; 1:r3=0;
0:r3=1; 1:r3=1;
0:r3=2; 1:r3=0;
0:r3=2; 1:r3=1;
No (allowed not found)
Condition exists (0:r3=0 /\ 1:r3=0)
Hash=77dd723cda9981248ea4459fcdf6097d
Observation SB+lwsync-RMW-lwsync+sync Never 0 5

12.2.4 PPCMEM Discussion
These tools promise to be of great help to people working
on low-level parallel primitives that run on ARM and on
Power. These tools do have some intrinsic limitations:

1. These tools are research prototypes, and as such are
unsupported.

2. These tools do not constitute official statements by
IBM or ARM on their respective CPU architectures.
For example, both corporations reserve the right to
report a bug at any time against any version of any of
these tools. These tools are therefore not a substitute
for careful stress testing on real hardware. Moreover,
both the tools and the model that they are based
on are under active development and might change
at any time. On the other hand, this model was
developed in consultation with the relevant hardware
experts, so there is good reason to be confident that
it is a robust representation of the architectures.

3. These tools currently handle a subset of the instruc-
tion set. This subset has been sufficient for my pur-
poses, but your mileage may vary. In particular, the
tool handles only word-sized accesses (32 bits), and
the words accessed must be properly aligned. In ad-
dition, the tool does not handle some of the weaker
variants of the ARM memory-barrier instructions,
nor does it handle arithmetic.

4. The tools are restricted to small loop-free code frag-
ments running on small numbers of threads. Larger
examples result in state-space explosion, just as with
similar tools such as Promela and spin.

5. The full state-space search does not give any indica-
tion of how each offending state was reached. That
said, once you realize that the state is in fact reach-
able, it is usually not too hard to find that state using
the interactive tool.

6. These tools are not much good for complex data
structures, although it is possible to create and tra-
verse extremely simple linked lists using initializa-
tion statements of the form “x=y; y=z; z=42;”.

7. These tools do not handle memory mapped I/O or
device registers. Of course, handling such things
would require that they be formalized, which does
not appear to be in the offing.

8. The tools will detect only those problems for which
you code an assertion. This weakness is common to
all formal methods, and is yet another reason why
testing remains important. In the immortal words
of Donald Knuth quoted at the beginning of this
chapter, “Beware of bugs in the above code; I have
only proved it correct, not tried it.”

That said, one strength of these tools is that they are
designed to model the full range of behaviors allowed by
the architectures, including behaviors that are legal, but
which current hardware implementations do not yet inflict
on unwary software developers. Therefore, an algorithm
that is vetted by these tools likely has some additional
safety margin when running on real hardware. Further-
more, testing on real hardware can only find bugs; such
testing is inherently incapable of proving a given usage
correct. To appreciate this, consider that the researchers
routinely ran in excess of 100 billion test runs on real hard-
ware to validate their model. In one case, behavior that
is allowed by the architecture did not occur, despite 176
billion runs [AMP+11]. In contrast, the full-state-space
search allows the tool to prove code fragments correct.

It is worth repeating that formal methods and tools are
no substitute for testing. The fact is that producing large
reliable concurrent software artifacts, the Linux kernel
for example, is quite difficult. Developers must therefore
be prepared to apply every tool at their disposal towards
this goal. The tools presented in this chapter are able to
locate bugs that are quite difficult to produce (let alone
track down) via testing. On the other hand, testing can
be applied to far larger bodies of software than the tools
presented in this chapter are ever likely to handle. As
always, use the right tools for the job!

Of course, it is always best to avoid the need to work
at this level by designing your parallel code to be easily
partitioned and then using higher-level primitives (such
as locks, sequence counters, atomic operations, and RCU)
to get your job done more straightforwardly. And even if
you absolutely must use low-level memory barriers and
read-modify-write instructions to get your job done, the

228 CHAPTER 12. FORMAL VERIFICATION

Listing 12.28: IRIW Litmus Test
1 PPC IRIW.litmus
2 ""
3 (* Traditional IRIW. *)
4 {
5 0:r1=1; 0:r2=x;
6 1:r1=1; 1:r4=y;
7 2:r2=x; 2:r4=y;
8 3:r2=x; 3:r4=y;
9 }

10 P0 | P1 | P2 | P3 ;
11 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
12 | | sync | sync ;
13 | | lwz r5,0(r4) | lwz r5,0(r2) ;
14

15 exists
16 (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

more conservative your use of these sharp instruments,
the easier your life is likely to be.

12.3 Axiomatic Approaches

Theory helps us to bear our ignorance of facts.

George Santayana

Although the PPCMEM tool can solve the famous “in-
dependent reads of independent writes” (IRIW) litmus
test shown in Listing 12.28, doing so requires no less
than fourteen CPU hours and generates no less than ten
gigabytes of state space. That said, this situation is a great
improvement over that before the advent of PPCMEM,
where solving this problem required perusing volumes of
reference manuals, attempting proofs, discussing with ex-
perts, and being unsure of the final answer. Although four-
teen hours can seem like a long time, it is much shorter
than weeks or even months.

However, the time required is a bit surprising given
the simplicity of the litmus test, which has two threads
storing to two separate variables and two other threads
loading from these two variables in opposite orders. The
assertion triggers if the two loading threads disagree on
the order of the two stores. This litmus test is simple,
even by the standards of memory-order litmus tests.

One reason for the amount of time and space con-
sumed is that PPCMEM does a trace-based full-state-
space search, which means that it must generate and eval-
uate all possible orders and combinations of events at the
architectural level. At this level, both loads and stores
correspond to ornate sequences of events and actions, re-
sulting in a very large state space that must be completely
searched, in turn resulting in large memory and CPU
consumption.

Listing 12.29: Expanded IRIW Litmus Test
1 PPC IRIW5.litmus
2 ""
3 (* Traditional IRIW, but with five stores instead of *)
4 (* just one. *)
5 {
6 0:r1=1; 0:r2=x;
7 1:r1=1; 1:r4=y;
8 2:r2=x; 2:r4=y;
9 3:r2=x; 3:r4=y;

10 }
11 P0 | P1 | P2 | P3 ;
12 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
13 addi r1,r1,1 | addi r1,r1,1 | sync | sync ;
14 stw r1,0(r2) | stw r1,0(r4) | lwz r5,0(r4) | lwz r5,0(r2) ;
15 addi r1,r1,1 | addi r1,r1,1 | | ;
16 stw r1,0(r2) | stw r1,0(r4) | | ;
17 addi r1,r1,1 | addi r1,r1,1 | | ;
18 stw r1,0(r2) | stw r1,0(r4) | | ;
19 addi r1,r1,1 | addi r1,r1,1 | | ;
20 stw r1,0(r2) | stw r1,0(r4) | | ;
21

22 exists
23 (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

Of course, many of the traces are quite similar to one
another, which suggests that an approach that treated
similar traces as one might improve performace. One
such approach is the axiomatic approach of Alglave et
al. [AMT14], which creates a set of axioms to represent
the memory model and then converts litmus tests to the-
orems that might be proven or disproven over this set of
axioms. The resulting tool, called “herd”, conveniently
takes as input the same litmus tests as PPCMEM, includ-
ing the IRIW litmus test shown in Listing 12.28.

However, where PPCMEM requires 14 CPU hours
to solve IRIW, herd does so in 17 milliseconds, which
represents a speedup of more than six orders of magnitude.
That said, the problem is exponential in nature, so we
should expect herd to exhibit exponential slowdowns for
larger problems. And this is exactly what happens, for
example, if we add four more writes per writing CPU
as shown in Listing 12.29, herd slows down by a factor
of more than 50,000, requiring more than 15 minutes of
CPU time. Adding threads also results in exponential
slowdowns [MS14].

Despite their exponential nature, both PPCMEM and
herd have proven quite useful for checking key parallel
algorithms, including the queued-lock handoff on x86 sys-
tems. The weaknesses of the herd tool are similar to those
of PPCMEM, which were described in Section 12.2.4.
There are some obscure (but very real) cases for which
the PPCMEM and herd tools disagree, and as of late 2014
resolving these disagreements was ongoing.

It would be helpful if the litmus tests could be written
in C (as in Listing 12.25) rather than assembly (as in

12.3. AXIOMATIC APPROACHES 229

Listing 12.30: Locking Example
1 C Lock1
2 {
3 }
4

5 P0(int *x, spinlock_t *sp)
6 {
7 spin_lock(sp);
8 WRITE_ONCE(*x, 1);
9 WRITE_ONCE(*x, 0);

10 spin_unlock(sp);
11 }
12

13 P1(int *x, spinlock_t *sp)
14 {
15 int r1;
16

17 spin_lock(sp);
18 r1 = READ_ONCE(*x);
19 spin_unlock(sp);
20 }
21 exists (1:r1=1)

Listing 12.31: Broken Locking Example
1 C Lock2
2 {
3 }
4

5 P0(int *x, spinlock_t *sp1)
6 {
7 spin_lock(sp1);
8 WRITE_ONCE(*x, 1);
9 WRITE_ONCE(*x, 0);

10 spin_unlock(sp1);
11 }
12

13 P1(int *x, spinlock_t *sp2) // Buggy!
14 {
15 int r1;
16

17 spin_lock(sp2);
18 r1 = READ_ONCE(*x);
19 spin_unlock(sp2);
20 }
21 exists (1:r1=1)

Listing 12.24). This is now possible, as will be described
in the following sections.

12.3.1 Axiomatic Approaches and Locking
Axiomatic approaches may also be applied to higher-

level languages and also to higher-level synchronization
primitives, as exemplified by the lock-based litmus test
shown in Listing 12.30 (C-Lock1.litmus). As expected,
the herd tool’s output features the string Never, correctly
indicating that P1() cannot see x having a value of one.1

Quick Quiz 12.27: What do you have to do to run
herd on litmus tests like that shown in Listing 12.30?

1 The output of the herd tool is compatible with that of PPCMEM,
so feel free to look at Listings 12.26 and 12.27 for examples showing
the output format.

Listing 12.32: Canonical RCU Removal Litmus Test
1 C C-RCU-remove
2

3 {
4 int z=1;
5 int y=2;
6 int *x=y;
7 }
8

9 P0(int **x, int *y, int *z)
10 {
11 rcu_assign_pointer(*x, z);
12 synchronize_rcu();
13 WRITE_ONCE(*y, 0);
14 }
15

16 P1(int **x, int *y, int *z)
17 {
18 int *r1;
19 int r2;
20

21 rcu_read_lock();
22 r1 = rcu_dereference(*x);
23 r2 = READ_ONCE(*r1);
24 rcu_read_unlock();
25 }
26

27 locations [1:r1; x; y; z]
28 exists (1:r2=0)

Of course, if P0() and P1() use different locks, as
shown in Listing 12.31 (C-Lock2.litmus), then all bets
are off. And in this case, the herd tool’s output features
the string Sometimes, correctly indicating that use of
different locks allows P1() to see x having a value of
one.

12.3.2 Axiomatic Approaches and RCU
Axiomatic approaches can also analyze litmus tests

involving RCU. To that end, Listing 12.32 (C-RCU-
remove.litmus) shows a litmus test corresponding to
the canonical RCU-mediated removal from a linked list.
Line 6 shows x as the list head, initially referencing y,
which in turn is initialized to the value 2 on line 5.

P0() on lines 9–14 removes element y from the list by
replacing it with element z (line 11), waits for a grace
period (line 12), and finally zeroes y to emulate free()
(line 13). P1() on lines 16–25 executes within an RCU
read-side critical section (lines 21–24), picking up the list
head (line 22) and then loading the next element (line 23).
The next element should be non-zero, that is, not yet freed
(line 28). Several other variables are output for debugging
purposes (line 27).

The output of the herd tool when running this litmus
test features Never, indicating that P0() never accesses
a freed element, as expected. Also as expected, remov-
ing line 12 results in P0() accessing a freed element, as

230 CHAPTER 12. FORMAL VERIFICATION

Listing 12.33: Complex RCU Litmus Test
1 C C-RomanPenyaev-list-rcu-rr
2

3 {
4 int *z=1;
5 int *y=z;
6 int *x=y;
7 int *w=x;
8 int *v=w;
9 int *c=w;

10 }
11

12 P0(int **c, int **v)
13 {
14 int *r1;
15 int *r2;
16 int *r3;
17 int *r4;
18

19 rcu_read_lock();
20 r1 = READ_ONCE(*c);
21 if (r1 == 0) {
22 r1 = READ_ONCE(*v);
23 }
24 r2 = rcu_dereference(*(int **)r1);
25 smp_store_release(c, r2);
26 rcu_read_unlock();
27 rcu_read_lock();
28 r3 = READ_ONCE(*c);
29 if (r3 == 0) {
30 r3 = READ_ONCE(*v);
31 }
32 r4 = rcu_dereference(*(int **)r3);
33 smp_store_release(c, r4);
34 rcu_read_unlock();
35 }
36

37 P1(int **c, int **v, int **w, int **x, int **y)
38 {
39 int *r1;
40

41 rcu_assign_pointer(*w, y);
42 synchronize_rcu();
43 r1 = READ_ONCE(*c);
44 if ((int **)r1 == x) {
45 WRITE_ONCE(*c, 0);
46 synchronize_rcu();
47 }
48 smp_store_release(x, 0);
49 }
50

51 locations [1:r1; c; v; w; x; y]
52 exists (0:r1=0 \/ 0:r2=0 \/ 0:r3=0 \/ 0:r4=0)

indicated by the Sometimes in the herd output.
A litmus test for a more complex example proposed

by Roman Penyaev [Pen18] is shown in Listing 12.33
(C-RomanPenyaev-list-rcu-rr.litmus). In this ex-
ample, readers (modeled by P0() on lines 12–35) access a
linked list in a round-robin fashion by “leaking” a pointer
to the last list element accessed into variable c. Updaters
(modeled by P1() on lines 37–49) remove an element,
taking care to avoid disrupting current or future readers.

Quick Quiz 12.28: Wait!!! Isn’t leaking pointers out
of an RCU read-side critical section a critical bug???

Lines 4–8 define the initial linked list, tail first. In the

Linux kernel, this would be a doubly linked circular list,
but herd is currently incapable of modeling such a beast.
The strategy is instead to use a singly linked linear list
that is long enough that the end is never reached. Line 9
defines variable c, which is used to cache the list pointer
between successive RCU read-side critical sections.

Again, P0() on lines 12–35 models readers. This pro-
cess models a pair of successive readers traversing round-
robin through the list, with the first reader on lines 19–26
and the second reader on lines 27–34. Line 20 fetches the
pointer cached in c, and if line 21 sees that the pointer
was NULL, line 22 restarts at the beginning of the list. In
either case, line 24 advances to the next list element, and
line 25 stores a pointer to this element back into variable
c. Lines 27–34 repeat this process, but using registers
r3 and r4 instead of r1 and r2. As with Listing 12.32,
this litmus test stores zero to emulate free(), so line 52
checks for any of these four registers being NULL, also
known as zero.

Because P0() leaks an RCU-protected pointer from its
first RCU read-side critical section to its second, P1()
must carry out its update (removing x) very carefully.
Line 41 removes x by linking w to y. Line 42 waits for
readers, after which no subsequent reader has a path to
x via the linked list. Line 43 fetches c, and if line 44
determines that c references the newly removed x, line 45
sets c to NULL and line 46 again waits for readers, after
which no subsequent reader can fetch x from c. In either
case, line 48 emulates free() by storing zero to x.

Quick Quiz 12.29: In Listing 12.33, why couldn’t a
reader fetch c just before P1() zeroed it on line 45, and
then later store this same value back into c just after it
was zeroed, thus defeating the zeroing operation?

The output of the herd tool when running this litmus
test features Never, indicating that P0() never accesses
a freed element, as expected. Also as expected, removing
either synchronize_rcu() results in P1() accessing a
freed element, as indicated by Sometimes in the herd
output.

Quick Quiz 12.30: In Listing 12.33, why not have
just one call to synchronize_rcu() immediately before
line 48?

Quick Quiz 12.31: Also in Listing 12.33, can’t line 48
be WRITE_ONCE() instead of smp_store_release()?

These sections have shown how axiomatic approaches
can successfully model synchronization primitives such as
locking and RCU in C-language litmus tests. Longer term,
the hope is that the axiomatic approaches incorporate ax-

12.4. SAT SOLVERS 231

C Code

Logic Expression

SAT Solver

(If Counterexample
Trace Generation

Located)

Verification Result

CBMC

Figure 12.2: CBMC Processing Flow

ioms describing even higher-level software artifacts. This
could potentially allow axiomatic verification of much
larger software systems. Another alternative is to press
the axioms of boolean logic into service, as described in
the next section.

12.4 SAT Solvers

Live by the heuristic, die by the heuristic.

Unknown

Any finite program with bounded loops and recursion can
be converted into a logic expression, which might express
that program’s assertions in terms of its inputs. Given
such a logic expression, it would be quite interesting to
know whether any possible combinations of inputs could
result in one of the assertions triggering. If the inputs
are expressed as combinations of boolean variables, this
is simply SAT, also known as the satisfiability problem.
SAT solvers are heavily used in verification of hardware,
which has motivated great advances. A world-class early
1990s SAT solver might be able to handle a logic ex-
pression with 100 distinct boolean variables, but by the
early 2010s million-variable SAT solvers were readily
available [KS08].

In addition, front-end programs for SAT solvers can
automatically translate C code into logic expressions, tak-

ing assertions into account and generating assertions for
error conditions such as array-bounds errors. One exam-
ple is the C bounded model checker, or cbmc, which is
available as part of many Linux distributions. This tool
is quite easy to use, with cbmc test.c sufficing to val-
idate test.c, resulting in the processing flow shown in
Figure 12.2. This ease of use is exceedingly important be-
cause it opens the door to formal verification being incor-
porated into regression-testing frameworks. In contrast,
the traditional tools that require non-trivial translation to
a special-purpose language are confined to design-time
verification.

More recently, SAT solvers have appeared that handle
parallel code. These solvers operate by converting the
input code into single static assignment (SSA) form, then
generating all permitted access orders. This approach
seems promising, but it remains to be seen how well
it works in practice. One encouraging sign is work in
2016 applying cbmc to Linux-kernel RCU [LMKM16,
LMKM18, Roy17]. This work used minimal configura-
tions of RCU, and verified scenarios using small numbers
of threads, but nevertheless successfully ingested Linux-
kernel C code and produced a useful result. The logic ex-
pressions generated from the C code had up to 90 million
variables, 450 million clauses, occupied tens of gigabytes
of memory, and required up to 80 hours of CPU time for
the SAT solver to produce the correct result.

Nevertheless, a Linux-kernel hacker might be justified
in feeling skeptical of a claim that his or her code had been
automatically verified, and such hackers would find many
fellow skeptics going back decades [DMLP79]. One way
to productively express such skepticism is to provide bug-
injected versions of the allegedly verified code. If the
formal-verification tool finds all the injected bugs, our
hacker might gain more confidence in the tool’s capabil-
ities. Of course, tools that find valid bugs of which the
hacker was not yet aware will likely engender even more
confidence. And this is exactly why there is a git ar-
chive with a 20-branch set of mutations, with each branch
potentially containing a bug injected into Linux-kernel
RCU [McK17]. Anyone with a formal-verification tool is
cordially invited to try that tool out on this set of verifica-
tion challenges.

Currently, cbmc is able to find a number of injected
bugs, however, it has not yet been able to locate a bug
that RCU’s maintainer was not already aware of. Nev-
ertheless, there is some reason to hope that SAT solvers
will someday be useful for finding concurrency bugs in
parallel code.

232 CHAPTER 12. FORMAL VERIFICATION

C Code

Representation

(If Counterexample
Trace Generation

Located)

Verification Result

Nidhugg
LLVM Internal

Order Reduction
Dynamic Partial

(DPOR) Algorithm

Figure 12.3: Nidhugg Processing Flow

12.5 Stateless Model Checkers

He’s making a list, he’s permuting it twice. . .

with apologies to Haven Gillespie and J. Fred Coots

The SAT-solver approaches described in the previous sec-
tion are quite convenient and powerful, but the full track-
ing of all possible executions, including state, can incur
substantial overhead. In fact, the memory and CPU-time
overheads can sharply limit the size of programs that can
be feasibly verified, which raises the question of whether
less-exact approaches might find bugs in larger programs.

Although the jury is still out on this question, stateless
model checkers such as Nidhugg [LSLK14] have in some
cases handled larger programs [KS17b], and with similar
ease of use, as illustrated by Figure 12.3. In addition,
Nidhugg was more than an order of magnitude faster
than was cbmc for some Linux-kernel RCU verification
scenarios. Of course, Nidhugg’s speed and scalability
advantages are tied to the fact that it does not handle
data non-determinism, but this was not a factor in these
particular verification scenarios.

Nevertheless, as with cbmc, Nidhugg has not yet been
able to locate a bug that Linux-kernel RCU’s maintainer
was not already aware of. However, it was able to demon-
strate that one historical bug in Linux-kernel RCU was
fixed by a different commit than the maintainer thought,

which gives some additional hope that stateless model
checkers like Nidhugg might someday be useful for find-
ing concurrency bugs in parallel code.

12.6 Summary

Western thought has focused on True-False; it is high
time to shift to Robust-Fragile.

summarized from Nassim Nicholas Taleb

The formal-verification techniques described in this chap-
ter are very powerful tools for validating small parallel
algorithms, but they should not be the only tools in your
toolbox. Despite decades of focus on formal verification,
testing remains the validation workhorse for large parallel
software systems [Cor06a, Jon11, McK15b].

It is nevertheless quite possible that this will not always
be the case. To see this, consider that there is estimated to
be more than twenty billion instances of the Linux kernel
as of 2017. Suppose that the Linux kernel has a bug that
manifests on average every million years of runtime. As
noted at the end of the preceding chapter, this bug will be
appearing more than 50 times per day across the installed
base. But the fact remains that most formal validation
techniques can be used only on very small code bases. So
what is a concurrency coder to do?

One approach is to think in terms of finding the first
bug, the first relevant bug, the last relevant bug, and the
last bug.

The first bug is normally found via inspection or com-
piler diagnostics. Although the increasingly sophisticated
diagnostics provided by modern compilers might be con-
sidered to be a lightweight sort of formal verification, it
is not common to think of them in those terms. This is
in part due to an odd practitioner prejudice which says
“If I am using it, it cannot be formal verification” on the
one hand, and the large difference in sophistication be-
tween compiler diagnostics and verification research on
the other.

Although the first relevant bug might be located via
inspection or compiler diagnostics, it is not unusual for
these two steps to find only typos and false positives.
Either way, the bulk of the relevant bugs, that is, those
bugs that might actually be encountered in production,
will often be found via testing.

When testing is driven by anticipated or real use cases,
it is not uncommon for the last relevant bug to be located

12.6. SUMMARY 233

by testing. This situation might motivate a complete rejec-
tion of formal verification, however, irrelevant bugs have
an annoying habit of suddenly becoming relevant at the
least convenient moment possible, courtesy of black-hat
attacks. For security-critical software, which appears to
be a continually increasing fraction of the total, there can
thus be strong motivation to find and fix the last bug. Test-
ing is demonstrably unable to find the last bug, so there
is a possible role for formal verification. That is, there
is such a role if and only if formal verification proves
capable of growing into it. As this chapter has shown,
current formal verification systems are extremely limited.

Quick Quiz 12.32: But shouldn’t sufficiently low-level
software be for all intents and purposes immune to being
exploited by black hats?

Another approach is to consider that formal verification
is often much harder to use than is testing. This is of
course in part a cultural statement, and there is every
reason to hope that formal verification will be perceived
to be easier as more people become familiar with it. That
said, very simple test harnesses can find significant bugs
in arbitrarily large software systems. In contrast, the effort
required to apply formal verification seems to increase
dramatically as the system size increases.

I have nevertheless made occasional use of formal veri-
fication for more than 20 years, playing to formal verifica-
tion’s strengths, namely design-time verification of small
complex portions of the overarching software construct.
The larger overarching software construct is of course
validated by testing.

Quick Quiz 12.33: In light of the full verification of
the L4 microkernel, isn’t this limited view of formal veri-
fication just a little bit obsolete?

One final approach is to consider the following two
definitions and the consequence that they imply:

Definition: Bug-free programs are trivial programs.

Definition: Reliable programs have no known bugs.

Consequence: Any non-trivial reliable program con-
tains at least one as-yet-unknown bug.

From this viewpoint, any advances in validation and
verification can have but two effects: (1) An increase in
the number of trivial programs or (2) A decrease in the
number of reliable programs. Of course, the human race’s
increasing reliance on multicore systems and software
provides extreme motivation for a very sharp increase in
the number of trivial programs!

However, if your code is so complex that you find your-
self relying too heavily on formal-verification tools, you

should carefully rethink your design, especially if your
formal-verification tools require your code to be hand-
translated to a special-purpose language. For example, a
complex implementation of the dynticks interface for pre-
emptible RCU that was presented in Section 12.1.5 turned
out to have a much simpler alternative implementation,
as discussed in Section 12.1.6.9. All else being equal, a
simpler implementation is much better than a proof of
correctness for a complex implementation!

And the open challenge to those working on formal ver-
ification techniques and systems is to prove this summary
wrong! To assist in this task, Verification Challenge 6 is
now available [McK17]. Have at it!!!

234 CHAPTER 12. FORMAL VERIFICATION

You don’t learn how to shoot and then learn how to
launch and then learn to do a controlled spin—you
learn to launch-shoot-spin.

“Ender’s Shadow”, Orson Scott CardChapter 13

Putting It All Together

This chapter gives a few hints on handling some
concurrent-programming puzzles, starting with counter
conundrums in Section 13.1, continuing with some RCU
rescues in Section 13.3, and finishing off with some hash-
ing hassles in Section 13.4.

13.1 Counter Conundrums
This section outlines possible solutions to some counter
conundrums.

13.1.1 Counting Updates
Suppose that Schrödinger (see Section 10.1) wants to
count the number of updates for each animal, and that
these updates are synchronized using a per-data-element
lock. How can this counting best be done?

Of course, any number of counting algorithms from
Chapter 5 might be considered, but the optimal approach
is much simpler in this case. Just place a counter in each
data element, and increment it under the protection of that
element’s lock!

13.1.2 Counting Lookups
Suppose that Schrödinger also wants to count the number
of lookups for each animal, where lookups are protected
by RCU. How can this counting best be done?

One approach would be to protect a lookup counter
with the per-element lock, as discussed in Section 13.1.1.
Unfortunately, this would require all lookups to acquire
this lock, which would be a severe bottleneck on large
systems.

Another approach is to “just say no” to counting, fol-
lowing the example of the noatime mount option. If
this approach is feasible, it is clearly the best: After all,

nothing is faster than doing nothing. If the lookup count
cannot be dispensed with, read on!

Any of the counters from Chapter 5 could be pressed
into service, with the statistical counters described in Sec-
tion 5.2 being perhaps the most common choice. However,
this results in a large memory footprint: The number of
counters required is the number of data elements multi-
plied by the number of threads.

If this memory overhead is excessive, then one ap-
proach is to keep per-socket counters rather than per-CPU
counters, with an eye to the hash-table performance re-
sults depicted in Figure 10.3. This will require that the
counter increments be atomic operations, especially for
user-mode execution where a given thread could migrate
to another CPU at any time.

If some elements are looked up very frequently, there
are a number of approaches that batch updates by main-
taining a per-thread log, where multiple log entries for a
given element can be merged. After a given log entry has
a sufficiently large increment or after sufficient time has
passed, the log entries may be applied to the correspond-
ing data elements. Silas Boyd-Wickizer has done some
work formalizing this notion [BW14].

13.2 Refurbish Reference Counting

Although reference counting is a conceptually simple
technique, many devils hide in the details when it is ap-
plied to concurrent software. After all, if the object was
not subject to premature disposal, there would be no need
for the reference counter in the first place. But if the ob-
ject can be disposed of, what prevents disposal during the
reference-acquisition process itself?

There are a number of ways to refurbish reference
counters for use in concurrent software, including:

235

236 CHAPTER 13. PUTTING IT ALL TOGETHER

Table 13.1: Reference Counting and Synchronization
Mechanisms

Release Synchronization

Acquisition
Synchronization Locking

Reference
Counting RCU

Locking − CAM CA
Reference
Counting A AM A

RCU CA MCA CA

1. A lock residing outside of the object must be held
while manipulating the reference count.

2. The object is created with a non-zero reference count,
and new references may be acquired only when the
current value of the reference counter is non-zero. If
a thread does not have a reference to a given object,
it may obtain one with the help of another thread that
already has a reference.

3. An existence guarantee is provided for the object,
preventing it from being freed while some other
entity might be attempting to acquire a reference.
Existence guarantees are often provided by auto-
matic garbage collectors, and, as will be seen in
Section 9.5, by RCU.

4. A type-safety guarantee is provided for the object.
An additional identity check must be performed once
the reference is acquired. Type-safety guarantees
can be provided by special-purpose memory alloca-
tors, for example, by the SLAB_DESTROY_BY_RCU
feature within the Linux kernel, as will be seen in
Section 9.5.

Of course, any mechanism that provides existence guar-
antees by definition also provides type-safety guarantees.
This section will therefore group the last two answers to-
gether under the rubric of RCU, leaving us with three gen-
eral categories of reference-acquisition protection: Refer-
ence counting, sequence locking, and RCU.

Quick Quiz 13.1: Why not implement reference-
acquisition using a simple compare-and-swap operation
that only acquires a reference if the reference counter is
non-zero?

Given that the key reference-counting issue is synchro-
nization between acquisition of a reference and freeing
of the object, we have nine possible combinations of

mechanisms, as shown in Table 13.1. This table divides
reference-counting mechanisms into the following broad
categories:

1. Simple counting with neither atomic operations,
memory barriers, nor alignment constraints (“−”).

2. Atomic counting without memory barriers (“A”).

3. Atomic counting, with memory barriers required
only on release (“AM”).

4. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers required only on release (“CAM”).

5. Atomic counting with a check combined with the
atomic acquisition operation (“CA”).

6. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers also required on acquisition (“MCA”).

However, because all Linux-kernel atomic operations that
return a value are defined to contain memory barriers,1

all release operations contain memory barriers, and all
checked acquisition operations also contain memory bar-
riers. Therefore, cases “CA” and “MCA” are equivalent
to “CAM”, so that there are sections below for only the
first four cases: “−”, “A”, “AM”, and “CAM”. The Linux
primitives that support reference counting are presented in
Section 13.2.2. Later sections cite optimizations that can
improve performance if reference acquisition and release
is very frequent, and the reference count need be checked
for zero only very rarely.

13.2.1 Implementation of Reference-
Counting Categories

Simple counting protected by locking (“−”) is described
in Section 13.2.1.1, atomic counting with no memory
barriers (“A”) is described in Section 13.2.1.2, atomic
counting with acquisition memory barrier (“AM”) is de-
scribed in Section 13.2.1.3, and atomic counting with
check and release memory barrier (“CAM”) is described
in Section 13.2.1.4.

1 With atomic_read() and ATOMIC_INIT() being the excep-
tions that prove the rule.

13.2. REFURBISH REFERENCE COUNTING 237

Listing 13.1: Simple Reference-Count API
1 struct sref {
2 int refcount;
3 };
4
5 void sref_init(struct sref *sref)
6 {
7 sref->refcount = 1;
8 }
9

10 void sref_get(struct sref *sref)
11 {
12 sref->refcount++;
13 }
14
15 int sref_put(struct sref *sref,
16 void (*release)(struct sref *sref))
17 {
18 WARN_ON(release == NULL);
19 WARN_ON(release == (void (*)(struct sref *))kfree);
20
21 if (--sref->refcount == 0) {
22 release(sref);
23 return 1;
24 }
25 return 0;
26 }

13.2.1.1 Simple Counting

Simple counting, with neither atomic operations nor mem-
ory barriers, can be used when the reference-counter ac-
quisition and release are both protected by the same lock.
In this case, it should be clear that the reference count
itself may be manipulated non-atomically, because the
lock provides any necessary exclusion, memory barriers,
atomic instructions, and disabling of compiler optimiza-
tions. This is the method of choice when the lock is
required to protect other operations in addition to the ref-
erence count, but where a reference to the object must be
held after the lock is released. Listing 13.1 shows a simple
API that might be used to implement simple non-atomic
reference counting—although simple reference counting
is almost always open-coded instead.

13.2.1.2 Atomic Counting

Simple atomic counting may be used in cases where any
CPU acquiring a reference must already hold a reference.
This style is used when a single CPU creates an object
for its own private use, but must allow other CPU, tasks,
timer handlers, or I/O completion handlers that it later
spawns to also access this object. Any CPU that hands
the object off must first acquire a new reference on behalf
of the recipient object. In the Linux kernel, the kref
primitives are used to implement this style of reference
counting, as shown in Listing 13.2.

Atomic counting is required because locking is not used

Listing 13.2: Linux Kernel kref API
1 struct kref {
2 atomic_t refcount;
3 };
4
5 void kref_init(struct kref *kref)
6 {
7 atomic_set(&kref->refcount, 1);
8 }
9

10 void kref_get(struct kref *kref)
11 {
12 WARN_ON(!atomic_read(&kref->refcount));
13 atomic_inc(&kref->refcount);
14 }
15
16 static inline int
17 kref_sub(struct kref *kref, unsigned int count,
18 void (*release)(struct kref *kref))
19 {
20 WARN_ON(release == NULL);
21
22 if (atomic_sub_and_test((int) count,
23 &kref->refcount)) {
24 release(kref);
25 return 1;
26 }
27 return 0;
28 }

to protect all reference-count operations, which means
that it is possible for two different CPUs to concurrently
manipulate the reference count. If normal increment and
decrement were used, a pair of CPUs might both fetch
the reference count concurrently, perhaps both obtaining
the value “3”. If both of them increment their value,
they will both obtain “4”, and both will store this value
back into the counter. Since the new value of the counter
should instead be “5”, one of the two increments has been
lost. Therefore, atomic operations must be used both for
counter increments and for counter decrements.

If releases are guarded by locking or RCU, memory
barriers are not required, but for different reasons. In the
case of locking, the locks provide any needed memory
barriers (and disabling of compiler optimizations), and
the locks also prevent a pair of releases from running con-
currently. In the case of RCU, cleanup must be deferred
until all currently executing RCU read-side critical sec-
tions have completed, and any needed memory barriers or
disabling of compiler optimizations will be provided by
the RCU infrastructure. Therefore, if two CPUs release
the final two references concurrently, the actual cleanup
will be deferred until both CPUs exit their RCU read-side
critical sections.

Quick Quiz 13.2: Why isn’t it necessary to guard
against cases where one CPU acquires a reference just
after another CPU releases the last reference?

The kref structure itself, consisting of a single atomic

238 CHAPTER 13. PUTTING IT ALL TOGETHER

data item, is shown in lines 1-3 of Listing 13.2. The
kref_init() function on lines 5-8 initializes the counter
to the value “1”. Note that the atomic_set() primitive
is a simple assignment, the name stems from the data type
of atomic_t rather than from the operation. The kref_
init() function must be invoked during object creation,
before the object has been made available to any other
CPU.

The kref_get() function on lines 10-14 uncondition-
ally atomically increments the counter. The atomic_
inc() primitive does not necessarily explicitly disable
compiler optimizations on all platforms, but the fact that
the kref primitives are in a separate module and that the
Linux kernel build process does no cross-module opti-
mizations has the same effect.

The kref_sub() function on lines 16-28 atomically
decrements the counter, and if the result is zero, line 24
invokes the specified release() function and line 25
returns, informing the caller that release() was in-
voked. Otherwise, kref_sub() returns zero, informing
the caller that release() was not called.

Quick Quiz 13.3: Suppose that just after the atomic_
sub_and_test() on line 22 of Listing 13.2 is invoked,
that some other CPU invokes kref_get(). Doesn’t this
result in that other CPU now having an illegal reference
to a released object?

Quick Quiz 13.4: Suppose that kref_sub() returns
zero, indicating that the release() function was not
invoked. Under what conditions can the caller rely on the
continued existence of the enclosing object?

Quick Quiz 13.5: Why not just pass kfree() as the
release function?

13.2.1.3 Atomic Counting With Release Memory
Barrier

This style of reference is used in the Linux kernel’s net-
working layer to track the destination caches that are
used in packet routing. The actual implementation is
quite a bit more involved; this section focuses on the as-
pects of struct dst_entry reference-count handling
that matches this use case, shown in Listing 13.3.

The dst_clone() primitive may be used if the caller
already has a reference to the specified dst_entry, in
which case it obtains another reference that may be
handed off to some other entity within the kernel. Because
a reference is already held by the caller, dst_clone()
need not execute any memory barriers. The act of handing
the dst_entry to some other entity might or might not
require a memory barrier, but if such a memory barrier is

Listing 13.3: Linux Kernel dst_clone API
1 static inline
2 struct dst_entry * dst_clone(struct dst_entry * dst)
3 {
4 if (dst)
5 atomic_inc(&dst->__refcnt);
6 return dst;
7 }
8
9 static inline

10 void dst_release(struct dst_entry * dst)
11 {
12 if (dst) {
13 WARN_ON(atomic_read(&dst->__refcnt) < 1);
14 smp_mb__before_atomic_dec();
15 atomic_dec(&dst->__refcnt);
16 }
17 }

required, it will be embedded in the mechanism used to
hand the dst_entry off.

The dst_release() primitive may be invoked from
any environment, and the caller might well reference ele-
ments of the dst_entry structure immediately prior to
the call to dst_release(). The dst_release() primi-
tive therefore contains a memory barrier on line 14 pre-
venting both the compiler and the CPU from misordering
accesses.

Please note that the programmer making use of dst_
clone() and dst_release() need not be aware of the
memory barriers, only of the rules for using these two
primitives.

13.2.1.4 Atomic Counting With Check and Release
Memory Barrier

Consider a situation where the caller must be able to
acquire a new reference to an object to which it does
not already hold a reference. The fact that initial
reference-count acquisition can now run concurrently
with reference-count release adds further complications.
Suppose that a reference-count release finds that the new
value of the reference count is zero, signalling that it is
now safe to clean up the reference-counted object. We
clearly cannot allow a reference-count acquisition to start
after such clean-up has commenced, so the acquisition
must include a check for a zero reference count. This
check must be part of the atomic increment operation, as
shown below.

Quick Quiz 13.6: Why can’t the check for a zero
reference count be made in a simple “if” statement with
an atomic increment in its “then” clause?

The Linux kernel’s fget() and fput() primitives use
this style of reference counting. Simplified versions of

13.2. REFURBISH REFERENCE COUNTING 239

Listing 13.4: Linux Kernel fget/fput API
1 struct file *fget(unsigned int fd)
2 {
3 struct file *file;
4 struct files_struct *files = current->files;
5
6 rcu_read_lock();
7 file = fcheck_files(files, fd);
8 if (file) {
9 if (!atomic_inc_not_zero(&file->f_count)) {

10 rcu_read_unlock();
11 return NULL;
12 }
13 }
14 rcu_read_unlock();
15 return file;
16 }
17
18 struct file *
19 fcheck_files(struct files_struct *files, unsigned int fd)
20 {
21 struct file * file = NULL;
22 struct fdtable *fdt = rcu_dereference((files)->fdt);
23
24 if (fd < fdt->max_fds)
25 file = rcu_dereference(fdt->fd[fd]);
26 return file;
27 }
28
29 void fput(struct file *file)
30 {
31 if (atomic_dec_and_test(&file->f_count))
32 call_rcu(&file->f_u.fu_rcuhead, file_free_rcu);
33 }
34
35 static void file_free_rcu(struct rcu_head *head)
36 {
37 struct file *f;
38
39 f = container_of(head, struct file, f_u.fu_rcuhead);
40 kmem_cache_free(filp_cachep, f);
41 }

these functions are shown in Listing 13.4.
Line 4 of fget() fetches the pointer to the current pro-

cess’s file-descriptor table, which might well be shared
with other processes. Line 6 invokes rcu_read_lock(),
which enters an RCU read-side critical section. The
callback function from any subsequent call_rcu()
primitive will be deferred until a matching rcu_read_
unlock() is reached (line 10 or 14 in this example).
Line 7 looks up the file structure corresponding to the
file descriptor specified by the fd argument, as will be de-
scribed later. If there is an open file corresponding to the
specified file descriptor, then line 9 attempts to atomically
acquire a reference count. If it fails to do so, lines 10-11
exit the RCU read-side critical section and report failure.
Otherwise, if the attempt is successful, lines 14-15 exit
the read-side critical section and return a pointer to the
file structure.

The fcheck_files() primitive is a helper function
for fget(). It uses the rcu_dereference() primitive
to safely fetch an RCU-protected pointer for later deref-
erencing (this emits a memory barrier on CPUs such as

DEC Alpha in which data dependencies do not enforce
memory ordering). Line 22 uses rcu_dereference()
to fetch a pointer to this task’s current file-descriptor table,
and line 24 checks to see if the specified file descriptor
is in range. If so, line 25 fetches the pointer to the file
structure, again using the rcu_dereference() primi-
tive. Line 26 then returns a pointer to the file structure or
NULL in case of failure.

The fput() primitive releases a reference to a file
structure. Line 31 atomically decrements the refer-
ence count, and, if the result was zero, line 32 invokes
the call_rcu() primitives in order to free up the file
structure (via the file_free_rcu() function specified
in call_rcu()’s second argument), but only after all
currently-executing RCU read-side critical sections com-
plete. The time period required for all currently-executing
RCU read-side critical sections to complete is termed a
“grace period”. Note that the atomic_dec_and_test()
primitive contains a memory barrier. This memory barrier
is not necessary in this example, since the structure can-
not be destroyed until the RCU read-side critical section
completes, but in Linux, all atomic operations that return
a result must by definition contain memory barriers.

Once the grace period completes, the file_free_
rcu() function obtains a pointer to the file structure on
line 39, and frees it on line 40.

This approach is also used by Linux’s virtual-
memory system, see get_page_unless_zero() and
put_page_testzero() for page structures as well as
try_to_unuse() and mmput() for memory-map struc-
tures.

13.2.2 Linux Primitives Supporting Refer-
ence Counting

The Linux-kernel primitives used in the above examples
are summarized in the following list.

atomic_t
Type definition for 32-bit quantity to be manipulated
atomically.

void atomic_dec(atomic_t *var);
Atomically decrements the referenced variable with-
out necessarily issuing a memory barrier or disabling
compiler optimizations.

int atomic_dec_and_test(atomic_t *var);
Atomically decrements the referenced variable, re-
turning true (non-zero) if the result is zero. Issues

240 CHAPTER 13. PUTTING IT ALL TOGETHER

a memory barrier and disables compiler optimiza-
tions that might otherwise move memory references
across this primitive.

void atomic_inc(atomic_t *var);
Atomically increments the referenced variable with-
out necessarily issuing a memory barrier or disabling
compiler optimizations.

int atomic_inc_not_zero(atomic_t *var);
Atomically increments the referenced variable, but
only if the value is non-zero, and returning true
(non-zero) if the increment occurred. Issues a mem-
ory barrier and disables compiler optimizations that
might otherwise move memory references across
this primitive.

int atomic_read(atomic_t *var);
Returns the integer value of the referenced variable.
This need not be an atomic operation, and it need
not issue any memory-barrier instructions. Instead
of thinking of as “an atomic read”, think of it as “a
normal read from an atomic variable”.

void atomic_set(atomic_t *var, int val);
Sets the value of the referenced atomic variable to
“val”. This need not be an atomic operation, and it
is not required to either issue memory barriers or
disable compiler optimizations. Instead of thinking
of as “an atomic set”, think of it as “a normal set of
an atomic variable”.

void call_rcu(struct rcu_head *head, void
(*func)(struct rcu_head *head));
Invokes func(head) some time after all currently
executing RCU read-side critical sections com-
plete, however, the call_rcu() primitive returns
immediately. Note that head is normally a field
within an RCU-protected data structure, and that
func is normally a function that frees up this data
structure. The time interval between the invocation
of call_rcu() and the invocation of func is
termed a “grace period”. Any interval of time
containing a grace period is itself a grace period.

type *container_of(p, type, f);
Given a pointer p to a field f within a structure of
the specified type, return a pointer to the structure.

void rcu_read_lock(void);
Marks the beginning of an RCU read-side critical
section.

void rcu_read_unlock(void);
Marks the end of an RCU read-side critical section.
RCU read-side critical sections may be nested.

void smp_mb__before_atomic_dec(void);
Issues a memory barrier and disables code-motion
compiler optimizations only if the platform’s
atomic_dec() primitive does not already do so.

struct rcu_head
A data structure used by the RCU infrastructure to
track objects awaiting a grace period. This is nor-
mally included as a field within an RCU-protected
data structure.

Quick Quiz 13.7: An atomic_read() and an
atomic_set() that are non-atomic? Is this some kind of
bad joke???

13.2.3 Counter Optimizations
In some cases where increments and decrements are com-
mon, but checks for zero are rare, it makes sense to main-
tain per-CPU or per-task counters, as was discussed in
Chapter 5. See the paper on sleepable read-copy up-
date (SRCU) for an example of this technique applied to
RCU [McK06]. This approach eliminates the need for
atomic instructions or memory barriers on the increment
and decrement primitives, but still requires that code-
motion compiler optimizations be disabled. In addition,
the primitives such as synchronize_srcu() that check
for the aggregate reference count reaching zero can be
quite slow. This underscores the fact that these tech-
niques are designed for situations where the references
are frequently acquired and released, but where it is rarely
necessary to check for a zero reference count.

However, it is usually the case that use of reference
counts requires writing (often atomically) to a data struc-
ture that is otherwise read only. In this case, reference
counts are imposing expensive cache misses on readers.

It is therefore worthwhile to look into synchronization
mechanisms that do not require readers to write to the data
structure being traversed. One possibility is the hazard
pointers covered in Section 9.3 and another is RCU, which
is covered in Section 9.5.

13.3 RCU Rescues
This section shows how to apply RCU to some examples
discussed earlier in this book. In some cases, RCU pro-

13.3. RCU RESCUES 241

vides simpler code, in other cases better performance and
scalability, and in still other cases, both.

13.3.1 RCU and Per-Thread-Variable-
Based Statistical Counters

Section 5.2.4 described an implementation of statistical
counters that provided excellent performance, roughly
that of simple increment (as in the C ++ operator), and
linear scalability—but only for incrementing via inc_
count(). Unfortunately, threads needing to read out
the value via read_count() were required to acquire a
global lock, and thus incurred high overhead and suffered
poor scalability. The code for the lock-based implementa-
tion is shown in Listing 5.5 on Page 50.

Quick Quiz 13.8: Why on earth did we need that
global lock in the first place?

13.3.1.1 Design

The hope is to use RCU rather than final_mutex to
protect the thread traversal in read_count() in order to
obtain excellent performance and scalability from read_
count(), rather than just from inc_count(). However,
we do not want to give up any accuracy in the computed
sum. In particular, when a given thread exits, we abso-
lutely cannot lose the exiting thread’s count, nor can we
double-count it. Such an error could result in inaccuracies
equal to the full precision of the result, in other words,
such an error would make the result completely useless.
And in fact, one of the purposes of final_mutex is to
ensure that threads do not come and go in the middle of
read_count() execution.

Quick Quiz 13.9: Just what is the accuracy of read_
count(), anyway?

Therefore, if we are to dispense with final_mutex,
we will need to come up with some other method for
ensuring consistency. One approach is to place the total
count for all previously exited threads and the array of
pointers to the per-thread counters into a single structure.
Such a structure, once made available to read_count(),
is held constant, ensuring that read_count() sees con-
sistent data.

13.3.1.2 Implementation

Lines 1-4 of Listing 13.5 show the countarray struc-
ture, which contains a ->total field for the count from
previously exited threads, and a counterp[] array of

Listing 13.5: RCU and Per-Thread Statistical Counters
1 struct countarray {
2 unsigned long total;
3 unsigned long *counterp[NR_THREADS];
4 };
5
6 long __thread counter = 0;
7 struct countarray *countarrayp = NULL;
8 DEFINE_SPINLOCK(final_mutex);
9

10 void inc_count(void)
11 {
12 counter++;
13 }
14
15 long read_count(void)
16 {
17 struct countarray *cap;
18 unsigned long sum;
19 int t;
20
21 rcu_read_lock();
22 cap = rcu_dereference(countarrayp);
23 sum = cap->total;
24 for_each_thread(t)
25 if (cap->counterp[t] != NULL)
26 sum += *cap->counterp[t];
27 rcu_read_unlock();
28 return sum;
29 }
30
31 void count_init(void)
32 {
33 countarrayp = malloc(sizeof(*countarrayp));
34 if (countarrayp == NULL) {
35 fprintf(stderr, "Out of memory\n");
36 exit(-1);
37 }
38 memset(countarrayp, ’\0’, sizeof(*countarrayp));
39 }
40
41 void count_register_thread(void)
42 {
43 int idx = smp_thread_id();
44
45 spin_lock(&final_mutex);
46 countarrayp->counterp[idx] = &counter;
47 spin_unlock(&final_mutex);
48 }
49
50 void count_unregister_thread(int nthreadsexpected)
51 {
52 struct countarray *cap;
53 struct countarray *capold;
54 int idx = smp_thread_id();
55
56 cap = malloc(sizeof(*countarrayp));
57 if (cap == NULL) {
58 fprintf(stderr, "Out of memory\n");
59 exit(-1);
60 }
61 spin_lock(&final_mutex);
62 *cap = *countarrayp;
63 cap->total += counter;
64 cap->counterp[idx] = NULL;
65 capold = countarrayp;
66 rcu_assign_pointer(countarrayp, cap);
67 spin_unlock(&final_mutex);
68 synchronize_rcu();
69 free(capold);
70 }

242 CHAPTER 13. PUTTING IT ALL TOGETHER

pointers to the per-thread counter for each currently run-
ning thread. This structure allows a given execution of
read_count() to see a total that is consistent with the
indicated set of running threads.

Lines 6-8 contain the definition of the per-thread
counter variable, the global pointer countarrayp ref-
erencing the current countarray structure, and the
final_mutex spinlock.

Lines 10-13 show inc_count(), which is unchanged
from Listing 5.5.

Lines 15-29 show read_count(), which has changed
significantly. Lines 21 and 27 substitute rcu_
read_lock() and rcu_read_unlock() for acquisi-
tion and release of final_mutex. Line 22 uses rcu_
dereference() to snapshot the current countarray
structure into local variable cap. Proper use of RCU
will guarantee that this countarray structure will re-
main with us through at least the end of the current RCU
read-side critical section at line 27. Line 23 initializes
sum to cap->total, which is the sum of the counts of
threads that have previously exited. Lines 24-26 add up
the per-thread counters corresponding to currently run-
ning threads, and, finally, line 28 returns the sum.

The initial value for countarrayp is provided by
count_init() on lines 31-39. This function runs before
the first thread is created, and its job is to allocate and zero
the initial structure, and then assign it to countarrayp.

Lines 41-48 show the count_register_thread()
function, which is invoked by each newly created thread.
Line 43 picks up the current thread’s index, line 45 ac-
quires final_mutex, line 46 installs a pointer to this
thread’s counter, and line 47 releases final_mutex.

Quick Quiz 13.10: Hey!!! Line 46 of Listing 13.5
modifies a value in a pre-existing countarray structure!
Didn’t you say that this structure, once made available to
read_count(), remained constant???

Lines 50-70 shows count_unregister_thread(),
which is invoked by each thread just before it exits.
Lines 56-60 allocate a new countarray structure, line 61
acquires final_mutex and line 67 releases it. Line 62
copies the contents of the current countarray into the
newly allocated version, line 63 adds the exiting thread’s
counter to new structure’s ->total, and line 64 NULLs
the exiting thread’s counterp[] array element. Line 65
then retains a pointer to the current (soon to be old)
countarray structure, and line 66 uses rcu_assign_
pointer() to install the new version of the countarray
structure. Line 68 waits for a grace period to elapse, so
that any threads that might be concurrently executing in

read_count(), and thus might have references to the old
countarray structure, will be allowed to exit their RCU
read-side critical sections, thus dropping any such refer-
ences. Line 69 can then safely free the old countarray
structure.

13.3.1.3 Discussion

Quick Quiz 13.11: Wow! Listing 13.5 contains 69 lines
of code, compared to only 42 in Listing 5.5. Is this extra
complexity really worth it?

Use of RCU enables exiting threads to wait until
other threads are guaranteed to be done using the exit-
ing threads’ __thread variables. This allows the read_
count() function to dispense with locking, thereby pro-
viding excellent performance and scalability for both
the inc_count() and read_count() functions. How-
ever, this performance and scalability come at the cost of
some increase in code complexity. It is hoped that com-
piler and library writers employ user-level RCU [Des09b]
to provide safe cross-thread access to __thread vari-
ables, greatly reducing the complexity seen by users of
__thread variables.

13.3.2 RCU and Counters for Removable
I/O Devices

Section 5.5 showed a fanciful pair of code fragments for
dealing with counting I/O accesses to removable devices.
These code fragments suffered from high overhead on
the fastpath (starting an I/O) due to the need to acquire a
reader-writer lock.

This section shows how RCU may be used to avoid this
overhead.

The code for performing an I/O is quite similar to the
original, with an RCU read-side critical section being
substituted for the reader-writer lock read-side critical
section in the original:

1 rcu_read_lock();
2 if (removing) {
3 rcu_read_unlock();
4 cancel_io();
5 } else {
6 add_count(1);
7 rcu_read_unlock();
8 do_io();
9 sub_count(1);

10 }

13.3. RCU RESCUES 243

Listing 13.6: RCU-Protected Variable-Length Array
1 struct foo {
2 int length;
3 char *a;
4 };

The RCU read-side primitives have minimal overhead,
thus speeding up the fastpath, as desired.

The updated code fragment removing a device is as
follows:

1 spin_lock(&mylock);
2 removing = 1;
3 sub_count(mybias);
4 spin_unlock(&mylock);
5 synchronize_rcu();
6 while (read_count() != 0) {
7 poll(NULL, 0, 1);
8 }
9 remove_device();

Here we replace the reader-writer lock with an exclu-
sive spinlock and add a synchronize_rcu() to wait for
all of the RCU read-side critical sections to complete. Be-
cause of the synchronize_rcu(), once we reach line 6,
we know that all remaining I/Os have been accounted for.

Of course, the overhead of synchronize_rcu() can
be large, but given that device removal is quite rare, this
is usually a good tradeoff.

13.3.3 Array and Length

Suppose we have an RCU-protected variable-length array,
as shown in Listing 13.6. The length of the array ->a[]
can change dynamically, and at any given time, its length
is given by the field ->length. Of course, this introduces
the following race condition:

1. The array is initially 16 characters long, and thus
->length is equal to 16.

2. CPU 0 loads the value of ->length, obtaining the
value 16.

3. CPU 1 shrinks the array to be of length 8, and assigns
a pointer to a new 8-character block of memory into
->a[].

4. CPU 0 picks up the new pointer from ->a[], and
stores a new value into element 12. Because the
array has only 8 characters, this results in a SEGV
or (worse yet) memory corruption.

Listing 13.7: Improved RCU-Protected Variable-Length Array
1 struct foo_a {
2 int length;
3 char a[0];
4 };
5
6 struct foo {
7 struct foo_a *fa;
8 };

How can we prevent this?
One approach is to make careful use of memory bar-

riers, which are covered in Chapter 15. This works, but
incurs read-side overhead and, perhaps worse, requires
use of explicit memory barriers.

A better approach is to put the value and the array into
the same structure, as shown in Listing 13.7. Allocating a
new array (foo_a structure) then automatically provides
a new place for the array length. This means that if any
CPU picks up a reference to ->fa, it is guaranteed that
the ->length will match the ->a[] length [ACMS03].

1. The array is initially 16 characters long, and thus
->length is equal to 16.

2. CPU 0 loads the value of ->fa, obtaining a pointer to
the structure containing the value 16 and the 16-byte
array.

3. CPU 0 loads the value of ->fa->length, obtaining
the value 16.

4. CPU 1 shrinks the array to be of length 8, and assigns
a pointer to a new foo_a structure containing an 8-
character block of memory into ->fa.

5. CPU 0 picks up the new pointer from ->a[], and
stores a new value into element 12. But because
CPU 0 is still referencing the old foo_a structure
that contains the 16-byte array, all is well.

Of course, in both cases, CPU 1 must wait for a grace
period before freeing the old array.

A more general version of this approach is presented
in the next section.

13.3.4 Correlated Fields
Suppose that each of Schödinger’s animals is represented
by the data element shown in Listing 13.8. The meas_1,
meas_2, and meas_3 fields are a set of correlated mea-
surements that are updated periodically. It is critically
important that readers see these three values from a sin-
gle measurement update: If a reader sees an old value

244 CHAPTER 13. PUTTING IT ALL TOGETHER

Listing 13.8: Uncorrelated Measurement Fields
1 struct animal {
2 char name[40];
3 double age;
4 double meas_1;
5 double meas_2;
6 double meas_3;
7 char photo[0]; /* large bitmap. */
8 };

Listing 13.9: Correlated Measurement Fields
1 struct measurement {
2 double meas_1;
3 double meas_2;
4 double meas_3;
5 };
6
7 struct animal {
8 char name[40];
9 double age;

10 struct measurement *mp;
11 char photo[0]; /* large bitmap. */
12 };

of meas_1 but new values of meas_2 and meas_3, that
reader will become fatally confused. How can we guar-
antee that readers will see coordinated sets of these three
values?

One approach would be to allocate a new animal struc-
ture, copy the old structure into the new structure, update
the new structure’s meas_1, meas_2, and meas_3 fields,
and then replace the old structure with a new one by up-
dating the pointer. This does guarantee that all readers see
coordinated sets of measurement values, but it requires
copying a large structure due to the ->photo[] field.
This copying might incur unacceptably large overhead.

Another approach is to insert a level of indirection, as
shown in Listing 13.9. When a new measurement is taken,
a new measurement structure is allocated, filled in with
the measurements, and the animal structure’s ->mp field
is updated to point to this new measurement structure
using rcu_assign_pointer(). After a grace period
elapses, the old measurement structure can be freed.

Quick Quiz 13.12: But cant’t the approach shown in
Listing 13.9 result in extra cache misses, in turn resulting
in additional read-side overhead?

This approach enables readers to see correlated values
for selected fields with minimal read-side overhead.

13.4 Hashing Hassles
This section looks at some issues that can arise when
dealing with hash tables. Please note that these issues
also apply to many other search structures.

13.4.1 Correlated Data Elements

This situation is analogous to that in Section 13.3.4: We
have a hash table where we need correlated views of two
or more of the elements. These elements are updated
together, and we do not want to see an old version of
the first element along with new versions of the other
elements. For example, Schrödinger decided to add his
extended family to his in-memory database along with
all his animals. Although Schrödinger understands that
marriages and divorces do not happen instantaneously, he
is also a traditionalist. As such, he absolutely does not
want his database ever to show that the bride is now mar-
ried, but the groom is not, and vice versa. In other words,
Schrödinger wants to be able to carry out a wedlock-
consistent traversal of his database.

One approach is to use sequence locks (see Section 9.4),
so that wedlock-related updates are carried out under
the protection of write_seqlock(), while reads requir-
ing wedlock consistency are carried out within a read_
seqbegin() / read_seqretry() loop. Note that se-
quence locks are not a replacement for RCU protection:
Sequence locks protect against concurrent modifications,
but RCU is still needed to protect against concurrent dele-
tions.

This approach works quite well when the number
of correlated elements is small, the time to read these
elements is short, and the update rate is low. Other-
wise, updates might happen so quickly that readers might
never complete. Although Schrödinger does not expect
that even his least-sane relatives will marry and divorce
quickly enough for this to be a problem, he does realize
that this problem could well arise in other situations. One
way to avoid this reader-starvation problem is to have the
readers use the update-side primitives if there have been
too many retries, but this can degrade both performance
and scalability.

In addition, if the update-side primitives are used too
frequently, poor performance and scalability will result
due to lock contention. One way to avoid this is to
maintain a per-element sequence lock, and to hold both
spouses’ locks when updating their marital status. Read-
ers can do their retry looping on either of the spouses’
locks to gain a stable view of any change in marital status
involving both members of the pair. This avoids con-
tention due to high marriage and divorce rates, but com-
plicates gaining a stable view of all marital statuses during
a single scan of the database.

If the element groupings are well-defined and persis-
tent, which marital status is hoped to be, then one ap-

13.4. HASHING HASSLES 245

proach is to add pointers to the data elements to link
together the members of a given group. Readers can then
traverse these pointers to access all the data elements in
the same group as the first one located.

Other approaches using version numbering are left as
exercises for the interested reader.

13.4.2 Update-Friendly Hash-Table Tra-
versal

Suppose that a statistical scan of all elements in a hash
table is required. For example, Schrödinger might wish
to compute the average length-to-weight ratio over all of
his animals.2 Suppose further that Schrödinger is willing
to ignore slight errors due to animals being added to and
removed from the hash table while this statistical scan is
being carried out. What should Schrödinger do to control
concurrency?

One approach is to enclose the statistical scan in an
RCU read-side critical section. This permits updates to
proceed concurrently without unduly impeding the scan.
In particular, the scan does not block the updates and vice
versa, which allows scan of hash tables containing very
large numbers of elements to be supported gracefully,
even in the face of very high update rates.

Quick Quiz 13.13: But how does this scan work while
a resizable hash table is being resized? In that case, nei-
ther the old nor the new hash table is guaranteed to contain
all the elements in the hash table!

2 Why would such a quantity be useful? Beats me! But group
statistics in general are often useful.

246 CHAPTER 13. PUTTING IT ALL TOGETHER

If a little knowledge is a dangerous thing, just
imagine all the havoc you could wreak with a lot of
knowledge!

UnknownChapter 14

Advanced Synchronization

This chapter covers two categories of advanced synchro-
nization, namely lockless and real-time synchronization.

Lockless synchronization can be quite helpful when
faced with extreme requirements, but sadly, lockless syn-
chronization is no panacea. For example, as noted at
the end of Chapter 5, you should thoroughly apply parti-
tioning, batching, and well-tested packaged weak APIs
(see Chapter 8 and 9) before even thinking about lockless
synchronization.

But after doing all that, you still might find yourself
needing the advanced techniques described in this chapter.
To that end, Section 14.1 summarizes techniques used
thus far for avoiding locks and Section 14.2 gives a brief
overview of non-blocking synchronization. Memory or-
dering is also quite important, but is sufficiently large to
warrant its own chapter, namely Chapter 15.

The second form of advanced synchronization provides
stronger forward-progress guarantees, as needed for par-
allel real-time computing. Real-time synchronization is
therfore the topic of Section 14.3.

14.1 Avoiding Locks

Although locking is the workhorse of parallelism in pro-
duction, in many situations performance, scalability, and
real-time response can all be greatly improved through use
of lockless techniques. A particularly impressive example
of such a lockless technique are the statistical counters
described in Section 5.2, which avoids not only locks, but
also atomic operations, memory barriers, and even cache
misses for counter increments. Other examples we have
covered include:

1. The fastpaths through a number of other counting
algorithms in Chapter 5.

2. The fastpath through resource allocator caches in
Section 6.4.3.

3. The maze solver in Section 6.5.

4. The data-ownership techniques described in Chap-
ter 8.

5. The reference-counting and RCU techinques de-
scribed in Chapter 9.

6. The lookup code paths described in Chapter 10.

7. Many of the techniques described in Chapter 13.

In short, lockless techniques are quite useful and are
heavily used.

However, it is best if lockless techniques are hidden
behind a well-defined API, such as the inc_count(),
memblock_alloc(), rcu_read_lock(), and so on.
The reason for this is that undisciplined use of lockless
techniques is a good way to create difficult bugs. If you
don’t believe that avoiding such bugs is easier than finding
and fixing them, please re-read Chapters 11 and 12.

A key component of many lockless techniques is the
memory barrier, which is described in the following sec-
tion.

14.2 Non-Blocking Synchroniza-
tion

The term non-blocking synchronization (NBS) describes
seven classes of linearizable algorithms with differing
forward-progress guarantees. These forward-progress
guarantees are orthogonal to those that form the basis of
real-time programming:

247

248 CHAPTER 14. ADVANCED SYNCHRONIZATION

1. Real-time forward-progress guarantees usually have
some definite time associated with them, for exam-
ple, “scheduling latency must be less than 100 mi-
croseconds.” In contrast, the most popular forms of
NBS only guarantees that progress will be made in
finite time, with no definite bound.

2. Real-time forward-progress guarantees are some-
times probabilistic, as in the soft-real-time guarantee
that “at least 99.9 % of the time, scheduling latency
must be less than 100 microseconds.” In contrast,
NBS’s forward-progress guarantees have tradition-
ally been unconditional.

3. Real-time forward-progress guarantees are often con-
ditioned on environmental constraints, for example,
only being honored for the highest-priority tasks,
when each CPU spends at least a certain fraction of
its time idle, or when I/O rates are below some speci-
fied maximum. In contrast, NBS’s forward-progress
guarantees are usually unconditional.1

4. Real-time forward-progress guarantees usually apply
only in the absence of software bugs. In contrast,
most NBS guarantees apply even in the face of fail-
stop bugs.2

5. NBS forward-progress guarantee classes imply lin-
earizability. In contrast, real-time forward progress
guarantees are often independent of ordering con-
straints such as linearizability.

Despite these differences, a number of NBS algorithms
are extremely useful in real-time programs.

There are currently seven levels in the NBS hierar-
chy [ACHS13], which are roughly as follows:

1. Bounded wait-free synchronization: Every thread
will make progress within a specific finite period of
time [Her91]. (Note that this level is widely consid-
ered to be unachievable, which might be why Alitarh
et al. [ACHS13] omitted it.)

2. Wait-free synchronization: Every thread will make
progress in finite time [Her93].

3. Lock-free synchronization: At least one thread will
make progress in finite time [Her93].

1 As we will see below, some recent NBS work relaxes this guaran-
tee.

2 Again, some recent NBS work relaxes this guarantee.

4. Obstruction-free synchronization: Every thread will
make progress in finite time in the absence of con-
tention [HLM03].

5. Clash-free synchronization: At least one thread will
make progress in finite time in the absence of con-
tention [ACHS13].

6. Starvation-free synchronization: Every thread will
make progress in finite time in the absence of fail-
ures [ACHS13].

7. Deadlock-free synchronization: At least one thread
will make progress in finite time in the absence of
failures [ACHS13].

NBS classes 1, 2 and 3 were first formulated in the early
1990s, class 4 was first formulated in the early 2000s, and
class 5 was first formulated in 2013. The final two classes
have seen informal use for a great many decades, but were
reformulated in 2013.

In theory, any parallel algorithm can be cast into wait-
free form, but there are a relatively small subset of NBS
algorithms that are in common use. A few of these are
listed in the following section.

14.2.1 Simple NBS

Perhaps the simplest NBS algorithm is atomic update of
an integer counter using fetch-and-add (atomic_add_
return()) primitives.

Another simple NBS algorithm implements a set of
integers in an array. Here the array index indicates a value
that might be a member of the set and the array element in-
dicates whether or not that value actually is a set member.
The linearizability criterion for NBS algorithms requires
that reads from and updates to the array either use atomic
instructions or be accompanied by memory barriers, but
in the not-uncommon case where linearizability is not
important, simple volatile loads and stores suffice, for
example, using ACCESS_ONCE().

An NBS set may also be implemented using a bitmap,
where each value that might be a member of the set corre-
sponds to one bit. Reads and updates must normally be
carried out via atomic bit-manipulation instructions, al-
though compare-and-swap (cmpxchg() or CAS) instruc-
tions can also be used.

The statistical counters algorithm discussed in Sec-
tion 5.2 can be considered wait-free, but only but using
a cute definitional trick in which the sum is considered

14.3. PARALLEL REAL-TIME COMPUTING 249

Listing 14.1: NBS Enqueue Algorithm
1 static inline bool
2 ___cds_wfcq_append(struct cds_wfcq_head *head,
3 struct cds_wfcq_tail *tail,
4 struct cds_wfcq_node *new_head,
5 struct cds_wfcq_node *new_tail)
6 {
7 struct cds_wfcq_node *old_tail;
8
9 old_tail = uatomic_xchg(&tail->p, new_tail);

10 CMM_STORE_SHARED(old_tail->next, new_head);
11 return old_tail != &head->node;
12 }
13
14 static inline bool
15 _cds_wfcq_enqueue(struct cds_wfcq_head *head,
16 struct cds_wfcq_tail *tail,
17 struct cds_wfcq_node *new_tail)
18 {
19 return ___cds_wfcq_append(head, tail,
20 new_tail, new_tail);
21 }

approximate rather than exact.3 Given sufficiently wide
error bounds that are a function of the length of time that
the read_count() function takes to sum the counters, it
is not possible to prove that any non-linearizable behavior
occurred. This definitely (if a bit artificially) classifies
the statistical-counters algorithm as wait-free. Cute defi-
nitional tricks notwithstanding, this algorithm is probably
the most heavily used NBS algorithm in the Linux kernel.

Another common NBS algorithm is the atomic queue
where elements are enqueued using an atomic exchange
instruction [MS98b], followed by a store into the ->next
pointer of the new element’s predecessor, as shown in
Listing 14.1, which shows the userspace-RCU library
implementation [Des09b]. Line 9 updates the tail pointer
to reference the new element while returning a reference
to its predecessor, which is stored in local variable old_
tail. Line 10 then updates the predecessor’s ->next
pointer to reference the newly added element, and finally
line 11 returns an indication as to whether or not the queue
was initially empty.

Although mutual exclusion is required to dequeue a
single element (so that dequeue is blocking), it is possible
to carry out a non-blocking removal of the entire contents
of the queue. What is not possible is to dequeue any
given element in a non-blocking manner: The enqueuer
might have failed between lines 9 and 10 of the listing,
so that the element in question is only partially enqueued.
This results in a half-NBS algorithm where enqueues
are NBS but dequeues are blocking. This algorithm is
nevertheless heavily used in practice, in part because most
production software is not required to tolerate arbitrary

3 Citation needed. I heard of this trick verbally from Mark Moir.

fail-stop errors.

14.2.2 NBS Discussion

It is possible to create fully non-blocking queues [MS96],
however, such queues are much more complex than the
half-NBS algorithm outlined above. The lesson here is
to carefully consider your actual requirements. Relaxing
irrelevant requirements can often result in great improve-
ments in simplicity, performance, and scalability.

Recent research points to another important way to
relax requirements. It turns out that systems providing
fair scheduling can enjoy most of the benefits of wait-
free synchronization even when running algorithms that
provide only non-blocking synchronization, both in the-
ory [ACHS13] and in practice [AB13]. Because a great
many schedulers used in production do in fact provide
fairness, the more-complex algorithms providing wait-
free synchronization usually provide no practical advan-
tages over their simpler and often faster non-blocking-
synchronization counterparts.

Interestingly enough, fair scheduling is but one bene-
ficial constraint that is often respected in practice. Other
sets of constraints can permit blocking algorithms to
achieve deterministic real-time response. For example,
given fair locks that are granted to requesters in FIFO or-
der at a given priority level, a method of avoiding priority
inversion (such as priority inheritance [TS95, WTS96] or
priority ceiling), a bounded number of threads, bounded
critical sections, bounded load, and avoidance of fail-stop
bugs, lock-based applications can provide deterministic
response times [Bra11]. This approach of course blurs
the distinction between blocking and wait-free synchro-
nization, which is all to the good. Hopefully theoeretical
frameworks continue to grow, further increasing their
ability to describe how software is actually constructed in
practice.

Those who feel that theory should lead the way are
referred to the inimitable Peter Denning, who said of
operating systems: “Theory follows practice” [Den15].

14.3 Parallel Real-Time Comput-
ing

An important emerging area in computing is that of paral-
lel real-time computing. Section 14.3.1 looks at a number
of definitions of “real-time computing”, moving beyond
the usual sound bites to more meaningful criteria. Sec-

250 CHAPTER 14. ADVANCED SYNCHRONIZATION

tion 14.3.2 surveys the sorts of applications that need
real-time response. Section 14.3.3 notes that parallel real-
time computing is upon us, and discusses when and why
parallel real-time computing can be useful. Section 14.3.4
gives a brief overview of how parallel real-time systems
may be implemented, with Sections 14.3.5 and 14.3.6
focusing on operating systems and applications, respec-
tively. Finally, Section 14.3.7 outlines how to decide
whether or not your application needs real-time facilities.

14.3.1 What is Real-Time Computing?
One traditional way of classifying real-time computing
is into the categories of hard real time and soft real time,
where the macho hard real-time applications never ever
miss their deadlines, but the wimpy soft real-time appli-
cations might well miss their deadlines frequently and
often.

14.3.1.1 Soft Real Time

It should be easy to see problems with this definition of
soft real time. For one thing, by this definition, any piece
of software could be said to be a soft real-time appli-
cation: “My application computes million-point fourier
transforms in half a picosecond.” “No way!!! The clock
cycle on this system is more than three hundred picosec-
onds!” “Ah, but it is a soft real-time application!” If
the term “soft real time” is to be of any use whatesoever,
some limits are clearly required.

We might therefore say that a given soft real-time appli-
cation must meet its response-time requirements at least
some fraction of the time, for example, we might say that
it must execute in less than 20 microseconds 99.9 % of
the time.

This of course raises the question of what is to be
done when the application fails to meet its response-time
requirements. The answer varies with the application,
but one possibility is that the system being controlled
has sufficient stability and inertia to render harmless the
occasional late control action. Another possibility is that
the application has two ways of computing the result,
a fast and deterministic but inaccurate method on the
one hand and a very accurate method with unpredictable
compute time on the other. One reasonable approach
would be to start both methods in parallel, and if the
accurate method fails to finish in time, kill it and use
the answer from the fast but inaccurate method. One
candidate for the fast but inaccurate method is to take no
control action during the current time period, and another

Figure 14.1: Real-Time Response Guarantee, Meet Ham-
mer

candidate is to take the same control action as was taken
during the preceding time period.

In short, it does not make sense to talk about soft real
time without some measure of exactly how soft it is.

14.3.1.2 Hard Real Time

In contrast, the definition of hard real time is quite definite.
After all, a given system either always meets its deadlines
or it doesn’t. Unfortunately, a strict application of this
definition would mean that there can never be any hard
real-time systems. The reason for this is fancifully de-
picted in Figure 14.1. It is true that you could construct a
more robust system, perhaps even with added redundancy.
But it is also true that I can always get a bigger hammer.

Then again, perhaps it is unfair to blame the software
for what is clearly not just a hardware problem, but a bona
fide big-iron hardware problem at that.4 This suggests
that we define hard real-time software as software that
will always meet its deadlines, but only in the absence of
a hardware failure. Unfortunately, failure is not always an
option, as fancifully depicted in Figure 14.2. We simply
cannot expect the poor gentleman depicted in that figure
to be reassured our saying “Rest assured that if a missed
deadline results in your tragic death, it most certainly will
not have been due to a software problem!” Hard real-time
response is a property of the entire system, not just of the
software.

But if we cannot demand perfection, perhaps we can

4 Or, given modern hammers, a big-steel problem.

14.3. PARALLEL REAL-TIME COMPUTING 251

Figure 14.2: Real-Time Response: Hardware Matters

make do with notification, similar to the soft real-time
approach noted earlier. Then if the Life-a-Tron in Fig-
ure 14.2 is about to miss its deadline, it can alert the
hospital staff.

Unfortunately, this approach has the trivial solution
fancifully depicted in Figure 14.3. A system that always
immediately issues a notification that it won’t be able
to meet its deadline complies with the letter of the law,
but is completely useless. There clearly must also be
a requirement that the system meet its deadline some
fraction of the time, or perhaps that it be prohibited from
missing its deadlines on more than a certain number of
consecutive operations.

We clearly cannot take a sound-bite approach to either
hard or soft real time. The next section therefore takes a
more real-world approach.

14.3.1.3 Real-World Real Time

Although sentences like “Hard real-time systems always
meet their deadlines!” can be catchy and are no doubt
easy to memorize, something else is needed for real-world
real-time systems. Although the resulting specifications
are harder to memorize, they can simplify construction
of a real-time system by imposing constraints on the en-
vironment, the workload, and the real-time application
itself.

Environmental Constraints Constraints on the envi-
ronment address the objection to open-ended promises of

response times implied by “hard real time”. These con-
straints might specify permissible operating temperatures,
air quality, levels and types of electromagnetic radiation,
and, to Figure 14.1’s point, levels of shock and vibration.

Of course, some constraints are easier to meet than
others. Any number of people have learned the hard way
that commodity computer components often refuse to
operate at sub-freezing tempertures, which suggests a set
of climate-control requirements.

An old college friend once had to meet the challenge
of operating a real-time system in an atmosphere featur-
ing some rather aggressive chlorine compounds, a chal-
lenge that he wisely handed off to his colleagues design-
ing the hardware. In effect, my colleague imposed an
atmospheric-composition constraint on the environment
immediately surrounding the computer, a constraint that
the hardware designers met through use of physical seals.

Another old college friend worked on a computer-
controlled system that sputtered ingots of titanium us-
ing an industrial-strength arc in a vacuum. From time to
time, the arc would decide that it was bored with its path
through the ingot of titanium and choose a far shorter and
more entertaining path to ground. As we all learned in our
physics classes, a sudden shift in the flow of electrons cre-
ates an electromagnetic wave, with larger shifts in larger
flows creating higher-power electromagnetic waves. And
in this case, the resulting electromagnetic pulses were suf-
ficient to induce a quarter of a volt potential difference in
the leads of a small “rubber ducky” antenna located more
than 400 meters away. This means that nearby conductors
saw larger voltages, courtesy of the inverse-square law.
This includes those conductors making up the computer
controlling the sputtering process. In particular, the volt-
age induced on that computer’s reset line was sufficient
to actually reset the computer, to the consternation of
everyone involved. In this case, the challenge was also
met using hardware, including some elaborate shielding
and a fiber-optic network with the lowest bitrate I have
ever heard of, namely 9600 baud. That said, less spectac-
ular electromagnetic environments can often be handled
by software through use of error detection and correc-
tion codes. That said, it is important to remember that
although error detection and correction codes can reduce
failure rates, they normally cannot reduce them all the
way down to zero, which can form yet another obstacle
to achieving hard real-time response.

There are also situations where a minimum level of
energy is required, for example, through the power leads
of the system and through the devices through which the

252 CHAPTER 14. ADVANCED SYNCHRONIZATION

Figure 14.3: Real-Time Response: Notification Insufficient

system is to communicate with that portion of the outside
world that is to be monitored or controlled.

Quick Quiz 14.1: But what about battery-powered
systems? They don’t require energy flowing into the
system as a whole.

A number of systems are intended to operate in envi-
ronments with impressive levels of shock and vibration,
for example, engine control systems. More strenuous
requirements may be found when we move away from
continuous vibrations to intermittent shocks. For example,
during my undergraduate studies, I encountered an old
Athena ballistics computer, which was designed to con-
tinue operating normally even if a hand grenade went off

nearby.5 And finally, the “black boxes” used in airliners
must continue operating before, during, and after a crash.

Of course, it is possible to make hardware more robust
against environmental shocks and insults. Any number
of ingenious mechanical shock-absorbing devices can re-
duce the effects of shock and vibration, multiple layers
of shielding can reduce the effects of low-energy electro-
magnetic radiation, error-correction coding can reduce
the effects of high-energy radiation, various potting and
sealing techniques can reduce the effect of air quality, and
any number of heating and cooling systems can counter
the effects of temperature. In extreme cases, triple modu-
lar redundancy can reduce the probability that a fault in

5 Decades later, the acceptance tests for some types of computer
systems involve large detonations, and some types of communications
networks must deal with what is delicately termed “ballistic jamming.”

one part of the system will result in incorrect behavior
from the overall system. However, all of these methods
have one thing in common: Although they can reduce the
probability of failure, they cannot reduce it to zero.

Although these severe environmental conditions are
often addressed by using more robust hardware, the work-
load and application constraints in the next two sections
are often handled in software.

Workload Constraints Just as with people, it is often
possible to prevent a real-time system from meeting its
deadlines by overloading it. For example, if the system is
being interrupted too frequently, it might not have suffi-
cient CPU bandwidth to handle its real-time application.
A hardware solution to this problem might limit the rate
at which interrupts were delivered to the system. Pos-
sible software solutions include disabling interrupts for
some time if they are being received too frequently, reset-
ting the device generating too-frequent interrupts, or even
avoiding interrupts altogether in favor of polling.

Overloading can also degrade response times due to
queueing effects, so it is not unusual for real-time systems
to overprovision CPU bandwidth, so that a running system
has (say) 80 % idle time. This approach also applies to
storage and networking devices. In some cases, separate
storage and networking hardware might be reserved for
the sole use of high-priority portions of the real-time
application. It is of course not unusual for this hardware to
be mostly idle, given that response time is more important

14.3. PARALLEL REAL-TIME COMPUTING 253

than throughput in real-time systems.
Quick Quiz 14.2: But given the results from queueing

theory, won’t low utilization merely improve the average
response time rather than improving the worst-case re-
sponse time? And isn’t worst-case response time all that
most real-time systems really care about?

Of course, maintaining sufficiently low utilization re-
quires great discipline throughout the design and imple-
mentation. There is nothing quite like a little feature creep
to destroy deadlines.

Application Constraints It is easier to provide
bounded response time for some operations than for oth-
ers. For example, it is quite common to see response-time
specifications for interrupts and for wake-up operations,
but quite rare for (say) filesystem unmount operations.
One reason for this is that it is quite difficult to bound
the amount of work that a filesystem-unmount operation
might need to do, given that the unmount is required
to flush all of that filesystem’s in-memory data to mass
storage.

This means that real-time applications must be confined
to operations for which bounded latencies can reasonably
be provided. Other operations must either be pushed
out into the non-real-time portions of the application or
forgone entirely.

There might also be constraints on the non-real-time
portions of the application. For example, is the non-real-
time application permitted to use CPUs used by the real-
time portion? Are there time periods during which the
real-time portion of the application is expected to be un-
usually busy, and if so, is the non-real-time portion of
the application permitted to run at all during those times?
Finally, by what amount is the real-time portion of the
application permitted to degrade the throughput of the
non-real-time portion?

Real-World Real-Time Specifications As can be seen
from the preceding sections, a real-world real-time speci-
fication needs to include constraints on the environment,
on the workload, and on the application itself. In addi-
tion, for the operations that the real-time portion of the
application is permitted to make use of, there must be
constraints on the hardware and software implementing
those operations.

For each such operation, these constraints might in-
clude a maximum response time (and possibly also a
minimum response time) and a probability of meeting
that response time. A probability of 100 % indicates that

the corresponding operation must provide hard real-time
service.

In some cases, both the response times and the required
probabilities of meeting them might vary depending on
the parameters to the operation in question. For example,
a network operation over a local LAN would be much
more likely to complete in (say) 100 microseconds than
would that same network operation over a transcontinental
WAN. Furthermore, a network operation over a copper
or fiber LAN might have an extremely high probability
of completing without time-consuming retransmissions,
while that same networking operation over a lossy WiFi
network might have a much higher probability of missing
tight deadlines. Similarly, a read from a tightly coupled
solid-state disk (SSD) could be expected to complete
much more quickly than that same read to an old-style
USB-connected rotating-rust disk drive.6

Some real-time applications pass through different
phases of operation. For example, a real-time system con-
trolling a plywood lathe that peels a thin sheet of wood
(called “veneer”) from a spinning log must: (1) Load
the log into the lathe, (2) Position the log on the lathe’s
chucks so as to expose the largest cylinder contained in
the log to the blade, (3) Start spinning the log, (4) Con-
tinuously vary the knife’s position so as to peel the log
into veneer, (5) Remove the remaining core of the log
that is too small to peel, and (6) Wait for the next log.
Each of these six phases of operation might well have
its own set of deadlines and environmental constraints,
for example, one would expect phase 4’s deadlines to be
much more severe than those of phase 6, milliseconds
instead of seconds. One might therefore expect that low-
priority work would be performed in phase 6 rather than
in phase 4. That said, careful choices of hardware, drivers,
and software configuration would be required to support
phase 4’s more severe requirements.

A key advantage of this phase-by-phase approach is
that the latency budgets can be broken down, so that the
application’s various components can be developed inde-
pendently, each with its own latency budget. Of course, as
with any other kind of budget, there will likely be the occa-
sional conflict as to which component gets which fraction
of the overall budget, and as with any other kind of budget,
strong leadership and a sense of shared goals can help to
resolve these conflicts in a timely fashion. And, again as
with other kinds of technical budget, a strong validation

6 Important safety tip: Worst-case response times from USB devices
can be extremely long. Real-time systems should therefore take care to
place any USB devices well away from critical paths.

254 CHAPTER 14. ADVANCED SYNCHRONIZATION

effort is required in order to ensure proper focus on la-
tencies and to give early warning of latency problems. A
successful validation effort will almost always include a
good test suite, which might be unsatisfying to the theo-
rists, but has the virtue of helping to get the job done. As
a point of fact, as of early 2015, most real-world real-time
system use an acceptance test rather than formal proofs.

That said, the widespread use of test suites to validate
real-time systems does have a very real disadvantage,
namely that real-time software is validated only on spe-
cific hardware in specific hardware and software configu-
rations. Adding additional hardware and configurations
requires additional costly and time-consuming testing.
Perhaps the field of formal verification will advance suf-
ficiently to change this situation, but as of early 2015,
rather large advances are required.

Quick Quiz 14.3: Formal verification is already quite
capable, benefiting from decades of intensive study. Are
additional advances really required, or is this just a prac-
titioner’s excuse to continue to be lazy and ignore the
awesome power of formal verification?

In addition to latency requirements for the real-time
portions of the application, there will likely be perfor-
mance and scalability requirements for the non-real-time
portions of the application. These additional requirements
reflect the fact that ultimate real-time latencies are often at-
tained by degrading scalability and average performance.

Software-engineering requirements can also be impor-
tant, especially for large applications that must be devel-
oped and maintained by large teams. These requirements
often favor increased modularity and fault isolation.

This is a mere outline of the work that would be re-
quired to specify deadlines and environmental constraints
for a production real-time system. It is hoped that this
outline clearly demonstrates the inadequacy of the sound-
bite-based approach to real-time computing.

14.3.2 Who Needs Real-Time Computing?

It is possible to argue that all computing is in fact real-
time computing. For one moderately extreme example,
when you purchase a birthday gift online, you would like
the gift to arrive before the recipient’s birthday. And in
fact even turn-of-the-millenium web services observed
sub-second response constraints [Boh01], and require-
ments have not eased with the passage of time [DHJ+07].
It is nevertheless useful to focus on those real-time ap-
plications whose response-time requirements cannot be
achieved straightforwardly by non-real-time systems and

applications. Of course, as hardware costs decrease and
bandwidths and memory sizes increase, the line between
real-time and non-real-time will continue to shift, but
such progress is by no means a bad thing.

Quick Quiz 14.4: Differentiating real-time from non-
real-time based on what can “be achieved straightfor-
wardly by non-real-time systems and applications” is a
travesty! There is absolutely no theoretical basis for such
a distinction!!! Can’t we do better than that???

Real-time computing is used in industrial-control ap-
plications, ranging from manufacturing to avionics; sci-
entific applications, perhaps most spectacularly in the
adaptive optics used by large Earth-bound telescopes to
de-twinkle starlight; military applications, including the
afore-mentioned avionics; and financial-services applica-
tions, where the first computer to recognize an opportunity
is likely to reap most of the resulting profit. These four
areas could be characterized as “in search of production”,
“in search of life”, “in search of death”, and “in search of
money”.

Financial-services applications differ subtlely from ap-
plications in the other three categories in that money is
non-material, meaning that non-computational latencies
are quite small. In contrast, mechanical delays inherent
in the other three categories provide a very real point of
diminishing returns beyond which further reductions in
the application’s real-time response provide little or no
benefit. This means that financial-services applications,
along with other real-time information-processing appli-
cations, face an arms race, where the application with the
lowest latencies normally wins. Although the resulting
latency requirements can still be specified as described in
Section 2, the unusual nature of these requirements has
led some to refer to financial and information-processing
applications as “low latency” rather than “real time”.

Regardless of exactly what we choose to call it, there is
substantial need for real-time computing [Pet06, Inm07].

14.3.3 Who Needs Parallel Real-Time
Computing?

It is less clear who really needs parallel real-time com-
puting, but the advent of low-cost multicore systems has
brought it to the fore regardless. Unfortunately, the tra-
ditional mathematical basis for real-time computing as-
sumes single-CPU systems, with a few exceptions that
prove the rule [Bra11]. That said, there are a couple of
ways of squaring modern computing hardware to fit the
real-time mathematical circle, and a few Linux-kernel

14.3. PARALLEL REAL-TIME COMPUTING 255

Stimulus

Response

Hard
Real-Time
"Reflexes"

Non-Real-Time
Strategy

and Planning

Figure 14.4: Real-Time Reflexes

hackers have been encouraging academics to make this
transition [Gle10].

One approach is to recognize the fact that many real-
time systems reflect biological nervous systems, with re-
sponses ranging from real-time reflexes to non-real-time
strategizing and planning, as depicted in Figure 14.4. The
hard real-time reflexes, which read from sensors and con-
trol actuators, run real-time on a single CPU, while the
non-real-time strategy and planning portion of the appli-
cation runs on the multiple remaining CPUs. Strategy and
planning activities might include statistical analysis, pe-
riodic calibration, user interface, supply-chain activities,
and preparation. For an example of high-compute-load
preparation activities, think back to the veneer-peeling
application discussed in Section 2. While one CPU is
attending to the high-speed real-time computations re-
quired to peel one log, the other CPUs might be analyzing
the size and shape of the next log in order to determine
how to position the next log so as to obtain the greatest
possible quantity of high-quality veneer. It turns out that
many applications have non-real-time and real-time com-
ponents [BMP08], so this approach can often be used to
allow traditional real-time analysis to be combined with
modern multicore hardware.

Another trivial approach is to shut off all but one hard-
ware thread so as to return to the settled mathematics
of uniprocessor real-time computing. However, this ap-
proach gives up potential cost and energy-efficiency ad-
vantages. That said, obtaining these advantages requires
overcoming the parallel performance obstacles covered in
Chapter 3, and not merely on average, but instead in the
worst case.

Implementing parallel real-time systems can therefore
be quite a challenge. Ways of meeting this challenge are
outlined in the following section.

14.3.4 Implementing Parallel Real-Time
Systems

We will look at two major styles of real-time systems,
event-driven and polling. An event-driven real-time sys-
tem remains idle much of the time, responding in real time

1 s

1 ms

10 ms

100 ms

1 µs

10 µs

100 µs

1 ns

10 ns

100 ns

100 ps

Scripting languages

Linux 2.4 kernel

Real-time Java (with GC)

Linux 2.6.x/3.x kernel
Real-time Java (no GC)

Linux -rt patchset

Specialty RTOSes (no MMU)

Hand-coded assembly

Custom digital hardware

Custom analog hardware

Figure 14.5: Real-Time Response Regimes

to events passed up through the operating system to the
application. Alternatively, the system could be running a
background non-real-time workload instead of remaining
mostly idle. A polling real-time system features a real-
time thread that is CPU bound, running in a tight loop
that polls inputs and updates outputs on each pass through
the loop. This tight polling loop often executes entirely in
user mode, reading from and writing to hardware registers
that have been mapped into the user-mode application’s
address space. Alternatively, some applications place
the polling loop into the kernel, for example, via use of
loadable kernel modules.

Regardless of the style chosen, the approach used to
implement a real-time system will depend on the dead-
lines, for example, as shown in Figure 14.5. Starting
from the top of this figure, if you can live with response
times in excess of one second, you might well be able
to use scripting languages to implement your real-time
application—and scripting languages are in fact used sur-
prisingly often, not that I necessarily recommend this
practice. If the required latencies exceed several tens of
milliseconds, old 2.4 versions of the Linux kernel can be
used, not that I necessarily recommend this practice, ei-
ther. Special real-time Java implementations can provide
real-time response latencies of a few milliseconds, even
when the garbage collector is used. The Linux 2.6.x and
3.x kernels can provide real-time latencies of a few hun-
dred microseconds if carefully configured, tuned, and run
on real-time friendly hardware. Special real-time Java im-
plementations can provide real-time latencies below 100
microseconds if use of the garbage collector is carefully
avoided. (But note that avoiding the garbage collector
means also avoiding Java’s large standard libraries, thus
also avoiding Java’s productivity advantages.) A Linux

256 CHAPTER 14. ADVANCED SYNCHRONIZATION

kernel incorporating the -rt patchset can provide latencies
below 20 microseconds, and specialty real-time operating
systems (RTOSes) running without memory translation
can provide sub-ten-microsecond latencies. Achieving
sub-microsecond latencies typically requires hand-coded
assembly or even special-purpose hardware.

Of course, careful configuration and tuning are required
all the way down the stack. In particular, if the hard-
ware or firmware fails to provide real-time latencies, there
is nothing that the software can do to make up the lost
time. And high-performance hardware sometimes sacri-
fices worst-case behavior to obtain greater throughput. In
fact, timings from tight loops run with interrupts disabled
can provide the basis for a high-quality random-number
generator [MOZ09]. Furthermore, some firmware does
cycle-stealing to carry out various housekeeping tasks, in
some cases attempting to cover its tracks by reprogram-
ming the victim CPU’s hardware clocks. Of course, cycle
stealing is expected behavior in virtualized environment,
but people are nevertheless working towards real-time
response in virtualized environments [Gle12, Kis14]. It is
therefore critically important to evaluate your hardware’s
and firmware’s real-time capabilities. There are organiza-
tions who carry out such evaluations, including the Open
Source Automation Development Lab (OSADL).

But given competent real-time hardware and firmware,
the next layer up the stack is the operating system, which
is covered in the next section.

14.3.5 Implementing Parallel Real-Time
Operating Systems

There are a number of strategies that may be used to
implement a real-time system. One approach is to port
a general-purpose non-real-time OS on top of a special
purpose real-time operating system (RTOS), as shown
in Figure 14.6. The green “Linux Process” boxes repre-
sent non-real-time processes running on the Linux kernel,
while the yellow “RTOS Process” boxes represent real-
time processes running on the RTOS.

This was a very popular approach before the Linux
kernel gained real-time capabilities, and is still in use
today [xen14, Yod04b]. However, this approach requires
that the application be split into one portion that runs on
the RTOS and another that runs on Linux. Although it
is possible to make the two environments look similar,
for example, by forwarding POSIX system calls from
the RTOS to a utility thread running on Linux, there are
invariably rough edges.

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Linux
Kernel

RCU read-side
critical sections

Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

R
T
O

S
 P

ro
ce

ss

R
T
O

S
 P

ro
ce

ss

RTOS

Li
n
u
x
 P

ro
ce

ss

Figure 14.6: Linux Ported to RTOS

In addition, the RTOS must interface to both the hard-
ware and to the Linux kernel, thus requiring significant
maintenance with changes in both hardware and kernel.
Furthermore, each such RTOS often has its own system-
call interface and set of system libraries, which can balka-
nize both ecosystems and developers. In fact, these prob-
lems seem to be what drove the combination of RTOSes
with Linux, as this approach allowed access to the full
real-time capabilities of the RTOS, while allowing the
application’s non-real-time code full access to Linux’s
rich and vibrant open-source ecosystem.

Although pairing RTOSes with the Linux kernel was a
clever and useful short-term response during the time that
the Linux kernel had minimal real-time capabilities, it
also motivated adding real-time capabilities to the Linux
kernel. Progress towards this goal is shown in Figure 14.7.
The upper row shows a diagram of the Linux kernel with
preemption disabled, thus having essentially no real-time
capabilities. The middle row shows a set of diagrams
showing the increasing real-time capabilities of the main-
line Linux kernel with preemption enabled. Finally, the
bottom row shows a diagram of the Linux kernel with
the -rt patchset applied, maximizing real-time capabilities.
Functionality from the -rt patchset is added to mainline,
hence the increasing capabilities of the mainline Linux
kernel over time. Nevertheless, the most demanding real-
time applications continue to use the -rt patchset.

The non-preemptible kernel shown at the top of Fig-
ure 14.7 is built with CONFIG_PREEMPT=n, so that ex-
ecution within the Linux kernel cannot be preempted.

14.3. PARALLEL REAL-TIME COMPUTING 257

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

Linux
Kernel

RCU read-side
critical sections

Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

CONFIG_PREEMPT=n

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

Linux
Kernel

RCU read-side
critical sections

Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

RCU read-side
critical sectionsLinux

Kernel Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

RCU read-side
critical sectionsLinux

Kernel Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

CONFIG_PREEMPT=y
Pre-2008

CONFIG_PREEMPT=y
(With preemptible RCU)

CONFIG_PREEMPT=y
(With threaded interrupts)

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

RCU read-side
critical sectionsLinux

Kernel Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

-rt patchset

Figure 14.7: Linux-Kernel Real-Time Implementations

258 CHAPTER 14. ADVANCED SYNCHRONIZATION

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

Li
n
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss

R
T
 L

in
u
x
 P

ro
ce

ss
RCU read-side

critical sectionsLinux
Kernel Spinlock

critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

N
O

_H
Z

_F
U

LL
 L

in
u

x
 P

ro
ce

ss

N
O

_H
Z

_F
U

LL
 L

in
u

x
 P

ro
ce

ss

Figure 14.8: CPU Isolation

This means that the kernel’s real-time response latency
is bounded below by the longest code path in the Linux
kernel, which is indeed long. However, user-mode exe-
cution is preemptible, so that one of the real-time Linux
processes shown in the upper right may preempt any of
the non-real-time Linux processes shown in the upper left
anytime the non-real-time process is executing in user
mode.

The preemptible kernels shown in the middle row of
Figure 14.7 are built with CONFIG_PREEMPT=y, so that
most process-level code within the Linux kernel can be
preempted. This of course greatly improves real-time
response latency, but preemption is still disabled within
RCU read-side critical sections, spinlock critical sections,
interrupt handlers, interrupt-disabled code regions, and
preempt-disabled code regions, as indicated by the red
boxes in the left-most diagram in the middle row of the fig-
ure. The advent of preemptible RCU allowed RCU read-
side critical sections to be preempted, as shown in the
central diagram, and the advent of threaded interrupt han-
dlers allowed device-interrupt handlers to be preempted,
as shown in the right-most diagram. Of course, a great
deal of other real-time functionality was added during this
time, however, it cannot be as easily represented on this
diagram. It will instead be discussed in Section 14.3.5.1.

A final approach is simply to get everything out of the
way of the real-time process, clearing all other process-
ing off of any CPUs that this process needs, as shown in
Figure 14.8. This was implemented in the 3.10 Linux
kernel via the CONFIG_NO_HZ_FULL Kconfig parame-

ter [Wei12]. It is important to note that this approach
requires at least one housekeeping CPU to do background
processing, for example running kernel daemons. How-
ever, when there is only one runnable task on a given
non-housekeeping CPU, scheduling-clock interrupts are
shut off on that CPU, removing an important source of
interference and OS jitter.7 With a few exceptions, the
kernel does not force other processing off of the non-
housekeeping CPUs, but instead simply provides better
performance when only one runnable task is present on a
given CPU. If configured properly, a non-trivial undertak-
ing, CONFIG_NO_HZ_FULL offers real-time threads levels
of performance nearly rivaling that of bare-metal systems.

There has of course been much debate over which of
these approaches is best for real-time systems, and this
debate has been going on for quite some time [Cor04a,
Cor04c]. As usual, the answer seems to be “It de-
pends,” as discussed in the following sections. Sec-
tion 14.3.5.1 considers event-driven real-time systems,
and Section 14.3.5.2 considers real-time systems that use
a CPU-bound polling loop.

14.3.5.1 Event-Driven Real-Time Support

The operating-system support required for event-driven
real-time applications is quite extensive, however, this
section will focus on only a few items, namely timers,
threaded interrupts, priority inheritance, preemptible
RCU, and preemptible spinlocks.

Timers are clearly critically important for real-time op-
erations. After all, if you cannot specify that something
be done at a specific time, how are you going to respond
by that time? Even in non-real-time systems, large num-
bers of timers are generated, so they must be handled
extremely efficiently. Example uses include retransmit
timers for TCP connections (which are almost always can-
celled before they have a chance to fire),8 timed delays (as
in sleep(1), which are rarely cancelled), and timeouts
for the poll() system call (which are often cancelled
before they have a chance to fire). A good data structure
for such timers would therefore be a priority queue whose
addition and deletion primitives were fast and O(1) in the
number of timers posted.

The classic data structure for this purpose is the calen-
dar queue, which in the Linux kernel is called the timer

7 A once-per-second residual scheduling-clock interrupt remains
due to process-accounting concerns. Future work includes addressing
these concerns and eliminating this residual interrupt.

8 At least assuming reasonably low packet-loss rates!

14.3. PARALLEL REAL-TIME COMPUTING 259

x0

x1

x2

x3
x4

x5

x6

x7
x8

x9

xa

xb

xc

xd

xe

xf

0x

1x

2x

3x
4x

5x

6x

7x
8x

9x

ax

bx

cx

dx

ex

fx

1f

Figure 14.9: Timer Wheel

wheel. This age-old data structure is also heavily used in
discrete-event simulation. The idea is that time is quan-
tized, for example, in the Linux kernel, the duration of the
time quantum is the period of the scheduling-clock inter-
rupt. A given time can be represented by an integer, and
any attempt to post a timer at some non-integral time will
be rounded to a convenient nearby integral time quantum.

One straightforward implementation would be to allo-
cate a single array, indexed by the low-order bits of the
time. This works in theory, but in practice systems create
large numbers of long-duration timeouts (for example, the
two-hour keepalive timeouts for TCP sessions) that are
almost always cancelled. These long-duration timeouts
cause problems for small arrays because much time is
wasted skipping timeouts that have not yet expired. On
the other hand, an array that is large enough to gracefully
accommodate a large number of long-duration timeouts
would consume too much memory, especially given that
performance and scalability concerns require one such
array for each and every CPU.

A common approach for resolving this conflict is to
provide multiple arrays in a hierarchy. At the lowest level
of this hierarchy, each array element represents one unit of
time. At the second level, each array element represents N
units of time, where N is the number of elements in each
array. At the third level, each array element represents N2

units of time, and so on up the hierarchy. This approach

Figure 14.10: Timer Wheel at 1 kHz

Figure 14.11: Timer Wheel at 100 kHz

allows the individual arrays to be indexed by different
bits, as illustrated by Figure 14.9 for an unrealistically
small eight-bit clock. Here, each array has 16 elements,
so the low-order four bits of the time (currently 0xf)
index the low-order (rightmost) array, and the next four
bits (currently 0x1) index the next level up. Thus, we
have two arrays each with 16 elements, for a total of 32
elements, which, taken together, is much smaller than
the 256-element array that would be required for a single
array.

This approach works extremely well for throughput-
based systems. Each timer operation is O(1) with small
constant, and each timer element is touched at most m + 1
times, where m is the number of levels.

260 CHAPTER 14. ADVANCED SYNCHRONIZATION

Unfortunately, timer wheels do not work well for real-
time systems, and for two reasons. The first reason is that
there is a harsh tradeoff between timer accuracy and timer
overhead, which is fancifully illustrated by Figures 14.10
and 14.11. In Figure 14.10, timer processing happens
only once per millisecond, which keeps overhead accept-
ably low for many (but not all!) workloads, but which
also means that timeouts cannot be set for finer than one-
millisecond granularities. On the other hand, Figure 14.11
shows timer processing taking place every ten microsec-
onds, which provides acceptably fine timer granularity for
most (but not all!) workloads, but which processes timers
so frequently that the system might well not have time to
do anything else.

The second reason is the need to cascade timers from
higher levels to lower levels. Referring back to Fig-
ure 14.9, we can see that any timers enqueued on element
1x in the upper (leftmost) array must be cascaded down to
the lower (rightmost) array so that may be invoked when
their time arrives. Unfortunately, there could be a large
number of timeouts waiting to be cascaded, especially for
timer wheels with larger numbers of levels. The power of
statistics causes this cascading to be a non-problem for
throughput-oriented systems, but cascading can result in
problematic degradations of latency in real-time systems.

Of course, real-time systems could simply choose a
different data structure, for example, some form of heap
or tree, giving up O(1) bounds on insertion and dele-
tion operations to gain O(log n) limits on data-structure-
maintenance operations. This can be a good choice for
special-purpose RTOSes, but is inefficient for general-
purpose systems such as Linux, which routinely support
extremely large numbers of timers.

The solution chosen for the Linux kernel’s -rt patch-
set is to differentiate between timers that schedule later
activity and timeouts that schedule error handling for low-
probability errors such as TCP packet losses. One key
observation is that error handling is normally not partic-
ularly time-critical, so that a timer wheel’s millisecond-
level granularity is good and sufficient. Another key ob-
servation is that error-handling timeouts are normally
cancelled very early, often before they can be cascaded.
A final observation is that systems commonly have many
more error-handling timeouts than they do timer events,
so that an O(log n) data structure should provide accept-
able performance for timer events.

In short, the Linux kernel’s -rt patchset uses timer
wheels for error-handling timeouts and a tree for timer
events, providing each category the required quality of

service.

Threaded interrupts are used to address a significant
source of degraded real-time latencies, namely long-
running interrupt handlers, as shown in Figure 14.12.
These latencies can be especially problematic for devices
that can deliver a large number of events with a single in-
terrupt, which means that the interrupt handler will run for
an extended period of time processing all of these events.
Worse yet are devices that can deliver new events to a still-
running interrupt handler, as such an interrupt handler
might well run indefinitely, thus indefinitely degrading
real-time latencies.

One way of addressing this problem is the use of
threaded interrupts shown in Figure 14.13. Interrupt
handlers run in the context of a preemptible IRQ thread,
which runs at a configurable priority. The device interrupt
handler then runs for only a short time, just long enough
to make the IRQ thread aware of the new event. As shown
in the figure, threaded interrupts can greatly improve real-
time latencies, in part because interrupt handlers running
in the context of the IRQ thread may be preempted by
high-priority real-time threads.

However, there is no such thing as a free lunch, and
there are downsides to threaded interrupts. One downside
is increased interrupt latency. Instead of immediately
running the interrupt handler, the handler’s execution is
deferred until the IRQ thread gets around to running it. Of
course, this is not a problem unless the device generating
the interrupt is on the real-time application’s critical path.

Another downside is that poorly written high-priority
real-time code might starve the interrupt handler, for ex-
ample, preventing networking code from running, in turn
making it very difficult to debug the problem. Developers
must therefore take great care when writing high-priority
real-time code. This has been dubbed the Spiderman
principle: With great power comes great responsibility.

Priority inheritance is used to handle priority inver-
sion, which can be caused by, among other things, locks
acquired by preemptible interrupt handlers [SRL90b].
Suppose that a low-priority thread holds a lock, but is
preempted by a group of medium-priority threads, at
least one such thread per CPU. If an interrupt occurs, a
high-priority IRQ thread will preempt one of the medium-
priority threads, but only until it decides to acquire the
lock held by the low-priority thread. Unfortunately, the
low-priority thread cannot release the lock until it starts
running, which the medium-priority threads prevent it

14.3. PARALLEL REAL-TIME COMPUTING 261

Interrupt
Interrupt HandlerMainline

Code
Mainline

Code

Return From
Interrupt

Long Latency:
Degrades Response Time

Figure 14.12: Non-Threaded Interrupt Handler

Interrupt

In
te

rr
up

t

Mainline
Code

Mainline
Code

Return From
Interrupt

Short Latency:
Improved Response Time

Interrupt Handler

Preemptible
IRQ Thread

Figure 14.13: Threaded Interrupt Handler

from doing. So the high-priority IRQ thread cannot
acquire the lock until after one of the medium-priority
threads releases its CPU. In short, the medium-priority
threads are indirectly blocking the high-priority IRQ
threads, a classic case of priority inversion.

Note that this priority inversion could not happen with
non-threaded interrupts because the low-priority thread
would have to disable interrupts while holding the lock,
which would prevent the medium-priority threads from
preempting it.

In the priority-inheritance solution, the high-priority
thread attempting to acquire the lock donate its priority
to the low-priority thread holding the lock until such time
as the lock is released, thus preventing long-term priority
inversion.

Of course, priority inheritance does have its limita-
tions. For example, if you can design your application
to avoid priority inversion entirely, you will likely obtain
somewhat better latencies [Yod04b]. This should be no
surprise, given that priority inheritance adds a pair of con-
text switches to the worst-case latency. That said, priority
inheritance can convert indefinite postponement into a
limited increase in latency, and the software-engineering

Figure 14.14: Priority Inversion and User Input

benefits of priority inheritance may outweigh its latency
costs in many applications.

Another limitation is that it addresses only lock-based
priority inversions within the context of a given operating
system. One priority-inversion scenario that it cannot
address is a high-priority thread waiting on a network
socket for a message that is to be written by a low-priority
process that is preempted by a set of CPU-bound medium-
priority processes. In addition, a potential disadvantage

262 CHAPTER 14. ADVANCED SYNCHRONIZATION

of applying priority inheritance to user input is fancifully
depicted in Figure 14.14.

A final limitation involves reader-writer locking. Sup-
pose that we have a very large number of low-priority
threads, perhaps even thousands of them, each of which
read-holds a particular reader-writer lock. Suppose that all
of these threads are preempted by a set of medium-priority
threads, with at least one medium-priority thread per CPU.
Finally, suppose that a high-priority thread awakens and
attempts to write-acquire this same reader-writer lock.
No matter how vigorously we boost the priority of the
threads read-holding this lock, it could well be a good
long time before the high-priority thread can complete its
write-acquisition.

There are a number of possible solutions to this reader-
writer lock priority-inversion conundrum:

1. Only allow one read-acquisition of a given reader-
writer lock at a time. (This is the approach tradition-
ally taken by the Linux kernel’s -rt patchset.)

2. Only allow N read-acquisitions of a given reader-
writer lock at a time, where N is the number of
CPUs.

3. Only allow N read-acquisitions of a given reader-
writer lock at a time, where N is a number specified
somehow by the developer. There is a good chance
that the Linux kernel’s -rt patchset will someday take
this approach.

4. Prohibit high-priority threads from write-acquiring
reader-writer locks that are ever read-acquired by
threads running at lower priorities. (This is a variant
of the priority ceiling protocol [SRL90b].)

Quick Quiz 14.5: But if you only allow one reader at
a time to read-acquire a reader-writer lock, isn’t that the
same as an exclusive lock???

In some cases, reader-writer lock priority inversion can
be avoided by converting the reader-writer lock to RCU,
as briefly discussed in the next section.

Preemptible RCU can sometimes be used as a re-
placement for reader-writer locking [MW07, MBWW12,
McK14d], as was discussed in Section 9.5. Where it can
be used, it permits readers and updaters to run concur-
rently, which prevents low-priority readers from inflicting
any sort of priority-inversion scenario on high-priority
updaters. However, for this to be useful, it is necessary to
be able to preempt long-running RCU read-side critical

Listing 14.2: Preemptible Linux-Kernel RCU
1 void __rcu_read_lock(void)
2 {
3 current->rcu_read_lock_nesting++;
4 barrier();
5 }
6
7 void __rcu_read_unlock(void)
8 {
9 struct task_struct *t = current;

10
11 if (t->rcu_read_lock_nesting != 1) {
12 --t->rcu_read_lock_nesting;
13 } else {
14 barrier();
15 t->rcu_read_lock_nesting = INT_MIN;
16 barrier();
17 if (ACCESS_ONCE(t->rcu_read_unlock_special.s))
18 rcu_read_unlock_special(t);
19 barrier();
20 t->rcu_read_lock_nesting = 0;
21 }
22 }

sections [GMTW08]. Otherwise, long RCU read-side
critical sections would result in excessive real-time laten-
cies.

A preemptible RCU implementation was therefore
added to the Linux kernel. This implementation avoids
the need to individually track the state of each and every
task in the kernel by keeping lists of tasks that have been
preempted within their current RCU read-side critical sec-
tions. A grace period is permitted to end: (1) Once all
CPUs have completed any RCU read-side critical sec-
tions that were in effect before the start of the current
grace period and (2) Once all tasks that were preempted
while in one of those pre-existing critical sections have
removed themselves from their lists. A simplified ver-
sion of this implementation is shown in Listing 14.2. The
__rcu_read_lock() function spans lines 1-5 and the
__rcu_read_unlock() function spans lines 7-22.

Line 3 of __rcu_read_lock() increments a per-task
count of the number of nested rcu_read_lock() calls,
and line 4 prevents the compiler from reordering the sub-
sequent code in the RCU read-side critical section to
precede the rcu_read_lock().

Line 11 of __rcu_read_unlock() checks to see if
the nesting level count is one, in other words, if this
corresponds to the outermost rcu_read_unlock() of a
nested set. If not, line 12 decrements this count, and con-
trol returns to the caller. Otherwise, this is the outermost
rcu_read_unlock(), which requires the end-of-critical-
section handling carried out by lines 14-20.

Line 14 prevents the compiler from reordering the code
in the critical section with the code comprising the rcu_
read_unlock(). Line 15 sets the nesting count to a large

14.3. PARALLEL REAL-TIME COMPUTING 263

negative number in order to prevent destructive races
with RCU read-side critical sections contained within
interrupt handlers [McK11a], and line 16 prevents the
compiler from reordering this assignment with line 17’s
check for special handling. If line 17 determines that
special handling is required, line 18 invokes rcu_read_
unlock_special() to carry out that special handling.

There are several types of special handling that can
be required, but we will focus on that required when the
RCU read-side critical section has been preempted. In
this case, the task must remove itself from the list that it
was added to when it was first preempted within its RCU
read-side critical section. However, it is important to note
that these lists are protected by locks, which means that
rcu_read_unlock() is no longer lockless. However,
the highest-priority threads will not be preempted, and
therefore, for those highest-priority threads, rcu_read_
unlock() will never attempt to acquire any locks. In
addition, if implemented carefully, locking can be used to
synchronize real-time software [Bra11].

Whether or not special handling is required, line 19
prevents the compiler from reordering the check on line 17
with the zeroing of the nesting count on line 20.

Quick Quiz 14.6: Suppose that preemption occurs just
after the load from t->rcu_read_unlock_special.s
on line 17 of Listing 14.2. Mightn’t that result in the task
failing to invoke rcu_read_unlock_special(), thus
failing to remove itself from the list of tasks blocking the
current grace period, in turn causing that grace period to
extend indefinitely?

This preemptible RCU implementation enables real-
time response for read-mostly data structures without the
delays inherent to priority boosting of large numbers of
readers.

Preemptible spinlocks are an important part of the -rt
patchset due to the long-duration spinlock-based criti-
cal sections in the Linux kernel. This functionality has
not yet reached mainline: Although they are a conceptu-
ally simple substitution of sleeplocks for spinlocks, they
have proven relatively controversial.9 However, they are
quite necessary to the task of achieving real-time latencies
down in the tens of microseconds.

There are of course any number of other Linux-kernel
components that are critically important to achieving

9 In addition, development of the -rt patchset has slowed in recent
years, perhaps because the real-time functionality that is already in
the mainline Linux kernel suffices for a great many use cases [Edg13,
Edg14]. However, OSADL (http://osadl.org/) is working to raise
funds to move the remaining code from the -rt patchset to mainline.

world-class real-time latencies, most recently deadline
scheduling, however, those listed in this section give a
good feeling for the workings of the Linux kernel aug-
mented by the -rt patchset.

14.3.5.2 Polling-Loop Real-Time Support

At first glance, use of a polling loop might seem to avoid
all possible operating-system interference problems. Af-
ter all, if a given CPU never enters the kernel, the kernel
is completely out of the picture. And the traditional ap-
proach to keeping the kernel out of the way is simply
not to have a kernel, and many real-time applications do
indeed run on bare metal, particularly those running on
eight-bit microcontrollers.

One might hope to get bare-metal performance on a
modern operating-system kernel simply by running a
single CPU-bound user-mode thread on a given CPU,
avoiding all causes of interference. Although the reality
is of course more complex, it is becoming possible to
do just that, courtesy of the NO_HZ_FULL implementa-
tion led by Frederic Weisbecker [Cor13] that has been
accepted into version 3.10 of the Linux kernel. Neverthe-
less, considerable care is required to properly set up such
an environment, as it is necessary to control a number of
possible sources of OS jitter. The discussion below cov-
ers the control of several sources of OS jitter, including
device interrupts, kernel threads and daemons, scheduler
real-time throttling (this is a feature, not a bug!), timers,
non-real-time device drivers, in-kernel global synchro-
nization, scheduling-clock interrupts, page faults, and
finally, non-real-time hardware and firmware.

Interrupts are an excellent source of large amounts of
OS jitter. Unfortunately, in most cases interrupts are ab-
solutely required in order for the system to communicate
with the outside world. One way of resolving this conflict
between OS jitter and maintaining contact with the out-
side world is to reserve a small number of housekeeping
CPUs, and to force all interrupts to these CPUs. The
Documentation/IRQ-affinity.txt file in the Linux
source tree describes how to direct device interrupts to
specified CPU, which as of early 2015 involves something
like the following:

echo 0f > /proc/irq/44/smp_affinity

This command would confine interrupt #44 to CPUs 0-
3. Note that scheduling-clock interrupts require special
handling, and are discussed later in this section.

A second source of OS jitter is due to kernel threads
and daemons. Individual kernel threads, such as RCU’s

http://osadl.org/

264 CHAPTER 14. ADVANCED SYNCHRONIZATION

grace-period kthreads (rcu_bh, rcu_preempt, and rcu_
sched), may be forced onto any desired CPUs using the
taskset command, the sched_setaffinity() system
call, or cgroups.

Per-CPU kthreads are often more challenging, some-
times constraining hardware configuration and workload
layout. Preventing OS jitter from these kthreads requires
either that certain types of hardware not be attached to
real-time systems, that all interrupts and I/O initiation
take place on housekeeping CPUs, that special kernel
Kconfig or boot parameters be selected in order to direct
work away from the worker CPUs, or that worker CPUs
never enter the kernel. Specific per-kthread advice may
be found in the Linux kernel source Documentation di-
rectory at kernel-per-CPU-kthreads.txt.

A third source of OS jitter in the Linux kernel for
CPU-bound threads running at real-time priority is the
scheduler itself. This is an intentional debugging feature,
designed to ensure that important non-realtime work is
allotted at least 50 milliseconds out of each second, even if
there is an infinite-loop bug in your real-time application.
However, when you are running a polling-loop-style real-
time application, you will need to disable this debugging
feature. This can be done as follows:

echo -1 > /proc/sys/kernel/sched_rt_runtime_us

You will of course need to be running as root to ex-
ecute this command, and you will also need to care-
fully consider the Spiderman principle. One way to
minimize the risks is to offload interrupts and kernel
threads/daemons from all CPUs running CPU-bound real-
time threads, as described in the paragraphs above. In
addition, you should carefully read the material in the
Documentation/scheduler directory. The material in
the sched-rt-group.txt file is particularly important,
especially if you are using the cgroups real-time features
enabled by the CONFIG_RT_GROUP_SCHED Kconfig pa-
rameter, in which case you should also read the material
in the Documentation/cgroups directory.

A fourth source of OS jitter comes from timers. In
most cases, keeping a given CPU out of the kernel will
prevent timers from being scheduled on that CPU. One
important execption are recurring timers, where a given
timer handler posts a later occurrence of that same timer.
If such a timer gets started on a given CPU for any reason,
that timer will continue to run periodically on that CPU,
inflicting OS jitter indefinitely. One crude but effective
way to offload recurring timers is to use CPU hotplug to
offline all worker CPUs that are to run CPU-bound real-
time application threads, online these same CPUs, then

start your real-time application.
A fifth source of OS jitter is provided by device driv-

ers that were not intended for real-time use. For an old
canonical example, in 2005, the VGA driver would blank
the screen by zeroing the frame buffer with interrupts
disabled, which resulted in tens of milliseconds of OS
jitter. One way of avoiding device-driver-induced OS
jitter is to carefully select devices that have been used
heavily in real-time systems, and which have therefore
had their real-time bugs fixed. Another way is to confine
the devices interrupts and all code using that device to
designated housekeeping CPUs. A third way is to test
the device’s ability to support real-time workloads and fix
any real-time bugs.10

A sixth source of OS jitter is provided by some in-
kernel full-system synchronization algorithms, perhaps
most notably the global TLB-flush algorithm. This can
be avoided by avoiding memory-unmapping operations,
and especially avoiding unmapping operations within the
kernel. As of early 2015, the way to avoid in-kernel un-
mapping operations is to avoid unloading kernel modules.

A seventh source of OS jitter is provided by scheduling-
clock interrrupts and RCU callback invocation. These
may be avoided by building your kernel with the NO_HZ_
FULL Kconfig parameter enabled, and then booting with
the nohz_full= parameter specifying the list of worker
CPUs that are to run real-time threads. For example,
nohz_full=2-7 would designate CPUs 2, 3, 4, 5, 6,
and 7 as worker CPUs, thus leaving CPUs 0 and 1 as
housekeeping CPUs. The worker CPUs would not incur
scheduling-clock interrupts as long as there is no more
than one runnable task on each worker CPU, and each
worker CPU’s RCU callbacks would be invoked on one
of the housekeeping CPUs. A CPU that has suppressed
scheduling-clock interrupts due to there only being one
runnable task on that CPU is said to be in adaptive ticks
mode.

As an alternative to the nohz_full= boot parameter,
you can build your kernel with NO_HZ_FULL_ALL, which
will designate CPU 0 as a housekeeping CPU and all
other CPUs as worker CPUs. Either way, it is important
to ensure that you have designated enough housekeeping
CPUs to handle the housekeeping load imposed by the
rest of the system, which requires careful benchmarking
and tuning.

Of course, there is no free lunch, and NO_HZ_FULL is
10 If you take this approach, please submit your fixes upstream so

that others can benefit. Keep in mind that when you need to port your
application to a later version of the Linux kernel, you will be one of
those “others”.

14.3. PARALLEL REAL-TIME COMPUTING 265

Listing 14.3: Locating Sources of OS Jitter
1 cd /sys/kernel/debug/tracing
2 echo 1 > max_graph_depth
3 echo function_graph > current_tracer
4 # run workload
5 cat per_cpu/cpuN/trace

no exception. As noted earlier, NO_HZ_FULL makes ker-
nel/user transitions more expensive due to the need for
delta process accounting and the need to inform kernel
subsystems (such as RCU) of the transitions. It also pre-
vents CPUs running processes with POSIX CPU timers
enabled from entering adaptive-ticks mode. Additional
limitations, tradeoffs, and configuration advice may be
found in Documentation/timers/NO_HZ.txt.

An eighth source of OS jitter is page faults. Because
most Linux implementations use an MMU for memory
protection, real-time applications running on these sys-
tems can be subject to page faults. Use the mlock() and
mlockall() system calls to pin your application’s pages
into memory, thus avoiding major page faults. Of course,
the Spiderman principle applies, because locking down
too much memory may prevent the system from getting
other work done.

A ninth source of OS jitter is unfortunately the hard-
ware and firmware. It is therefore important to use sys-
tems that have been designed for real-time use. OSADL
runs long-term tests of systems, so referring to their web-
site (http://osadl.org/) can be helpful.

Unfortunately, this list of OS-jitter sources can never be
complete, as it will change with each new version of the
kernel. This makes it necessary to be able to track down
additional sources of OS jitter. Given a CPU N running
a CPU-bound usermode thread, the commands shown in
Listing 14.3 will produce a list of all the times that this
CPU entered the kernel. Of course, the N on line 5 must
be replaced with the number of the CPU in question, and
the 1 on line 2 may be increased to show additional levels
of function call within the kernel. The resulting trace can
help track down the source of the OS jitter.

As you can see, obtaining bare-metal performance
when running CPU-bound real-time threads on a general-
purpose OS such as Linux requires painstaking attention
to detail. Automation would of course help, and some au-
tomation has been applied, but given the relatively small
number of users, automation can be expected to appear
relatively slowly. Nevertheless, the ability to gain near-
bare-metal performance while running a general-purpose
operating system promises to ease construction of some
types of real-time systems.

14.3.6 Implementing Parallel Real-Time
Applications

Developing real-time applications is a wide-ranging topic,
and this section can only touch on a few aspects. To this
end, Section 14.3.6.1 looks at a few software components
commonly used in real-time applications, Section 14.3.6.2
provides a brief overview of how polling-loop-based ap-
plications may be implemented, Section 14.3.6.3 gives
a similar overview of streaming applications, and Sec-
tion 14.3.6.4 briefly covers event-based applications.

14.3.6.1 Real-Time Components

As in all areas of engineering, a robust set of components
is essential to productivity and reliability. This section
is not a full catalog of real-time software components—
such a catalog would fill an entire book—but rather a brief
overview of the types of components available.

A natural place to look for real-time software com-
ponents would be algorithms offering wait-free synchro-
nization [Her91], and in fact lockless algorithms are very
important to real-time computing. However, wait-free
synchronization only guarantees forward progress in fi-
nite time, and real-time computing requires algorithms
that meet the far more stringent guarantee of forward
progress in bounded time. After all, a century is finite,
but unhelpful when your deadlines are measured in mil-
liseconds.

Nevertheless, there are some important wait-free algo-
rithms that do provide bounded response time, including
atomic test and set, atomic exchange, atomic fetch-and-
add, single-producer/single-consumer FIFO queues based
on circular arrays, and numerous per-thread partitioned
algorithms. In addition, recent research has confirmed
the observation that algorithms with lock-free guaran-
tees11 provide the same latencies in practice assuming a
stochastically fair scheduler and freedom from fail-stop
bugs [ACHS13].12 This means that lock-free stacks and
queues are appropriate for real-time use.

Quick Quiz 14.7: But isn’t correct operation despite
fail-stop bugs a valuable fault-tolerance property?

In practice, locking is often used in real-time programs,
theoretical concerns notwithstanding. However, under

11 Wait-free algorithms guarantee that all threads make progress in
finite time, while lock-free algorithms only guarantee that at least one
thread will make progress in finite time.

12 This paper also introduces the notion of bounded minimal
progress, which is a welcome step on the part of theory towards real-time
practice.

http://osadl.org/

266 CHAPTER 14. ADVANCED SYNCHRONIZATION

more severe constraints, lock-based algorithms can also
provide bounded latencies [Bra11]. These constraints
include:

1. Fair scheduler. In the common case of a fixed-
priority scheduler, the bounded latencies are pro-
vided only to the highest-priority threads.

2. Sufficient bandwidth to support the workload. An
implementation rule supporting this constraint might
be “There will be at least 50 % idle time on all CPUs
during normal operation,” or, more formally, “The
offered load will be sufficiently low to allow the
workload to be schedulable at all times.”

3. No fail-stop bugs.

4. FIFO locking primitives with bounded acquisition,
handoff, and release latencies. Again, in the com-
mon case of a locking primitive that is FIFO within
priorities, the bounded latencies are provided only
to the highest-priority threads.

5. Some way of preventing unbounded priority inver-
sion. The priority-ceiling and priority-inheritance
disciplines mentioned earlier in this chapter suffice.

6. Bounded nesting of lock acquisitions. We can have
an unbounded number of locks, but only as long as a
given thread never acquires more than a few of them
(ideally only one of them) at a time.

7. Bounded number of threads. In combination with the
earlier constraints, this constraint means that there
will be a bounded number of threads waiting on any
given lock.

8. Bounded time spent in any given critical section.
Given a bounded number of threads waiting on any
given lock and a bounded critical-section duration,
the wait time will be bounded.

Quick Quiz 14.8: I couldn’t help but spot the word
“includes” before this list. Are there other constraints?

This result opens a vast cornucopia of algorithms and
data structures for use in real-time software—and vali-
dates long-standing real-time practice.

Of course, a careful and simple application design is
also extremely important. The best real-time components
in the world cannot make up for a poorly thought-out de-
sign. For parallel real-time applications, synchronization
overheads clearly must be a key component of the design.

14.3.6.2 Polling-Loop Applications

Many real-time applications consist of a single CPU-
bound loop that reads sensor data, computes a control
law, and writes control output. If the hardware regis-
ters providing sensor data and taking control output are
mapped into the application’s address space, this loop
might be completely free of system calls. But beware of
the Spiderman principle: With great power comes great
responsibility, in this case the responsibility to avoid brick-
ing the hardware by making inappropriate references to
the hardware registers.

This arrangement is often run on bare metal, without
the benefits of (or the interference from) an operating
system. However, increasing hardware capability and
increasing levels of automation motivates increasing soft-
ware functionality, for example, user interfaces, logging,
and reporting, all of which can benefit from an operating
system.

One way of gaining much of the benefit of running on
bare metal while still having access to the full features
and functions of a general-purpose operating system is to
use the Linux kernel’s NO_HZ_FULL capability, described
in Section 14.3.5.2. This support first became available in
version 3.10 of the Linux kernel.

14.3.6.3 Streaming Applications

A popular sort of big-data real-time application takes in-
put from numerous sources, processes it internally, and
outputs alerts and summaries. These streaming applica-
tions are often highly parallel, processing different infor-
mation sources concurrently.

One approach for implementing streaming applications
is to use dense-array circular FIFOs to connect different
processing steps [Sut13]. Each such FIFO has only a
single thread producing into it and a (presumably differ-
ent) single thread consuming from it. Fan-in and fan-out
points use threads rather than data structures, so if the
output of several FIFOs needed to be merged, a separate
thread would input from them and output to another FIFO
for which this separate thread was the sole producer. Sim-
ilarly, if the output of a given FIFO needed to be split, a
separate thread would input from this FIFO and output to
several FIFOs as needed.

This discipline might seem restrictive, but it allows
communication among threads with minimal synchro-
nization overhead, and minimal synchronization overhead
is important when attempting to meet tight latency con-
straints. This is especially true when the amount of pro-

14.3. PARALLEL REAL-TIME COMPUTING 267

Listing 14.4: Timed-Wait Test Program
1 if (clock_gettime(CLOCK_REALTIME, ×tart) != 0) {
2 perror("clock_gettime 1");
3 exit(-1);
4 }
5 if (nanosleep(&timewait, NULL) != 0) {
6 perror("nanosleep");
7 exit(-1);
8 }
9 if (clock_gettime(CLOCK_REALTIME, &timeend) != 0) {

10 perror("clock_gettime 2");
11 exit(-1);
12 }

cessing for each step is small, so that the synchronization
overhead is significant compared to the processing over-
head.

The individual threads might be CPU-bound, in which
case the advice in Section 14.3.6.2 applies. On the other
hand, if the individual threads block waiting for data from
their input FIFOs, the advice of the next section applies.

14.3.6.4 Event-Driven Applications

We will use fuel injection into a mid-sized industrial en-
gine as a fanciful example for event-driven applications.
Under normal operating conditions, this engine requires
that the fuel be injected within a one-degree interval sur-
rounding top dead center. If we assume a 1,500-RPM
rotation rate, we have 25 rotations per second, or about
9,000 degrees of rotation per second, which translates
to 111 microseconds per degree. We therefore need to
schedule the fuel injection to within a time interval of
about 100 microseconds.

Suppose that a timed wait was to be used to initiate fuel
injection, although if you are building an engine, I hope
you supply a rotation sensor. We need to test the timed-
wait functionality, perhaps using the test program shown
in Listing 14.4. Unfortunately, if we run this program, we
can get unacceptable timer jitter, even in a -rt kernel.

One problem is that POSIX CLOCK_REALTIME is,
oddly enough, not intended for real-time use. Instead,
it means “realtime” as opposed to the amount of CPU
time consumed by a process or thread. For real-time use,
you should instead use CLOCK_MONOTONIC. However,
even with this change, results are still unacceptable.

Another problem is that the thread must be raised to a
real-time priority by using the sched_setscheduler()
system call. But even this change is insufficient, because
we can still see page faults. We also need to use the
mlockall() system call to pin the application’s memory,
preventing page faults. With all of these changes, results
might finally be acceptable.

In other situations, further adjustments might be needed.
It might be necessary to affinity time-critical threads onto
their own CPUs, and it might also be necessary to affinity
interrupts away from those CPUs. It might be necessary
to carefully select hardware and drivers, and it will very
likely be necessary to carefully select kernel configura-
tion.

As can be seen from this example, real-time computing
can be quite unforgiving.

14.3.6.5 The Role of RCU

Suppose that you are writing a parallel real-time applica-
tion that needs to access data that is subject to gradual
change, perhaps due to changes in temperature, humidity,
and barometric pressure. The real-time response con-
straints on this program are so severe that it is not permis-
sible to spin or block, thus ruling out locking, nor is it
permissible to use a retry loop, thus ruling out sequence
locks and hazard pointers. Fortunately, the temperature
and pressure are normally controlled, so that a default
hard-coded set of data is usually sufficient.

However, the temperature, humidity, and pressure oc-
casionally deviate too far from the defaults, and in such
situations it is necessary to provide data that replaces the
defaults. Because the temperature, humidity, and pres-
sure change gradually, providing the updated values is
not a matter of urgency, though it must happen within
a few minutes. The program is to use a global pointer
imaginatively named cur_cal that normally references
default_cal, which is a statically allocated and initial-
ized structure that contains the default calibration values
in fields imaginatively named a, b, and c. Otherwise,
cur_cal points to a dynamically allocated structure pro-
viding the current calibration values.

Listing 14.5 shows how RCU can be used to solve
this problem. Lookups are deterministic, as shown in
calc_control() on lines 9-15, consistent with real-time
requirements. Updates are more complex, as shown by
update_cal() on lines 17-35.

Quick Quiz 14.9: Given that real-time systems are
often used for safety-critical applications, and given that
runtime memory allocation is forbidden in many safety-
critical situations, what is with the call to malloc()???

Quick Quiz 14.10: Don’t you need some kind of syn-
chronization to protect update_cal()?

This example shows how RCU can provide determinis-
tic read-side data-structure access to real-time programs.

268 CHAPTER 14. ADVANCED SYNCHRONIZATION

Listing 14.5: Real-Time Calibration Using RCU
1 struct calibration {
2 short a;
3 short b;
4 short c;
5 };
6 struct calibration default_cal = { 62, 33, 88 };
7 struct calibration cur_cal = &default_cal;
8
9 short calc_control(short t, short h, short press)

10 {
11 struct calibration *p;
12
13 p = rcu_dereference(cur_cal);
14 return do_control(t, h, press, p->a, p->b, p->c);
15 }
16
17 bool update_cal(short a, short b, short c)
18 {
19 struct calibration *p;
20 struct calibration *old_p;
21
22 old_p = rcu_dereference(cur_cal);
23 p = malloc(sizeof(*p);
24 if (!p)
25 return false;
26 p->a = a;
27 p->b = b;
28 p->c = c;
29 rcu_assign_pointer(cur_cal, p);
30 if (old_p == &default_cal)
31 return true;
32 synchronize_rcu();
33 free(p);
34 return true;
35 }

14.3.7 Real Time vs. Real Fast: How to
Choose?

The choice between real-time and real-fast computing can
be a difficult one. Because real-time systems often inflict
a throughput penalty on non-real-time computing, using
real-time when it is not required can cause problems, as
fancifully depicted by Figure 14.15. On the other hand,
failing to use real-time when it is required can also cause
problems, as fancifully depicted by Figure 14.16. It is
almost enough to make you feel sorry for the boss!

One rule of thumb uses the following four questions to
help you choose:

1. Is average long-term throughput the only goal?

2. Is it permissible for heavy loads to degrade response
times?

3. Is there high memory pressure, ruling out use of the
mlockall() system call?

4. Does the basic work item of your application take
more than 100 milliseconds to complete?

Figure 14.15: The Dark Side of Real-Time Computing

Figure 14.16: The Dark Side of Real-Fast Computing

If the answer to any of these questions is “yes”, you
should choose real-fast over real-time, otherwise, real-
time might be for you.

Choose wisely, and if you do choose real-time, make
sure that your hardware, firmware, and operating system
are up to the job!

The art of progress is to preserve order amid change
and to preserve change amid order.

Alfred North WhiteheadChapter 15

Advanced Synchronization: Memory
Ordering

Causality and sequencing are deeply intuitive, and hackers
often tend to have a much stronger grasp of these con-
cepts than does the general population. These intuitions
can be extremely powerful tools when writing, analyzing,
and debugging both sequential code and parallel code
that makes use of standard mutual-exclusion mechanisms,
especially locking. Unfortunately, these intuitions break
down completely in face of code that fails to use standard
mechanisms, one important example of course being the
code that implements these standard mechanisms, and
another being performance-critical code that uses weaker
synchronization. In fact, some argue that weakness is a
virtue [Alg13]. This chapter will help you gain an un-
derstanding of memory ordering sufficient to implement
synchronization primitives and performance-critical code.

Section 15.1 will demonstrate that real computer sys-
tems can reorder memory references, give some reasons
why they do so, and provide some information on how
to prevent undesired reordering. Sections 15.2 and 15.3
will provide a more complete list of things that hardware
and compilers, respectively can do to unwary parallel
programmers. Section 15.4 follows up with more de-
tail on a few representative hardware platforms. Finally,
Section 15.5 provides some useful rules of thumb.

Quick Quiz 15.1: This material has been almost com-
pletely rewritten since the first edition. Memory ordering
cannot have changed all that in late 2017, so what gives?

15.1 Ordering: Why and How?
One motivation for memory ordering can be seen in the
trivial-seeming litmus test in Listing 15.1 (C-SB+o-o+o-

o.litmus), which at first glance might appear to guar-
antee that the exists clause never triggers.1 After all,
if 0:r2=0 as shown in the exists clause,2 we might
hope that Thread P0()’s load from x1 into r2 must have
happened before Thread P1()’s store to x1, which might
raise further hopes that Thread P1()’s load from x0 into
r2 must happen after Thread P0()’s store to x0, so that
1:r2=2, thus not triggering the exists clause. The ex-
ample is symmetric, so similar reasoning might lead us to
hope that 1:r2=0 guarantees that 0:r2=2. Unfortunately,
the lack of memory barriers dashes these hopes. The
CPU is within its rights to reorder the statements within
both Thread P0() and Thread P1(), even on relatively
strongly ordered systems such as x86.

Quick Quiz 15.2: The compiler can also reorder
Thread P0()’s and Thread P1()’s memory accesses in
Listing 15.1, right?

This willingness to reorder can be confirmed using
tools such as litmus7 [AMT14], which found that the
counter-intuitive ordering happened 314 times out of
100,000,000 trials on my x86 laptop. Oddly enough, the
perfectly legal outcome where both loads return the value
2 occurred less frequently, in this case, only 167 times.3

The lesson here is clear: Increased counterintuitivity does
not necessarily imply decreased probability!

The following sections show exactly where this intu-
ition breaks down, and then puts forward a mental model
of memory ordering that can help you avoid these pitfalls.

1 Purists would instead insist that the exists clause is never satis-
fied, but we use “trigger” here by analogy with assertions.

2 That is, Thread P0()’s instance of local variable r2 equals zero.
See Section 12.2.1 for documentation of litmus-test nomenclature.

3 Please note that results are sensitive to the exact hardware config-
uration, how heavily the system is loaded, and much else besides.

269

270 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.1: Memory Misordering: Store-Buffering Litmus
Test

1 C C-SB+o-o+o-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 WRITE_ONCE(*x0, 2);

10 r2 = READ_ONCE(*x1);
11 }
12
13
14 P1(int *x0, int *x1)
15 {
16 int r2;
17
18 WRITE_ONCE(*x1, 2);
19 r2 = READ_ONCE(*x0);
20 }
21
22 exists (1:r2=0 /\ 0:r2=0)

Section 15.1.1 gives a brief overview of why hardware
misorders memory accesses, and then Section 15.1.2 gives
an equally brief overview of how you can thwart evil
hardware misordering schemes. Finally, Section 15.1.3
lists some basic rules of thumb, which will be further
refined in later sections.

15.1.1 Why Hardware Misordering?

But why does memory misordering happen in the first
place? Can’t CPUs keep track of ordering on their own?
Isn’t that why we have computers in the first place, to
keep track of things?

Many people do indeed expect their computers to keep
track of things, but many also insist that they keep track of
things quickly. However, as seen in Chapter 3, main mem-
ory cannot keep up with modern CPUs, which can execute
hundreds of instructions in the time required to fetch a
single variable from memory. CPUs therefore sport in-
creasingly large caches, as seen back in Figure 3.9, which
means that although the first load by a given CPU from
a given variable will result in an expensive cache miss
as was discussed in Section 3.1.5, subsequent repeated
loads from that variable by that CPU might execute very
quickly because the initial cache miss will have loaded
that variable into that CPU’s cache.

However, it is also necessary to accommodate frequent
concurrent stores from multiple CPUs to a set of shared
variables. In cache-coherent systems, if the caches hold
multiple copies of a given variable, all the copies of that
variable must have the same value. This works extremely

CPU 0

Cache

Store
Buffer

Cache

Store
Buffer

CPU 1

Memory

Figure 15.1: System Architecture With Store Buffers

do I out things of

Look! can order.

Figure 15.2: CPUs Can Do Things Out of Order

well for concurrent loads, but not so well for concurrent
stores: Each store must do something about all copies
of the old value (another cache miss!), which, given the
finite speed of light and the atomic nature of matter, will
be slower than impatient software hackers would like.

CPUs therefore come equipped with store buffers, as
shown in Figure 15.1. When a given CPU stores to a
variable not present in that CPU’s cache, then the new
value is instead placed in that CPU’s store buffer. The
CPU can then proceed immediately, without having to
wait for the store to do something about all the old values
of that variable residing in other CPUs’ caches.

Although store buffers can greatly increase perfor-
mance, they can cause instructions and memory refer-
ences to execute out of order, which can in turn cause
serious confusion, as illustrated in Figure 15.2. In partic-
ular, these store buffers cause the memory misordering
shown in the store-buffering litmus test in Listing 15.1.

15.1. ORDERING: WHY AND HOW? 271

Table 15.1: Memory Misordering: Store-Buffering Sequence of Events

CPU 0 CPU 1

Instruction Store Buffer Cache Instruction Store Buffer Cache

1 (Initial state) x1==0 (Initial state) x0==0
2 x0 = 2; x0==2 x1==0 x1 = 2; x1==2 x0==0
3 r2 = x1; (0) x0==2 x1==0 r2 = x0; (0) x1==2 x0==0
4 (Read-invalidate) x0==2 x0==0 (Read-invalidate) x1==2 x1==0
5 (Finish store) x0==2 (Finish store) x1==2

Table 15.1 shows how this memory misordering can
happen. Row 1 shows the initial state, where CPU 0
has x1 in its cache and CPU 1 has x0 in its cache, both
variables having a value of zero. Row 2 shows the state
change due to each CPU’s store (lines 9 and 18 of List-
ing 15.1). Because neither CPU has the stored-to variable
in its cache, both CPUs record their stores in their respec-
tive store buffers.

Quick Quiz 15.3: But wait!!! On row 2 of Table 15.1
both x0 and x1 each have two values at the same time,
namely zero and two. How can that possibly work???

Row 3 shows the two loads (lines 10 and 19 of List-
ing 15.1). Because the variable being loaded by each CPU
is in that CPU’s cache, each load immediately returns the
cached value, which in both cases is zero.

But the CPUs are not done yet: Sooner or later, they
must empty their store buffers. Because caches move data
around in relatively large blocks called cachelines, and
because each cacheline can hold several variables, each
CPU must get the cacheline into its own cache so that it
can update the portion of that cacheline corresponding to
the variable in its store buffer, but without disturbing any
other part of the cacheline. Each CPU must also ensure
that the cacheline is not present in any other CPU’s cache,
for which a read-invalidate operation is used. As shown
on row 4, after both read-invalidate operations complete,
the two CPUs have traded cachelines, so that CPU 0’s
cache now contains x0 and CPU 1’s cache now contains
x1. Once these two variables are in their new homes,
each CPU can flush its store buffer into the corresponding
cache line, leaving each variable with its final value as
shown on row 5.

Quick Quiz 15.4: But don’t the values also need to be
flushed from the cache to main memory?

In summary, store buffers are needed to allow CPUs to
handle store instructions efficiently, but they can result in
counter-intuitive memory misordering.

But what do you do if your algorithm really needs its

memory references to be ordered? For example, suppose
that you are communicating with a driver using a pair of
flags, one that says whether or not the driver is running
and the other that says whether there is a request pending
for that driver. The requester needs to set the request-
pending flag, then check the driver-running flag, and if
false, wake the driver. Once the driver has serviced all the
pending requests that it knows about, it needs to clear its
driver-running flag, then check the request-pending flag
to see if it needs to restart. This very reasonable approach
cannot work unless there is some way to make sure that
the hardware processes the stores and loads in order. This
is the subject of the next section.

15.1.2 How to Force Ordering?

It turns out that there are compiler directives and standard
synchronization primitives (such as locking and RCU)
that are responsible for maintaining the illusion of order-
ing through use of memory barriers (for example, smp_
mb() in the Linux kernel). These memory barriers can
be explicit instructions, as they are on ARM, POWER,
Itanium, and Alpha, or they can be implied by other in-
structions, as they often are on x86. Since these standard
synchronization primitives preserve the illusion of order-
ing, your path of least resistance is to simply use these
primitives, thus allowing you to stop reading this section.

However, if you need to implement the synchronization
primitives themselves, or if you are simply interested in
understanding how memory ordering works, read on! The
first stop on the journey is Listing 15.2 (C-SB+o-mb-
o+o-mb-o.litmus), which places an smp_mb() Linux-
kernel full memory barrier between the store and load in
both P0() and P1(), but is otherwise identical to List-
ing 15.1. These barriers prevent the counter-intuitive
outcome from happening on 100,000,000 trials on my
x86 laptop. Interestingly enough, the added overhead
due to these barriers causes the legal outcome where both

272 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.2: Memory Ordering: Store-Buffering Litmus Test
1 C C-SB+o-mb-o+o-mb-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 WRITE_ONCE(*x0, 2);

10 smp_mb();
11 r2 = READ_ONCE(*x1);
12 }
13
14
15 P1(int *x0, int *x1)
16 {
17 int r2;
18
19 WRITE_ONCE(*x1, 2);
20 smp_mb();
21 r2 = READ_ONCE(*x0);
22 }
23
24 exists (1:r2=0 /\ 0:r2=0)

loads return the value two to happen more than 800,000
times, as opposed to only 167 times for the barrier-free
code in Listing 15.1.

These barriers have a profound effect on ordering, as
can be seen in Table 15.2. Although the first two rows
are the same as in Table 15.1 and although the smp_mb()
instructions on row 3 do not change state in and of them-
selves, they do cause the stores to complete (rows 4 and 5)
before the loads (row 6), which rules out the counter-
intuitive outcome shown in Table 15.1. Note that variables
x0 and x1 each still have more than one value on row 2,
however, as promised earlier, the smp_mb() instances
straighten things out in the end.

Although full barriers such as smp_mb() have ex-
tremely strong ordering guarantees, their strength comes
at a high price. A great many situations can be handled
with much weaker ordering guarantees that use much
cheaper memory-ordering instructions, or, in some case,
no memory-ordering instructions at all.

Table 15.3 provides a cheatsheet of the Linux kernel’s
ordering primitives and their guarantees. Each row corre-
sponds to a primitive or category of primitives that might
or might not provide ordering, with the columns labeled
“Prior Ordered Operation” and “Subsequent Ordered Op-
eration” being the operations that might (or might not)
be ordered against. Cells containing “Y” indicate that
ordering is supplied unconditionally, while other charac-
ters indicate that ordering is supplied only partially or
conditionally. Blank cells indicate that no ordering is
supplied.

The “Store” row also covers the store portion of an
atomic RMW operation. In addition, the “Load” row cov-
ers the load component of a successful value-returning
_relaxed() RMW atomic operation, although the com-
bined “_relaxed() RMW Operations” line provides a
convenient combined reference in the value-returning
case. A CPU executing unsuccessful value-returning
atomic RMW operations must invalidate the correspond-
ing variable from all other CPUs’ caches. Therefore,
oddly enough, unsuccessful value-returning atomic RMW
operations have many of the properties of a store, which
means that the “_relaxed() RMW Operations” line also
applies to unsuccessful value-returning atomic RMW op-
erations.

The *_acquire row covers smp_load_acquire(),
cmpxchg_acquire(), xchg_acquire(), and so on;
the *_release row covers smp_store_release(),
cmpxchg_release(), xchg_release(), and so on;
and the “Successful full-strength non-void RMW”
row covers atomic_add_return(), atomic_add_
unless(), atomic_dec_and_test(), cmpxchg(),
xchg(), and so on. The “Successful” qualifiers apply to
primitives such as atomic_add_unless(), cmpxchg_
acquire(), and cmpxchg_release(), which have no
effect on either memory or on ordering when they indicate
failure, as indicated by the earlier “_relaxed() RMW
operation” row.

Column “C” indicates cumulativity and propagation,
as explained in Sections 15.2.7.1 and 15.2.7.2. In the
meantime, this column can usually be ignored when there
are at most two threads involved.

Quick Quiz 15.5: The rows in Table 15.3 seem quite
random and confused. Whatever is the conceptual basis
of this table???

Quick Quiz 15.6: Why is Table 15.3 miss-
ing smp_mb__after_unlock_lock() and smp_mb__
after_spinlock()?

It is important to note that this table is just a cheat
sheet, and is therefore in no way a replacement for a good
understanding of memory ordering. To begin building
such an understanding, the next section will present some
basic rules of thumb.

15.1.3 Basic Rules of Thumb

This section presents some basic rules of thumb that are
“good and sufficient” for a great many situations. In fact,
you could write a great deal of concurrent code having
excellent performance and scalability without needing

15.1. ORDERING: WHY AND HOW? 273

Table 15.2: Memory Ordering: Store-Buffering Sequence of Events

CPU 0 CPU 1

Instruction Store Buffer Cache Instruction Store Buffer Cache

1 (Initial state) x1==0 (Initial state) x0==0
2 x0 = 2; x0==2 x1==0 x1 = 2; x1==2 x0==0
3 smp_mb(); x0==2 x1==0 smp_mb(); x1==2 x0==0
4 (Read-invalidate) x0==2 x0==0 (Read-invalidate) x1==2 x1==0
5 (Finish store) x0==2 (Finish store) x1==2
6 r2 = x1; (2) x1==2 r2 = x0; (2) x0==2

Given Y0 before Y1 ...

.... memory barriers guarantee X0 before X1.Memory
Reference X0

Memory
Barrier

Memory
Reference Y0

Memory
Reference Y1

Memory
Barrier

Memory
Reference X1

CPU 1

CPU 0

Figure 15.3: Memory Barriers Provide Conditional If-
Then Ordering

anything more than these rules of thumb.
Quick Quiz 15.7: But how can I know that a given

project can be designed and coded within the confines of
these rules of thumb?

A given thread sees its own accesses in order. This
rule assumes that loads and stores from/to shared vari-
ables use READ_ONCE() and WRITE_ONCE(), respec-
tively. Otherwise, the compiler can profoundly scram-
ble4 your code, and sometimes the CPU can do a bit of
scrambling as well (as is discussed in Section 15.4.4).

4 Compiler writers often prefer the word “optimize”.

Ordering has conditional if-then semantics. Fig-
ure 15.3 illustrates this for memory barriers. Assuming
that both memory barriers are strong enough (and when in
doubt, you can always use smp_mb()), if CPU 1’s access
Y1 happens after CPU 0’s access Y0, then CPU 1’s access
X1 is guaranteed to happen after CPU 0’s access X1.

Quick Quiz 15.8: How can you tell which memory
barriers are strong enough for a given use case?

Listing 15.2 is a case in point. The smp_mb() on
line 10 and 20 serve as the barriers, the store to x0 on
line 9 as X0, the load from x1 on line 11 as Y0, the store
to x1 on line 19 as Y1, and the load from x0 as X1. Ap-
plying the if-then rule step by step, we know that the store
to x1 on line 19 happens after the load from x1 on line 11
if P0()’s local variable r2 is set to the value zero. The if-
then rule would then state that the load from x0 on line 21
happens after the store to x0 on line 9. In other words,
P1()’s local variable r2 is guaranteed to end up with the
value two only if P0()’s local variable r2 ends up with
the value zero. This underscores the point that memory
ordering guarantees are conditional, not absolute.

Although Figure 15.3 specifically mentions memory
barriers, the same rule applies to the rest of the Linux
kernel’s ordering operations.

Ordering operations must be paired. If you carefully
order the operations in one thread, but then fail to do so
in another thread, then there is no ordering. Both threads
must provide ordering for the if-then rule to apply.5

Ordering operations almost never speed things up.
If you find yourself tempted to add a memory barrier in
an attempt to force a prior store to be flushed to memory
faster, resist! Adding ordering usually slows things down.
Of course, there are situations where adding instructions

5 In Section 15.2.7.2, pairing will be generalized to cycles.

274 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Table 15.3: Linux-Kernel Memory-Ordering Cheat Sheet

Prior Ordered Operation Subsequent Ordered Operation

Operation Providing Ordering C Self R W RMW Self R W DR DW RMW SV

Store, for example, WRITE_ONCE() Y Y
Load, for example, READ_ONCE() Y Y Y Y
_relaxed() RMW operation Y Y Y Y
smp_read_barrier_depends() Y Y Y
*_dereference() Y Y Y Y
Successful *_acquire() R Y Y Y Y Y Y
Successful *_release() C Y Y Y W Y
smp_rmb() Y R Y Y R
smp_wmb() Y W Y Y W
smp_mb() and synchronize_rcu() CP Y Y Y Y Y Y Y Y
Successful full-strength non-void RMW CP Y Y Y Y Y Y Y Y Y Y Y
smp_mb__before_atomic() CP Y Y Y a a a a Y
smp_mb__after_atomic() CP a a Y Y Y Y Y Y

Key: C: Ordering is cumulative
P: Ordering propagates
R: Read, for example, READ_ONCE(), or read portion of RMW
W: Write, for example, WRITE_ONCE(), or write portion of RMW
Y: Provides the specified ordering
a: Provides specified ordering given intervening RMW atomic operation

DR: Dependent read (address dependency, Section 15.2.3)
DW: Dependent write (address, data, or control dependency, Sections 15.2.3–15.2.5)

RMW: Atomic read-modify-write operation
Self: Orders self, as opposed to accesses both before and after
SV: Orders later accesses to the same variable

Applies to Linux kernel v4.15 and later.

speeds things up, but careful benchmarking is required
in such cases. And even then, it is quite possible that
although you sped things up a little bit on your system,
you might well have slowed things down significantly on
your users’ systems. Or on your future system.

Ordering operations are not magic. When your pro-
gram is failing due to some race condition, it is often
tempting to toss in a few memory-ordering operations in
an attempt to barrier your bugs out of existence. A far bet-
ter reaction is to use higher-level primitives in a carefully
designed manner. With concurrent programming, it is
almost always easier to design your bugs out of existence
than to hack them out of existence!

These are only rough rules of thumb. Although these
rules of thumb cover the vast majority of situations seen
in actual practice, as with any set of rules of thumb, they

do have their limits. The next section will demonstrate
some of these limits by introducing trick-and-trap lit-
mus tests that are intended to insult your intuition while
increasing your understanding. These litmus tests will
also illuminate many of the concepts represented by the
Linux-kernel memory-ordering cheat sheet shown in Ta-
ble 15.3, and can be automatically analyzed given proper
tooling [AMM+18]. Section 15.5 will circle back to this
cheat sheet, presenting a more sophisicated set of rules of
thumb in light of learnings from all the intervening tricks
and traps.

Quick Quiz 15.9: Wait!!! Where do I find this tooling
that automatically analyzes litmus tests???

15.2 Tricks and Traps
Now that you know that hardware can reorder memory
accesses and that you can prevent it from doing so, the

15.2. TRICKS AND TRAPS 275

Listing 15.3: Software Logic Analyzer
1 state.variable = mycpu;
2 lasttb = oldtb = firsttb = gettb();
3 while (state.variable == mycpu) {
4 lasttb = oldtb;
5 oldtb = gettb();
6 if (lasttb - firsttb > 1000)
7 break;
8 }

next step is to get you to admit that your intuition has a
problem. This painful task is taken up by Section 15.2.1,
which presents some code demonstrating that scalar vari-
ables can take on multiple values simultaneously, and by
Sections 15.2.2 through 15.2.7, which show a series of
intuitively correct code fragments that fail miserably on
real hardware. Once your intuition has made it through
the grieving process, later sections will summarize the
basic rules that memory ordering follows.

But first, let’s take a quick look at just how many values
a single variable might have at a single point in time.

15.2.1 Variables With Multiple Values

It is natural to think of a variable as taking on a well-
defined sequence of values in a well-defined, global order.
Unfortunately, the next stop on the journey says “goodbye”
to this comforting fiction. Hopefully, you already started
to say “goodbye” in response to row 2 of Tables 15.1
and 15.2, and if so, the purpose of this section is to drive
this point home.

To this end, consider the program fragment shown in
Listing 15.3. This code fragment is executed in parallel
by several CPUs. Line 1 sets a shared variable to the cur-
rent CPU’s ID, line 2 initializes several variables from a
gettb() function that delivers the value of a fine-grained
hardware “timebase” counter that is synchronized among
all CPUs (not available from all CPU architectures, unfor-
tunately!), and the loop from lines 3-8 records the length
of time that the variable retains the value that this CPU
assigned to it. Of course, one of the CPUs will “win”,
and would thus never exit the loop if not for the check on
lines 6-7.

Quick Quiz 15.10: What assumption is the code frag-
ment in Listing 15.3 making that might not be valid on
real hardware?

Upon exit from the loop, firsttb will hold a time-
stamp taken shortly after the assignment and lasttb will
hold a timestamp taken before the last sampling of the
shared variable that still retained the assigned value, or a
value equal to firsttb if the shared variable had changed

before entry into the loop. This allows us to plot each
CPU’s view of the value of state.variable over a 532-
nanosecond time period, as shown in Figure 15.4. This
data was collected in 2006 on 1.5 GHz POWER5 system
with 8 cores, each containing a pair of hardware threads.
CPUs 1, 2, 3, and 4 recorded the values, while CPU 0 con-
trolled the test. The timebase counter period was about
5.32 ns, sufficiently fine-grained to allow observations of
intermediate cache states.

1

2

4

2

2

2

0 100 200 300 400 500 (ns)

3

CPU 2

CPU 3

CPU 4

CPU 1

Figure 15.4: A Variable With Multiple Simultaneous
Values

Each horizontal bar represents the observations of a
given CPU over time, with the gray regions to the left
indicating the time before the corresponding CPU’s first
measurement. During the first 5 ns, only CPU 3 has an
opinion about the value of the variable. During the next
10 ns, CPUs 2 and 3 disagree on the value of the variable,
but thereafter agree that the value is “2”, which is in fact
the final agreed-upon value. However, CPU 1 believes
that the value is “1” for almost 300 ns, and CPU 4 believes
that the value is “4” for almost 500 ns.

Quick Quiz 15.11: How could CPUs possibly have
different views of the value of a single variable at the
same time?

Quick Quiz 15.12: Why do CPUs 2 and 3 come to
agreement so quickly, when it takes so long for CPUs 1
and 4 to come to the party?

And if you think that the situation with four CPUs was
intriguing, consider Figure 15.5, which shows the same
situation, but with 15 CPUs each assigning their number
to a single shared variable at time t = 0. Both diagrams
in the figure are drawn in the same way as Figure 15.4.
The only difference is that the unit of horizontal axis is
timebase ticks, with each tick lasting about 5.3 nanosec-
onds. The entire sequence therefore lasts a bit longer than
the events recorded in Figure 15.4, consistent with the in-
crease in number of CPUs. The upper diagram shows the
overall picture, while the lower one shows the zoom-up
of first 50 timebase ticks.

Again, CPU 0 coordinates the test, so does not record
any values.

276 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

1 6 4 10 15 3 9

2 3 9

3 9

4 10 15 12 9

5 10 15 12 9

6 2 15 9

7 2 15 9

8 9

9

10 15 12 9

11 10 15 12 9

12 9

13 12 9

14 15 12 9

15 12 9

0 50 100 150 200 250 300 350 400 450 500 (tick)

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 11

CPU 12

CPU 13

CPU 14

CPU 15

1

2

3

4

5

6

7

8 9

9

10

11

12

13

14 15

15

0 5 10 15 20 25 30 35 40 45 (tick)

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 11

CPU 12

CPU 13

CPU 14

CPU 15

Figure 15.5: A Variable With More Simultaneous Values

15.2. TRICKS AND TRAPS 277

All CPUs eventually agree on the final value of 9, but
not before the values 15 and 12 take early leads. Note
that there are fourteen different opinions on the variable’s
value at time 21 indicated by the vertical line in the lower
diagram. Note also that all CPUs see sequences whose
orderings are consistent with the directed graph shown
in Figure 15.6. Nevertheless, both figures underscore
the importance of proper use of memory-ordering opera-
tions, such as memory barriers, for code that cares about
memory ordering.

1

6

2 4

15

3 12

9

10

5

7

8

11

13

14

Figure 15.6: Possible Global Orders With More Simulta-
neous Values

How many values can a single variable take on at a
single point in time? As many as one per store buffer in
the system! We have therefore entered a regime where we
must bid a fond farewell to comfortable intuitions about
values of variables and the passage of time. This is the
regime where memory-ordering operations are needed.

All that aside, it is important to remember the lessons
from Chapters 3 and 6. Having all CPUs store concur-
rently to the same variable is absolutely no way to design
a parallel program, at least not if performance and scala-
bility are at all important to you.

Unfortunately, memory ordering has many other ways
of insulting your intuition, and not all of these ways con-
flict with performance and scalability. The next section
overviews reordering of unrelated memory reference.

Listing 15.4: Message-Passing Litmus Test (No Ordering)
1 C C-MP+o-wmb-o+o-o
2
3 {
4 }
5
6
7 P0(int* x0, int* x1) {
8
9 WRITE_ONCE(*x0, 2);

10 smp_wmb();
11 WRITE_ONCE(*x1, 2);
12
13 }
14
15 P1(int* x0, int* x1) {
16
17 int r2;
18 int r3;
19
20 r2 = READ_ONCE(*x1);
21 r3 = READ_ONCE(*x0);
22
23 }
24
25 exists (1:r2=2 /\ 1:r3=0)

15.2.2 Memory-Reference Reordering
Section 15.1.1 showed that even relatively strongly or-
dered systems like x86 can reorder prior stores with later
loads, at least when the store and load are to different
variables. This section builds on that result, looking at the
other combinations of loads and stores.

15.2.2.1 Load Followed By Load

Listing 15.4 (C-MP+o-wmb-o+o-o.litmus) shows the
classic message-passing litmus test, where x0 is the mes-
sage and x1 is a flag indicating whether or not a message
is available. In this test, the smp_wmb() forces P0()
stores to be ordered, but no ordering is specified for the
loads. Relatively strongly ordered architectures, such as
x86, do enforce ordering. However, weakly ordered archi-
tectures often do not [AMP+11]. Therefore, the exists
clause on line 25 of the listing can trigger.

One rationale for reordering loads from different loca-
tions is that doing so allows execution to proceed when
an earlier load misses the cache, but the values for later
loads are already present.

Quick Quiz 15.13: But why make load-load reorder-
ing visible to the user? Why not just use speculative
execution to allow execution to proceed in the common
case where there are no intervening stores, in which case
the reordering cannot be visible anyway?

Thus, portable code relying on ordered loads must add
explicit ordering, for example, the smp_rmb() shown
on line 20 of Listing 15.5 (C-MP+o-wmb-o+o-rmb-

278 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.5: Enforcing Order of Message-Passing Litmus Test
1 C C-MP+o-wmb-o+o-rmb-o
2
3 {
4 }
5
6 P0(int* x0, int* x1) {
7
8 WRITE_ONCE(*x0, 2);
9 smp_wmb();

10 WRITE_ONCE(*x1, 2);
11
12 }
13
14 P1(int* x0, int* x1) {
15
16 int r2;
17 int r3;
18
19 r2 = READ_ONCE(*x1);
20 smp_rmb();
21 r3 = READ_ONCE(*x0);
22
23 }
24
25 exists (1:r2=2 /\ 1:r3=0)

Listing 15.6: Load-Buffering Litmus Test (No Ordering)
1 C C-LB+o-o+o-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 WRITE_ONCE(*x0, 2);
11 }
12
13
14 P1(int *x0, int *x1)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*x0);
19 WRITE_ONCE(*x1, 2);
20 }
21
22 exists (1:r2=2 /\ 0:r2=2)

o.litmus), which prevents the exists clause from trig-
gering.

15.2.2.2 Load Followed By Store

Listing 15.6 (C-LB+o-o+o-o.litmus) shows the classic
load-buffering litmus test. Although relatively strongly
ordered systems such as x86 or the IBM Mainframe
do not reorder prior loads with subsequent stores, more
weakly ordered architectures really do allow such reorder-
ing [AMP+11]. Therefore, the exists clause on line 22
really can trigger.

Although it is rare for actual hardware to exhibit this

Listing 15.7: Enforcing Ordering of Load-Buffering Litmus
Test

1 C C-LB+o-r+a-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 smp_store_release(x0, 2);
11 }
12
13
14 P1(int *x0, int *x1)
15 {
16 int r2;
17
18 r2 = smp_load_acquire(x0);
19 WRITE_ONCE(*x1, 2);
20 }
21
22 exists (1:r2=2 /\ 0:r2=2)

Listing 15.8: Message-Passing Litmus Test, No Writer Order-
ing (No Ordering)

1 C C-MP+o-o+o-rmb-o
2
3 {
4 }
5
6 P0(int* x0, int* x1) {
7
8 WRITE_ONCE(*x0, 2);
9 WRITE_ONCE(*x1, 2);

10
11 }
12
13 P1(int* x0, int* x1) {
14
15 int r2;
16 int r3;
17
18 r2 = READ_ONCE(*x1);
19 smp_rmb();
20 r3 = READ_ONCE(*x0);
21
22 }
23
24 exists (1:r2=2 /\ 1:r3=0)

reordering [Mar17], one situation where it might be desir-
able to do so is when a load misses the cache, the store buf-
fer is nearly full, and the cacheline for a subsequent store
is ready at hand. Therefore, portable code must enforce
any required ordering, for example, as shown in List-
ing 15.7 (C-LB+o-r+a-o.litmus). The smp_store_
release() and smp_load_acquire() guarantee that
the exists clause on line 22 never triggers.

15.2. TRICKS AND TRAPS 279

Listing 15.9: Message-Passing Address-Dependency Litmus
Test (No Ordering Before v4.15)

1 C C-MP+o-wmb-o+o-addr-o
2
3 {
4 int y=1;
5 int *x1 = &y;
6 }
7
8 P0(int* x0, int** x1) {
9

10 WRITE_ONCE(*x0, 2);
11 smp_wmb();
12 WRITE_ONCE(*x1, x0);
13
14 }
15
16 P1(int** x1) {
17
18 int *r2;
19 int r3;
20
21 r2 = READ_ONCE(*x1);
22 r3 = READ_ONCE(*r2);
23
24 }
25
26 exists (1:r2=x0 /\ 1:r3=1)

15.2.2.3 Store Followed By Store

Listing 15.8 (C-MP+o-o+o-rmb-o.litmus) once again
shows the classic message-passing litmus test, with the
smp_rmb() providing ordering for P1()’s loads, but with-
out any ordering for P0()’s stores. Again, the rela-
tively strongly ordered architectures do enforce ordering,
but weakly ordered architectures do not necessarily do
so [AMP+11], which means that the exists clause can
trigger. One situation in which such reordering could be
beneficial is when the store buffer is full, another store
is ready to execute, but the cacheline needed by the old-
est store is not yet available. In this situation, allowing
stores to complete out of order would allow execution to
proceed. Therefore, portable code must explicitly order
the stores, for example, as shown in Listing 15.5, thus
preventing the exists clause from triggering.

Quick Quiz 15.14: Why should strongly ordered sys-
tems pay the performance price of unnecessary smp_
rmb() and smp_wmb() invocations? Shouldn’t weakly
ordered systems shoulder the full cost of their misordering
choices???

15.2.3 Address Dependencies
An address dependency occurs when the value returned
by a load instruction is used to compute the address used
by a later memory-reference instruction.

Listing 15.9 (C-MP+o-wmb-o+o-addr-o.litmus)

Listing 15.10: Enforced Ordering of Message-Passing Address-
Dependency Litmus Test (Before v4.15)

1 C C-MP+o-wmb-o+ld-addr-o
2
3 {
4 int y=1;
5 int *x1 = &y;
6 }
7
8 P0(int* x0, int** x1) {
9

10 WRITE_ONCE(*x0, 2);
11 smp_wmb();
12 WRITE_ONCE(*x1, x0);
13
14 }
15
16 P1(int** x1) {
17
18 int *r2;
19 int r3;
20
21 r2 = lockless_dereference(*x1); // Obsolete
22 r3 = READ_ONCE(*r2);
23
24 }
25
26 exists (1:r2=x0 /\ 1:r3=1)

shows a linked variant of the message-passing pattern.
The head pointer is x1, which initially references the int
variable y (line 5), which is in turn initialized to the value
1 (line 4). P0() updates head pointer x1 to reference x0
(line 12), but only after initializing it to 2 (line 10) and
forcing ordering (line 11). P1() picks up the head pointer
x1 (line 21), and then loads the referenced value (line 22).
There is thus an address dependency from the load on
line 21 to the load on line 22. In this case, the value re-
turned by line 21 is exactly the address used by line 22,
but many variations are possible, including field access
using the C-language -> operator, addition, subtraction,
and array indexing.6

One might hope that line 21’s load from the head
pointer would be ordered before line 22’s dereference,
which is in fact the case on Linux v4.15 and later. How-
ever, prior to v4.15, this is not the case on DEC Alpha,
which can in effect use a speculated value for the depen-
dent load, as described in more detail in Section 15.4.1.
Therefore, on older versions of Linux, Listing 15.9’s
exists clause can trigger.

Listing 15.10 shows how to make this work reliably
on pre-v4.15 Linux kernels running on DEC Alpha,
by replacing line 21’s READ_ONCE() with lockless_
dereference(),7 which acts like READ_ONCE() on all

6 But note that in the Linux kernel, the address dependency must
be carried through the pointer to the array, not through the array index.

7 Note that lockless_dereference() is not needed on v4.15

280 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.11: S Address-Dependency Litmus Test
1 C C-S+o-wmb-o+o-addr-o
2
3 {
4 int y=1;
5 int *x1 = &y;
6 }
7
8 P0(int* x0, int** x1) {
9

10 WRITE_ONCE(*x0, 2);
11 smp_wmb();
12 WRITE_ONCE(*x1, x0);
13
14 }
15
16 P1(int** x1) {
17
18 int *r2;
19
20 r2 = READ_ONCE(*x1);
21 WRITE_ONCE(*r2, 3);
22
23 }
24
25 exists (1:r2=x0 /\ x0=2)

platforms other than DEC Alpha, where it acts like a
READ_ONCE() followed by an smp_mb(), thereby forcing
the required ordering on all platforms, in turn preventing
the exists clause from triggering.

But what happens if the dependent operation is a
store rather than a load, for example, in the S litmus
test [AMP+11] shown in Listing 15.11 (C-S+o-wmb-
o+o-addr-o.litmus)? Because no production-quality
platform speculates stores, it is not possible for the
WRITE_ONCE() on line 10 to overwrite the WRITE_
ONCE() on line 21, meaning that the exists clause on
line 25 cannot trigger, even on DEC Alpha, even in pre-
v4.15 Linux kernels.

Quick Quiz 15.15: But how do we know that all plat-
forms really avoid triggering the exists clauses in List-
ings 15.10 and 15.11?

Quick Quiz 15.16: SP, MP, LB, and now S. Where
do all these litmus-test abbreviations come from and how
can anyone keep track of them?

However, it is important to note that address depen-
dencies can be fragile and easily broken by compiler
optimizations, as discussed in Section 15.3.2.

15.2.4 Data Dependencies
A data dependency occurs when the value returned by
a load instruction is used to compute the data stored by
a later store instruction. Note well the “data” above: If

and later, and therefore is not available in these later Linux kernels. Nor
is it needed in versions of this book containing this sentence.

Listing 15.12: Load-Buffering Data-Dependency Litmus Test
1 C C-LB+o-r+o-data-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 smp_store_release(x0, 2);
11 }
12
13
14 P1(int *x0, int *x1)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*x0);
19 WRITE_ONCE(*x1, r2);
20 }
21
22 exists (1:r2=2 /\ 0:r2=2)

the value returned by a load was instead used to compute
the address used by a later store instruction, that would
instead be an address dependency.

Listing 15.12 (C-LB+o-r+o-data-o.litmus) is sim-
ilar to Listing 15.7, except that P1()’s ordering between
lines 18 and 19 is enforced not by an acquire load, but
instead by a data dependency: The value loaded by line 18
is what line 19 stores. The ordering provided by this data
dependency is sufficient to prevent the exists clause
from triggering.

Just as with address dependencies, data dependencies
are fragile and can be easily broken by compiler opti-
mizations, as discussed in Section 15.3.2. In fact, data
dependencies can be even more fragile than are address
dependencies. The reason for this is that address depen-
dencies normally involve pointer values. In contrast, as
shown in Listing 15.12, it is tempting to carry data depen-
dencies through integral values, which the compiler has
much more freedom to optimize into nonexistence. For
but one example, if the integer loaded was multiplied by
the constant zero, the compiler would know that the result
was zero, and could therefore substitute the constant zero
for the value loaded, thus breaking the dependency.

Quick Quiz 15.17: But wait!!! Line 18 of List-
ing 15.12 uses READ_ONCE(), which marks the load as
volatile, which means that the compiler absolutely must
emit the load instruction even if the value is later multi-
plied by zero. So do you really need to work so hard to
keep the compiler from breaking your data dependencies?

In short, you can rely on data dependencies, but only
if you take care to prevent your compiler from breaking

15.2. TRICKS AND TRAPS 281

Listing 15.13: Load-Buffering Control-Dependency Litmus
Test

1 C C-LB+o-r+o-ctrl-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 smp_store_release(x0, 2);
11 }
12
13
14 P1(int *x0, int *x1)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*x0);
19 if (r2 >= 0)
20 WRITE_ONCE(*x1, 2);
21 }
22
23 exists (1:r2=2 /\ 0:r2=2)

them.

15.2.5 Control Dependencies

A control dependency occurs when the value returned
by a load instruction is tested to determine whether or
not a later store instruction is executed. Note well the
“later store instruction”: Many platforms do not respect
load-to-load control dependencies.

Listing 15.13 (C-LB+o-r+o-ctrl-o.litmus) shows
another load-buffering example, this time using a control
dependency (line 19) to order the load on line 18 and the
store on line 20. The ordering is sufficient to prevent the
exists from triggering.

However, control dependencies are even more suscep-
tible to being optimized out of existence than are data
dependencies, and Section 15.3.3 describes some of the
rules that must be followed in order to prevent your com-
piler from breaking your control dependencies.

It is worth reiterating that control dependencies pro-
vide ordering only from loads to stores. Therefore, the
load-to-load control dependency shown on lines 17-19
of Listing 15.14 (C-MP+o-r+o-ctrl-o.litmus) does
not provide ordering, and therefore does not prevent the
exists clause from triggering.

In summary, control dependencies can be useful, but
they are high-maintenance items. You should therefore
use them only when performance considerations permit
no other solution.

Quick Quiz 15.18: Wouldn’t control dependencies

Listing 15.14: Message-Passing Control-Dependency Litmus
Test (No Ordering)

1 C C-MP+o-r+o-ctrl-o
2
3 {
4 }
5
6 P0(int* x0, int* x1) {
7
8 WRITE_ONCE(*x0, 2);
9 smp_store_release(x1, 2);

10
11 }
12
13 P1(int* x0, int* x1) {
14 int r2;
15 int r3 = 0;
16
17 r2 = READ_ONCE(*x1);
18 if (r2 >= 0)
19 r3 = READ_ONCE(*x0);
20
21 }
22
23 exists (1:r2=2 /\ 1:r3=0)

be more robust if they were mandated by language stan-
dards???

15.2.6 Cache Coherence
On cache-coherent platforms, all CPUs agree on the order
of loads and stores to a given variable. Fortunately, when
READ_ONCE() and WRITE_ONCE() are used, almost all
platforms are cache-coherent, as indicated by the “SV”
column of the cheat sheet shown in Table 15.3. Unfortu-
nately, this property is so popular that it has been named
multiple times, with “single-variable SC”,8 “single-copy
atomic” [SF95], and just plain “coherence” [AMP+11]
having seen use. Rather than further compound the con-
fusion by inventing yet another term for this concept,
this book uses “cache coherence” and “coherence” inter-
changeably.

Listing 15.15 (C-CCIRIW+o+o+o-o+o-o.litmus)
shows a litmus test that tests for cache coherence, where
“IRIW” stands for “independent reads of independent
writes”. Because this litmus test uses only one vari-
able, P2() and P3() must agree on the order of P0()’s
and P1()’s stores. In other words, if P2() believes that
P0()’s store came first, then P3() had better not believe
that P1()’s store came first. And in fact the exists
clause on line 35 will trigger if this situation arises.

Quick Quiz 15.19: But in Listing 15.15, wouldn’t be
just as bad if P2()’s r1 and r2 obtained the values 2

8 Recall that SC stands for sequentially consistent.

282 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.15: Cache-Coherent IRIW Litmus Test
1 C C-CCIRIW+o+o+o-o+o-o
2
3 {
4 int x = 0;
5 }
6
7 P0(int *x)
8 {
9 WRITE_ONCE(*x, 1);

10 }
11
12 P1(int *x)
13 {
14 WRITE_ONCE(*x, 2);
15 }
16
17 P2(int *x)
18 {
19 int r1;
20 int r2;
21
22 r1 = READ_ONCE(*x);
23 r2 = READ_ONCE(*x);
24 }
25
26 P3(int *x)
27 {
28 int r3;
29 int r4;
30
31 r3 = READ_ONCE(*x);
32 r4 = READ_ONCE(*x);
33 }
34
35 exists(2:r1=1 /\ 2:r2=2 /\ 3:r3=2 /\ 3:r4=1)

and 1, respectively, while P3()’s r1 and r2 obtained the
values 1 and 2, respectively?

It is tempting to speculate that different-sized overlap-
ping loads and stores to a single region of memory (as
might be set up using the C-language union keyword)
would provide similar ordering guarantees. However, Flur
et al. discovered some surprisingly simple litmus tests that
demonstrate that these guarantees can be violated on real
hardware [FSP+17]. It is therefore necessary to restrict
code to non-overlapping same-sized aligned accesses to a
given variable, at least if portability is a consideration.9

Adding more variables and threads increases the scope
for reordering and other counterintuitive behavior, as dis-
cussed in the next section.

15.2.7 Multicopy Atomicity
Threads running on a fully multicopy atomic [SF95] plat-
form are guaranteed to agree on the order of stores, even
to different variables. A useful mental model of such a sys-

9 There is reason to believe that using atomic RMW operations (for
example, xchg()) for all the stores will provide sequentially consistent
ordering, but this has not yet been proven either way.

CPU 0 CPU 1 CPU 2 CPU 3

Memory Memory

Figure 15.7: Global System Bus And Multi-Copy Atom-
icity

tem is the single-bus architecture shown in Figure 15.7. If
each store resulted in a message on the bus, and if the bus
could accommodate only one store at a time, then any pair
of CPUs would agree on the order of all stores that they
observed. Unfortunately, building a computer system as
shown in the figure, without store buffers or even caches,
would result in glacial computation. Most CPU vendors
interested in providing multicopy atomicity have there-
fore instead provided the slightly weaker other-multicopy
atomicity [ARM17, Section B2.3], which excludes the
CPU doing a given store from the requirement that all
CPUs agree on the order of all stores.10 This means that
if only a subset of CPUs are doing stores, the other CPUs
will agree on the order of stores, hence the “other” in
“other-multicopy atomicity”. Unlike multicopy-atomic
platforms, within other-multicopy-atomic platforms, the
CPU doing the store is permitted to observe its store early,
which allows its later loads to obtain the newly stored
value directly from the store buffer. This in turn avoids
abysmal performance.

Quick Quiz 15.20: Can you give a specific example
showing different behavior for multicopy atomic on the
one hand and other-multicopy atomic on the other?

Perhaps there will come a day when all platforms pro-
vide some flavor of multi-copy atomicity, but in the mean-
time, non-multicopy-atomic platforms do exist, and so
software must deal with them.

Listing 15.16 (C-WRC+o+o-data-o+o-rmb-
o.litmus) demonstrates multicopy atomicity, that is,
on a multicopy-atomic platform, the exists clause on
line 29 cannot trigger. In contrast, on a non-multicopy-
atomic platform this exists clause can trigger, despite
P1()’s accesses being ordered by a data dependency and
P2()’s accesses being ordered by an smp_rmb(). Recall
that the definition of multicopy atomicity requires that

10 As of late 2018, ARMv8 and x86 provide other-multicopy atom-
icity, IBM mainframe provides fully multicopy atomicity, and PPC
does not provide multicopy atomicity at all. More detail is shown in
Table 15.5.

15.2. TRICKS AND TRAPS 283

Listing 15.16: WRC Litmus Test With Dependencies (No Or-
dering)

1 C C-WRC+o+o-data-o+o-rmb-o
2
3 {
4 }
5
6 P0(int *x)
7 {
8 WRITE_ONCE(*x, 1);
9 }

10
11 P1(int *x, int* y)
12 {
13 int r1;
14
15 r1 = READ_ONCE(*x);
16 WRITE_ONCE(*y, r1);
17 }
18
19 P2(int *x, int* y)
20 {
21 int r2;
22 int r3;
23
24 r2 = READ_ONCE(*y);
25 smp_rmb();
26 r3 = READ_ONCE(*x);
27 }
28
29 exists (1:r1=1 /\ 2:r2=1 /\ 2:r3=0)

Memory Memory

Cache

CPU 0 CPU 1Store
Buffer CPU 2 CPU 3

Cache

Store
Buffer

Figure 15.8: Shared Store Buffers And Multi-Copy
Atomicity

all threads agree on the order of stores, which can be
thought of as all stores reaching all threads at the same
time. Therefore, a non-multicopy-atomic platform can
have a store reach different threads at different times. In
particular, P0()’s store might reach P1() long before it
reaches P2(), which raises the possibility that P1()’s
store might reach P2() before P0()’s store does.

This leads to the question of why a real system con-
strained by the usual laws of physics would ever trigger
the exists clause of Listing 15.16. The cartoonish di-
agram of a such a real system is shown in Figure 15.8.
CPU 0 and CPU 1 share a store buffer, as do CPUs 2
and 3. This means that CPU 1 can load a value out of the
store buffer, thus potentially immediately seeing a value
stored by CPU 0. In contrast, CPUs 2 and 3 will have to

wait for the corresponding cache line to carry this new
value to them.

Quick Quiz 15.21: Then who would even think of
designing a system with shared store buffers???

Table 15.4 shows one sequence of events that can result
in the exists clause in Listing 15.16 triggering. This
sequence of events will depend critically on P0() and
P1() sharing both cache and a store buffer in the manner
shown in Figure 15.8.

Quick Quiz 15.22: But just how is it fair that P0()
and P1() must share a store buffer and a cache, but P2()
gets one each of its very own???

Row 1 shows the initial state, with the initial value of y
in P0()’s and P1()’s shared cache, and the initial value
of x in P2()’s cache.

Row 2 shows the immediate effect of P0() executing
its store on line 8. Because the cacheline containing x is
not in P0()’s and P1()’s shared cache, the new value (1)
is stored in the shared store buffer.

Row 3 shows two transitions. First, P0() issues a read-
invalidate operation to fetch the cacheline containing x so
that it can flush the new value for x out of the shared store
buffer. Second, P1() loads from x (line 15), an operation
that completes immediately because the new value of x is
immediately available from the shared store buffer.

Row 4 also shows two transitions. First, it shows the
immediate effect of P1() executing its store to y (line 16),
placing the new value into the shared store buffer. Second,
it shows the start of P2()’s load from y (line 24).

Row 5 continues the tradition of showing two transi-
tions. First, it shows P1() complete its store to y, flushing
from the shared store buffer to the cache. Second, it shows
P2() request the cacheline containing y.

Row 6 shows P2() receive the cacheline containing y,
allowing it to finish its load into r2, which takes on the
value 1.

Row 7 shows P2() execute its smp_rmb() (line 25),
thus keeping its two loads ordered.

Row 8 shows P2() execute its load from x, which im-
mediately returns with the value zero from P2()’s cache.

Row 9 shows P2() finally responding to P0()’s request
for the cacheline containing x, which was made way back
up on row 3.

Finally, row 10 shows P0() finish its store, flushing
its value of x from the shared store buffer to the shared
cache.

Note well that the exists clause on line 29 has trig-
gered. The values of r1 and r2 are both the value one,
and the final value of r3 the value zero. This strange

284 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Table 15.4: Memory Ordering: WRC Sequence of Events

P0() P0() & P1() P1() P2()

Instruction Store Buffer Cache Instruction Instruction Store Buffer Cache

1 (Initial state) y==0 (Initial state) (Initial state) x==0
2 x = 1; x==1 y==0 x==0
3 (Read-Invalidate x) x==1 y==0 r1 = x (1) x==0
4 x==1 y==1 y==0 y = r1 r2 = y x==0
5 x==1 y==1 (Finish store) (Read y) x==0
6 (Respond y) x==1 y==1 (r2==1) x==0 y==1
7 x==1 y==1 smp_rmb() x==0 y==1
8 x==1 y==1 r3 = x (0) x==0 y==1
9 x==1 x==0 y==1 (Respond x) y==1

10 (Finish store) x==1 y==1 y==1

result occurred because P0()’s new value of x was com-
municated to P1() long before it was communicated to
P2().

Quick Quiz 15.23: Referring to Table 15.4, why on
earth would P0()’s store take so long to complete when
P1()’s store complete so quickly? In other words, does
the exists clause on line 32 of Listing 15.16 really trig-
ger on real systems?

This counter-intuitive result happens because although
dependencies do provide ordering, they provide it only
within the confines of their own thread. This three-thread
example requires stronger ordering, which is the subject
of Sections 15.2.7.1 through 15.2.7.4.

15.2.7.1 Cumulativity

The three-thread example shown in Listing 15.16 re-
quires cumulative ordering, or cumulativity. A cumulative
memory-ordering operation orders not just any given ac-
cess preceding it, but also earlier accesses by any thread
to that same variable.

Dependencies do not provide cumulativity, which is
why the “C” column is blank for both the READ_ONCE()
and the smp_read_barrier_depends() rows of Ta-
ble 15.3. However, as indicated by the “C” in their
“C” column, release operations do provide cumulativity.
Therefore, Listing 15.17 (C-WRC+o+o-r+a-o.litmus)
substitutes a release operation for Listing 15.16’s data
dependency. Because the release operation is cumula-
tive, its ordering applies not only to Listing 15.17’s load
from x by P1() on line 15, but also to the store to x by
P0() on line 8—but only if that load returns the value
stored, which matches the 1:r1=1 in the exists clause

Listing 15.17: WRC Litmus Test With Release
1 C C-WRC+o+o-r+a-o
2
3 {
4 }
5
6 P0(int *x)
7 {
8 WRITE_ONCE(*x, 1);
9 }

10
11 P1(int *x, int* y)
12 {
13 int r1;
14
15 r1 = READ_ONCE(*x);
16 smp_store_release(y, r1);
17 }
18
19 P2(int *x, int* y)
20 {
21 int r2;
22 int r3;
23
24 r2 = smp_load_acquire(y);
25 r3 = READ_ONCE(*x);
26 }
27
28 exists (1:r1=1 /\ 2:r2=1 /\ 2:r3=0)

on line 28. This means that P2()’s load-acquire suffices
to force the load from x on line 25 to happen after the
store on line 8, so the value returned is one, which does
not match 2:r3=0, which in turn prevents the exists
clause from triggering.

These ordering constraints are depicted graphically in
Figure 15.9. Note also that cumulativity is not limited to
a single step back in time. If there was another load from
x or store to x from any thread that came before the store
on line 8, that prior load or store would also be ordered
before the load on line 25, though only if both r1 and r2

15.2. TRICKS AND TRAPS 285

... cumulativity guarantees CPU 0's store before CPU 1's store

Given this link ...

.... memory barriers guarantee this order and given this link ... Load r1=x

Store release
y=r1

Load acquire
r2=y

Memory
Barrier

Load r3=x

CPU 2

CPU 1

CPU 0

Store x=1

Figure 15.9: Cumulativity

both end up containing the value 1.
In short, use of cumulative ordering operations can sup-

press non-multicopy-atomic behaviors in some situations.
Cumulativity nevertheless has limits, which are examined
in the next section.

15.2.7.2 Propagation

Listing 15.18 (C-W+RWC+o-r+a-o+o-mb-o.litmus)
shows the limitations of cumulativity and store-release,
even with a full memory barrier. The problem is that al-
though the smp_store_release() on line 12 has cumu-
lativity, and although that cumulativity does order P2()’s
load on line 30, the smp_store_release()’s ordering
cannot propagate through the combination of P1()’s load
(line 21) and P2()’s store (line 28). This means that the
exists clause on line 33 really can trigger.

Quick Quiz 15.24: But it is not necessary to worry
about propagation unless there are at least three threads
in the litmus test, right?

This situation might seem completely counter-intuitive,
but keep in mind that the speed of light is finite and com-
puters are of non-zero size. It therefore takes time for
the effect of the P2()’s store to z to propagate to P1(),
which in turn means that it is possible that P1()’s read
from z happens much later in time, but nevertheless still
sees the old value of zero. This situation is depicted in
Figure 15.10: Just because a load sees the old value does

Listing 15.18: W+RWC Litmus Test With Release (No Order-
ing)

1 C C-W+RWC+o-r+a-o+o-mb-o
2
3 {
4 int x = 0;
5 int y = 0;
6 int z = 0;
7 }
8
9 P0(int *x, int *y)

10 {
11 WRITE_ONCE(*x, 1);
12 smp_store_release(y, 1);
13 }
14
15 P1(int *y, int *z)
16 {
17 int r1;
18 int r2;
19
20 r1 = smp_load_acquire(y);
21 r2 = READ_ONCE(*z);
22 }
23
24 P2(int *z, int *x)
25 {
26 int r3;
27
28 WRITE_ONCE(*z, 1);
29 smp_mb();
30 r3 = READ_ONCE(*x);
31 }
32
33 exists(1:r1=1 /\ 1:r2=0 /\ 2:r3=0)

286 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

WRITE_ONCE(z, 1);CPU 0

CPU 1

CPU 2

CPU 3 r1 = READ_ONCE(z) == 0;

z =
 0 z =

 1

Time

fr

Figure 15.10: Load-to-Store is Counter-Temporal

WRITE_ONCE(x, 1);CPU 0

CPU 1

CPU 2

CPU 3

X = 0
X = 1

WRITE_ONCE(x, 2);

X = 2

Time

co

Figure 15.11: Store-to-Store is Counter-Temporal

not mean that this load executed at an earlier time than
did the store of the new value.

Note that Listing 15.18 also shows the limitations of
memory-barrier pairing, given that there are not two but
three processes. These more complex litmus tests can
instead be said to have cycles, where memory-barrier pair-
ing is the special case of a two-thread cycle. The cycle in
Listing 15.18 goes through P0() (lines 11 and 12), P1()
(lines 20 and 21), P2() (lines 28, 29, and 30), and back to
P0() (line 11). The exists clause delineates this cycle:
the 1:r1=1 indicates that the smp_load_acquire() on
line 20 returned the value stored by the smp_store_
release() on line 12, the 1:r2=0 indicates that the
WRITE_ONCE() on line 28 came too late to affect the
value returned by the READ_ONCE() on line 21, and fi-
nally the 2:r3=0 indicates that the WRITE_ONCE() on
line 11 came too late to affect the value returned by the
READ_ONCE() on line 30. In this case, the fact that the
exists clause can trigger means that the cycle is said to
be allowed. In contrast, in cases where the exists clause
cannot trigger, the cycle is said to be prohibited.

But what if we need to keep the exists clause on
line 33 of Listing 15.18? One solution is to replace P0()’s
smp_store_release() with an smp_mb(), which Ta-
ble 15.3 shows to have not only cumulativity, but also
propagation. The result is shown in Listing 15.19 (C-
W+RWC+o-mb-o+a-o+o-mb-o.litmus).

Quick Quiz 15.25: But given that smp_mb() has
the propagation property, why doesn’t the smp_mb() on
line 29 of Listing 15.18 prevent the exists clause from
triggering?

Listing 15.19: W+WRC Litmus Test With More Barriers
1 C C-W+RWC+o-mb-o+a-o+o-mb-o
2
3 {
4 int x = 0;
5 int y = 0;
6 int z = 0;
7 }
8
9 P0(int *x, int *y)

10 {
11 WRITE_ONCE(*x, 1);
12 smp_mb();
13 WRITE_ONCE(*y, 1);
14 }
15
16 P1(int *y, int *z)
17 {
18 int r1;
19 int r2;
20
21 r1 = smp_load_acquire(y);
22 r2 = READ_ONCE(*z);
23 }
24
25 P2(int *z, int *x)
26 {
27 int r3;
28
29 WRITE_ONCE(*z, 1);
30 smp_mb();
31 r3 = READ_ONCE(*x);
32 }
33
34 exists(1:r1=1 /\ 1:r2=0 /\ 2:r3=0)

WRITE_ONCE(x, 1);CPU 0

CPU 1

CPU 2

CPU 3 r1 = READ_ONCE(x);X = 0
X = 1

Time

rf

Figure 15.12: Store-to-Load is Temporal

For completeness, Figure 15.11 shows that the “win-
ning” store among a group of stores to the same variable
is not necessarily the store that started last. This should
not come as a surprise to anyone who carefully examined
Figure 15.5.

Quick Quiz 15.26: But for litmus tests having only
ordered stores, as shown in Listing 15.20 (C-2+2W+o-
wmb-o+o-wmb-o.litmus), research shows that the cy-
cle is prohibited, even in weakly ordered systems such as
ARM and Power [SSA+11]. Given that, are store-to-store
really always counter-temporal???

But sometimes time really is on our side. Read on!

15.2. TRICKS AND TRAPS 287

Listing 15.20: 2+2W Litmus Test With Write Barriers
1 C C-2+2W+o-wmb-o+o-wmb-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 1);
8 smp_wmb();
9 WRITE_ONCE(*x1, 2);

10 }
11
12
13 P1(int *x0, int *x1)
14 {
15 WRITE_ONCE(*x1, 1);
16 smp_wmb();
17 WRITE_ONCE(*x0, 2);
18 }
19
20 exists (x0=1 /\ x1=1)

15.2.7.3 Happens-Before

As shown in Figure 15.12, on platforms without user-
visible speculation, if a load returns the value from a
particular store, then, courtesy of the finite speed of light
and the non-zero size of modern computing systems, the
store absolutely has to have executed at an earlier time
than did the load. This means that carefully constructed
programs can rely on the passage of time itself as an
memory-ordering operation.

Of course, just the passage of time by itself is not
enough, as was seen in Listing 15.6, which has noth-
ing but store-to-load links and, because it provides ab-
solutely no ordering, still can trigger its exists clause.
However, as long as each thread provides even the weak-
est possible ordering, exists clause would not be able
to trigger. For example, Listing 15.21 (C-LB+a-o+o-
data-o+o-data-o.litmus) shows P0() ordered with
an smp_load_acquire() and both P1() and P2() or-
dered with data dependencies. These orderings, which
are close to the top of Table 15.3, suffice to prevent the
exists clause from triggering.

Quick Quiz 15.27: Can you construct a litmus test like
that in Listing 15.21 that uses only dependencies?

An important, to say nothing of more useful, use of
time for ordering memory accesses is covered in the next
section.

15.2.7.4 Release-Acquire Chains

A minimal release-acquire chain was shown in List-
ing 15.7 (C-LB+a-r+a-r+a-r+a-r.litmus), but these
chains can be much longer, as shown in Listing 15.22.
The longer the release-acquire chain, the more ordering

Listing 15.21: LB Litmus Test With One Acquire
1 C C-LB+a-o+o-data-o+o-data-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = smp_load_acquire(x0);

10 WRITE_ONCE(*x1, 2);
11 }
12
13
14 P1(int *x1, int *x2)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*x1);
19 WRITE_ONCE(*x2, r2);
20 }
21
22 P2(int *x2, int *x0)
23 {
24 int r2;
25
26 r2 = READ_ONCE(*x2);
27 WRITE_ONCE(*x0, r2);
28 }
29
30 exists (0:r2=2 /\ 1:r2=2 /\ 2:r2=2)

Listing 15.22: Long LB Release-Acquire Chain
1 C C-LB+a-r+a-r+a-r+a-r
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = smp_load_acquire(x0);

10 smp_store_release(x1, 2);
11 }
12
13
14 P1(int *x1, int *x2)
15 {
16 int r2;
17
18 r2 = smp_load_acquire(x1);
19 smp_store_release(x2, 2);
20 }
21
22 P2(int *x2, int *x3)
23 {
24 int r2;
25
26 r2 = smp_load_acquire(x2);
27 smp_store_release(x3, 2);
28 }
29
30 P3(int *x3, int *x0)
31 {
32 int r2;
33
34 r2 = smp_load_acquire(x3);
35 smp_store_release(x0, 2);
36 }
37
38 exists (0:r2=2 /\ 1:r2=2 /\ 2:r2=2 /\ 3:r2=2)

288 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.23: Long ISA2 Release-Acquire Chain
1 C C-ISA2+o-r+a-r+a-r+a-o
2 {
3 }
4

5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 smp_store_release(x1, 2);
9 }

10

11

12 P1(int *x1, int *x2)
13 {
14 int r2;
15

16 r2 = smp_load_acquire(x1);
17 smp_store_release(x2, 2);
18 }
19

20 P2(int *x2, int *x3)
21 {
22 int r2;
23

24 r2 = smp_load_acquire(x2);
25 smp_store_release(x3, 2);
26 }
27

28 P3(int *x3, int *x0)
29 {
30 int r1;
31 int r2;
32

33 r1 = smp_load_acquire(x3);
34 r2 = READ_ONCE(*x0);
35 }
36

37 exists (1:r2=2 / 2:r2=2 / 3:r1=2 / 3:r2=0)

is gained from the passage of time, so that no matter how
many threads are involved, the corresponding exists
clause cannot trigger.

Although release-acquire chains are inherently store-to-
load creatures, it turns out that they can tolerate one load-
to-store step, despite such steps being counter-temporal,
as shown in Figure 15.10. For example, Listing 15.23 (C-
ISA2+o-r+a-r+a-r+a-o.litmus) shows a three-step
release-acquire chain, but where P3()’s final access is
a READ_ONCE() from x0, which is accessed via WRITE_
ONCE() by P0(), forming a non-temporal load-to-store
link between these two processes. However, because
P0()’s smp_store_release() (line 8) is cumulative,
if P3()’s READ_ONCE() returns zero, this cumulativity
will force the READ_ONCE() to be ordered before P0()’s
smp_store_release(). In addition, the release-acquire
chain (lines 8, 16, 17, 24, 25, and 33) forces P3()’s
READ_ONCE() to be ordered after P0()’s smp_store_
release(). Because P3()’s READ_ONCE() cannot be
both before and after P0()’s smp_store_release(),
either or both of two things must be true:

Listing 15.24: Long Z6.2 Release-Acquire Chain
1 C C-Z6.2+o-r+a-r+a-r+a-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 smp_store_release(x1, 2);
9 }

10
11
12 P1(int *x1, int *x2)
13 {
14 int r2;
15
16 r2 = smp_load_acquire(x1);
17 smp_store_release(x2, 2);
18 }
19
20 P2(int *x2, int *x3)
21 {
22 int r2;
23
24 r2 = smp_load_acquire(x2);
25 smp_store_release(x3, 2);
26 }
27
28 P3(int *x3, int *x0)
29 {
30 int r2;
31
32 r2 = smp_load_acquire(x3);
33 WRITE_ONCE(*x0, 3);
34 }
35
36 exists (1:r2=2 /\ 2:r2=2 /\ 3:r2=2 /\ x0=2)

1. P3()’s READ_ONCE() came after P0()’s WRITE_
ONCE(), so that the READ_ONCE() returned the
value two, so that the exists clause’s 3:r2=0 is
false.

2. The release-acquire chain did not form, that is, one
or more of the exists clause’s 1:r2=2, 2:r2=2, or
3:r1=2 is false.

Either way, the exists clause cannot trigger, despite
this litmus test containing a notorious load-to-store link
between P3() and P0(). But never forget that release-
acquire chains can tolerate only one load-to-store link, as
was seen in Listing 15.18.

Release-acquire chains can also tolerate a single store-
to-store step, as shown in Listing 15.24 (C-Z6.2+o-r+a-
r+a-r+a-o.litmus). As with the previous example,
smp_store_release()’s cumulativity combined with
the temporal nature of the release-acquire chain prevents
the exists clause on line 36 from triggering. But be-
ware: Adding a second store-to-store step would allow
the correspondingly updated exists clause to trigger.

Quick Quiz 15.28: Suppose we have a short release-
acquire chain along with one load-to-store link and one

15.3. COMPILE-TIME CONSTERNATION 289

Listing 15.25: Z6.0 Release-Acquire Chain (Ordering?)
1 C C-Z6.2+o-r+a-o+o-mb-o
2
3 {
4 int x = 0;
5 int y = 0;
6 int z = 0;
7 }
8
9 P0(int *x, int *y)

10 {
11 WRITE_ONCE(*x, 1);
12 smp_store_release(y, 1);
13 }
14
15 P1(int *y, int *z)
16 {
17 int r1;
18
19 r1 = smp_load_acquire(y);
20 WRITE_ONCE(*z, 1);
21 }
22
23 P2(int *z, int *x)
24 {
25 int r2;
26
27 WRITE_ONCE(*z, 2);
28 smp_mb();
29 r2 = READ_ONCE(*x);
30 }
31
32 exists(1:r1=1 /\ 2:r2=0 /\ z=2)

store-to-store link, like that shown in Listing 15.25. Given
that there is only one of each type of non-store-to-load
link, the exists cannot trigger, right?

Quick Quiz 15.29: There are store-to-load links, load-
to-store links, and store-to-store links. But what about
load-to-load links?

In short, properly constructed release-acquire chains
form a peaceful island of intuitive bliss surrounded by a
strongly counter-intuitive sea of more complex memory-
ordering constraints.

15.3 Compile-Time Consternation
Most languages, including C, were developed on unipro-
cessor systems by people with little or no parallel-
programming experience. As a results, unless explicitly
told otherwise, these languages assume that the current
CPU is the only thing that is reading or writing mem-
ory. This in turn means that these languages’ compilers’
optimizers are ready, willing, and oh so able to make
dramatic changes to the order, number, and sizes of mem-
ory references that your program executes. In fact, the
reordering carried out by hardware can seem quite tame
by comparison.

This section will help you tame your compiler, thus

avoiding a great deal of compile-time consternation. Sec-
tion 15.3.1 describes how to keep the compiler from de-
structively optimizing your code’s memory references,
Section 15.3.2 describes how to protect address and data
dependencies, and finally, Section 15.3.3 describes how
to protect those delicate control dependencies.

15.3.1 Memory-Reference Restrictions
Again, unless told otherwise, compilers assume that noth-
ing else is affecting the variables being accessed by the
generated code. This assumption is not simply some de-
sign error, but is instead enshrined in various standards.11

This assumption means that compilers are within their
rights (as defined by the standards) to optimize the fol-
lowing code so as to hoist the load from a out of the
loop, at least in cases where the compiler can prove that
do_something() does not modify a:

1 while (a)
2 do_something();

The optimized code might look something like this,
essentially fusing an arbitrarily large number of intended
loads into a single actual load:

1 if (a)
2 for (;;)
3 do_something();

This optimization might come as a fatal surprise to
code elsewhere that expected to terminate this loop by
storing a zero to a. Fortunately, there are several ways of
avoiding this sort of problem:

1. Volatile accesses.

2. Atomic variables.

3. Prohibitions against introducing data races.

The volatile restrictions are necessary to write reli-
able device drivers, and the atomic variables and prohibi-
tions against introducing data races are necessary to write
reliable concurrent code.

Starting with volatile accesses, the following code re-
lies on the volatile casts in READ_ONCE() to prevent
the unfortunate infinite-loop optimization:

1 while (READ_ONCE(a))
2 do_something();

READ_ONCE() marks the load with a volatile cast.
Now volatile was originally designed for accessing

11 Or perhaps it is a standardized design error.

290 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

memory-mapped I/O (MMIO) registers, which are ac-
cessed using the same load and store instructions that are
used when accessing normal memory. However, MMIO
registers need not act at all like normal memory. Storing
a value to an MMIO register does not necessarily mean
that a subsequent load from that register will return the
value stored. Loading from an MMIO register might well
have side effects, for example, changing the device state
or affecting the response to subsequent loads and stores
involving other MMIO registers. Loads and stores of dif-
ferent sizes to the same MMIO address might well have
different effects.

This means that, even on a uniprocessor system, chang-
ing the order, number, or size of MMIO accesses is strictly
forbidden. And this is exactly the purpose of the C-
language volatile keyword, to constrain the compiler
so as to allow implementation of reliable device drivers.

This is why READ_ONCE() prevents the destructive
hoisting of the load from a out of the loop: Doing so
changes the number of volatile loads from a, so this
optimization is disallowed. However, note well that
volatile does absolutely nothing to constrain the hard-
ware. Therefore, if the code following the loop needs to
see the result of any memory references preceding the
store of zero that terminated the loop, you will instead
need to use something like smp_store_release() to
store the zero and smp_load_acquire() in the loop con-
dition. But if all you need is to reliably control the loop
without any other ordering, READ_ONCE() can do the job.

Compilers can also replicate loads. For example, con-
sider this all-too-real code fragment:

1 tmp = p;
2 if (tmp != NULL && tmp <= q)
3 do_something(tmp);

Here the intent is that the do_something() function
is never passed a NULL pointer or a pointer that is greater
than q. However, the compiler is within its rights to
transform this into the following:

1 if (p != NULL && p <= q)
2 do_something(p);

In this transformed code, the value of p is loaded three
separate times. This transformation might seem silly at
first glance, but it is quite useful when the surrounding
code has consumed all of the machine registers. It is
possible that the current value of p passes the test on
line 1, but that some other thread stores NULL to p before
line 2 executes, and the resulting NULL pointer could be

a fatal surprise to do_something().12 To prevent the
compiler from replicating the load, use READ_ONCE(),
for example as follows:

1 tmp = READ_ONCE(p);
2 if (tmp != NULL && tmp <= q)
3 do_something(tmp);

Alternatively, the variable p could be declared
volatile.

Compilers can also fuse stores. The most infamous
example is probably the progress-bar example shown be-
low:

1 while (!am_done()) {
2 do_something(p);
3 progress++;
4 }

If the compiler used a feedback-driven optimizer, it
might well notice that the store to the shared variable
progress was quite expensive, resulting in the following
well-intentioned optimization:

1 while (!am_done()) {
2 do_something(p);
3 tmp++;
4 }
5 progress = tmp;

This might well slightly increase performance, but the
poor user watching the progress bar might be forgiven
for harboring significant ill will towards this particular
optimization. The progress bar will after all be stuck at
zero for a long time, then jump at the very end. The
following code will usually prevent this problem:

1 while (!am_done()) {
2 do_something(p);
3 WRITE_ONCE(progress, progress + 1);
4 }

Exceptions can occur if the compiler is able to ana-
lyze do_something() and learn that it has no accesses
to atomic or volatile variables. In these cases the
compiler could produce two loops, one invoking do_
something() and the other incrementing progress. It
may be necessary to replace the WRITE_ONCE() with
something like smp_store_release() in the unlikely
event that this occurs. It is important to note that al-
though the compiler is forbidden from changing the num-
ber, size, or order of volatile accesses, it is perfectly
within its rights to reorder normal accesses with unrelated
volatile accesses.

12 Your editor made exactly this mistake in the DYNIX/ptx kernel’s
memory allocator in the early 1990s. Tracking down the bug consumed
a holiday weekend not just for your editor, but also for several of his
colleagues. In short, this is not a new problem.

15.3. COMPILE-TIME CONSTERNATION 291

Oddly enough, the compiler is within its rights to use a
variable as temporary storage just before a normal store
to that variable, thus inventing stores to that variable. For-
tunately, most compilers avoid this sort of thing, at least
outside of stack variables. In any case, using WRITE_
ONCE(), declaring the variable volatile, or declaring
the variable atomic (in recent C and C++ compilers sup-
porting atomics) will prevent this sort of thing.

Quick Quiz 15.30: Why can’t the compiler invent a
store to a normal variable any time it likes?

The previous examples involved compiler optimiza-
tions that changed the number of accesses. Now, it might
seem that preventing the compiler from changing the order
of accesses is an act of futility, given that the underlying
hardware is free to reorder them. However, modern ma-
chines have exact exceptions and exact interrupts, mean-
ing that any interrupt or exception will appear to have
happened at a specific place in the instruction stream, so
that the handler will see the effect of all prior instructions,
but won’t see the effect of any subsequent instructions.
READ_ONCE() and WRITE_ONCE() can therefore be used
to control communication between interrupted code and
interrupt handlers.13

This leaves changes to the size of accesses, which is
known as load tearing and store tearing when the ac-
tual size is smaller than desired. For example, storing
the constant 0x00010002 into a 32-bit variable might
seem quite safe. However, there are CPUs that can store
small immediate values directly into memory, and on
such CPUs, the compiler can be expected to split this
into two 16-bit stores in order to avoid the overhead of
explicitly forming the 32-bit constant. This could come
as a fatal surprise to another thread concurrently loading
from this variable, which might not expect to see the re-
sult of a half-completed store. Use of READ_ONCE() and
WRITE_ONCE() prevent the compiler from engaging in
load tearing and store tearing, respectively.

In short, use of READ_ONCE(), WRITE_ONCE(), and
volatile are valuable tools in preventing the compiler
from optimizing your parallel algorithm out of exis-
tence. Compilers are starting to provide other mecha-
nisms for avoiding load and store tearing, for example,
memory_order_relaxed atomic loads and stores, how-
ever, volatile is still needed to avoid fusing and split-
ting of accesses.

Please note that, it is possible to overdo use of READ_
ONCE() and WRITE_ONCE(). For example, if you have

13 That said, the various standards committees would prefer that you
instead use atomics or variables of type sig_atomic_t.

prevented a given variable from changing (perhaps by
holding the lock guarding all updates to that variable),
there is no point in using READ_ONCE(). Similarly, if you
have prevented any other CPUs or threads from reading a
given variable (perhaps because you are initializing that
variable before any other CPU or thread has access to it),
there is no point in using WRITE_ONCE(). However, in
my experience, developers need to use things like READ_
ONCE() and WRITE_ONCE() more often than they think
that they do, the overhead of unnecessary uses is quite
low. Furthermore, the penalty for failing to use them
when needed is quite high.

15.3.2 Address- and Data-Dependency Dif-
ficulties

Compilers do not understand either address or data de-
pendencies, although there are efforts underway to teach
them, or at the very least, standardize the process of teach-
ing them [MWB+17, MRP+17]. In the meantime, it is
necessary to be very careful in order to prevent your com-
piler from breaking your dependencies.

15.3.2.1 Give your dependency chain a good start

The load that heads your dependency chain must use
proper ordering, for example rcu_dereference() or
READ_ONCE(). Failure to follow this rule can have seri-
ous side effects:

1. On DEC Alpha, a dependent load might not be or-
dered with the load heading the dependency chain,
as described in Section 15.4.1.

2. If the load heading the dependency chain is a
C11 non-volatile memory_order_relaxed load,
the compiler could omit the load, for example, by
using a value that it loaded in the past.

3. If the load heading the dependency chain is a plain
load, the compiler can omit the load, again by using
a value that it loaded in the past. Worse yet, it could
load twice instead of once, so that different parts of
your code use different values—and compilers really
do this, especially when under register pressure.

4. The value loaded by the head of the dependency
chain must be a pointer. In theory, yes, you could
load an integer, perhaps to use it as an array index.
In practice, the compiler knows too much about in-
tegers, and thus has way too many opportunities to
break your dependency chain [MWB+17].

292 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.26: Breakable Dependencies With Comparisons
1 int reserve_int;
2 int *gp;
3 int *p;
4
5 p = rcu_dereference(gp);
6 if (p == &reserve_int)
7 handle_reserve(p);
8 do_something_with(*p); /* buggy! */

Listing 15.27: Broken Dependencies With Comparisons
1 int reserve_int;
2 int *gp;
3 int *p;
4
5 p = rcu_dereference(gp);
6 if (p == &reserve_int) {
7 handle_reserve(&reserve_int);
8 do_something_with(reserve_int); /* buggy! */
9 } else {

10 do_something_with(*p); /* OK! */
11 }

15.3.2.2 Avoid arithmetic dependency breakage

Although it is just fine to do some arithmetic operations
on a pointer in your dependency chain, you need to be
careful to avoid giving the compiler too much information.
After all, if the compiler learns enough to determine the
exact value of the pointer, it can use that exact value
instead of the pointer itself. As soon as the compiler does
that, the dependency is broken and all ordering is lost.

1. Although it is permissible to compute offsets from
a pointer, these offsets must not result in total can-
cellation. For example, given a char pointer cp,
cp-(uintptr_t)cp) will cancel and can allow the
compiler to break your dependency chain. On the
other hand, canceling offset values with each other
is perfectly safe and legal. For example, if a and b
are equal, cp+a-b is an identity function, including
preserving the dependency.

2. Comparisons can break dependencies. Listing 15.26
shows how this can happen. Here global pointer gp
points to a dynamically allocated integer, but if mem-
ory is low, it might instead point to the reserve_
int variable. This reserve_int case might need
special handling, as shown on lines 6 and 7 of the
listing. But the compiler could reasonably transform
this code into the form shown in Listing 15.27, espe-
cially on systems where instructions with absolute
addresses run faster than instructions using addresses
supplied in registers. However, there is clearly no
ordering between the pointer load on line 5 and the
dereference on line 8. Please note that this is simply

an example: There are a great many other ways to
break dependency chains with comparisons.

Quick Quiz 15.31: Why can’t you simply dereference
the pointer before comparing it to &reserve_int on
line 6 of Listing 15.26?

Quick Quiz 15.32: But it should be safe to compare
two pointer variables, right? After all, the compiler
doesn’t know the value of either, so how can it possibly
learn anything from the comparison?

Note that a series of inequality comparisons might,
when taken together, give the compiler enough informa-
tion to determine the exact value of the pointer, at which
point the dependency is broken. Furthermore, the com-
piler might be able to combine information from even
a single inequality comparison with other information
to learn the exact value, again breaking the dependency.
Pointers to elements in arrays are especially susceptible
to this latter form of dependency breakage.

15.3.2.3 Safe comparison of dependent pointers

It turns out that there are several safe ways to compare
dependent pointers:

1. Comparisons against the NULL pointer. In this case,
all the compiler can learn is that the pointer is NULL,
in which case you are not allowed to dereference it
anyway.

2. The dependent pointer is never dereferenced,
whether before or after the comparison.

3. The dependent pointer is compared to a pointer that
references objects that were last modified a very long
time ago, where the only unconditionally safe value
of “a very long time ago” is “at compile time”. The
key point is that there absolutely must be something
other than the address or data dependency that guar-
antees ordering.

4. Comparisons between two pointers, each of which is
carrying a good-enough dependency. For example,
you have a pair of pointers, each carrying a depen-
dency, and you want to avoid deadlock by acquiring
locks of the pointed-to data elements in address or-
der.

5. The comparison is not-equal, and the compiler does
not have enough other information to deduce the
value of the pointer carrying the dependency.

15.3. COMPILE-TIME CONSTERNATION 293

Listing 15.28: Broken Dependencies With Pointer Compar-
isons

1 struct foo {
2 int a;
3 int b;
4 int c;
5 };
6 struct foo *gp1;
7 struct foo *gp2;
8
9 void updater(void)

10 {
11 struct foo *p;
12
13 p = malloc(sizeo(*p));
14 BUG_ON(!p);
15 p->a = 42;
16 p->b = 43;
17 p->c = 44;
18 rcu_assign_pointer(gp1, p);
19 p->b = 143;
20 p->c = 144;
21 rcu_assign_pointer(gp2, p);
22 }
23
24 void reader(void)
25 {
26 struct foo *p;
27 struct foo *q;
28 int r1, r2 = 0;
29
30 p = rcu_dereference(gp2);
31 if (p == NULL)
32 return;
33 r1 = p->b;
34 q = rcu_dereference(gp1);
35 if (p == q) {
36 r2 = p->c;
37 }
38 do_something_with(r1, r2);
39 }

Pointer comparisons can be quite tricky, and so it is
well worth working through the example shown in List-
ing 15.28. This example uses a simple struct foo
shown on lines 1-5 and two global pointers, gp1 and
gp2, shown on lines 6 and 7, respectively. This example
uses two threads, namely updater() on lines 9-22 and
reader() on lines 24-39.

The updater() thread allocates memory on line 13,
and complains bitterly on line 14 if none is available.
Lines 15-17 initialize the newly allocated structure, and
then line 18 assigns the pointer to gp1. Lines 19 and 20
then update two of the structure’s fields, and does so
after line 18 has made those fields visible to readers.
Please note that unsynchronized update of reader-visible
fields often constitutes a bug. Although there are legit-
imate use cases doing just this, such use cases require
more care than is exercised in this example.

Finally, line 21 assigns the pointer to gp2.
The reader() thread first fetches gp2 on line 30, with

lines 31 and 32 checking for NULL and returning if so.

Line 33 then fetches field ->b. Now line 34 fetches gp1,
and if line 35 sees that the pointers fetched on lines 30
and 34 are equal, line 36 fetches p->c. Note that line 36
uses pointer p fetched on line 30, not pointer q fetched on
line 34.

But this difference might not matter. An equals com-
parison on line 35 might lead the compiler to (incorrectly)
conclude that both pointers are equivalent, when in fact
they carry different dependencies. This means that the
compiler might well transform line 36 to instead be r2
= q->c, which might well cause the value 44 to be loaded
instead of the expected value 144.

Quick Quiz 15.33: But doesn’t the condition in line 35
supply a control dependency that would keep line 36
ordered after line 34?

In short, some care is required in order to ensure that de-
pendency chains in your source code are still dependency
chains once the compiler has gotten done with them.

15.3.3 Control-Dependency Calamities
Control dependencies are especially tricky because cur-
rent compilers do not understand them and can easily
break them. The rules and examples in this section are
intended to help you prevent your compiler’s ignorance
from breaking your code.

A load-load control dependency requires a full read
memory barrier, not simply a data dependency barrier.
Consider the following bit of code:

1 q = READ_ONCE(x);
2 if (q) {
3 <data dependency barrier>
4 q = READ_ONCE(y);
5 }

This will not have the desired effect because there is no
actual data dependency, but rather a control dependency
that the CPU may short-circuit by attempting to predict
the outcome in advance, so that other CPUs see the load
from y as having happened before the load from x. In
such a case what’s actually required is:

1 q = READ_ONCE(x);
2 if (q) {
3 <read barrier>
4 q = READ_ONCE(y);
5 }

However, stores are not speculated. This means that
ordering is provided for load-store control dependencies,
as in the following example:

1 q = READ_ONCE(x);
2 if (q)
3 WRITE_ONCE(y, 1);

294 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Control dependencies pair normally with other types
of ordering operations. That said, please note that neither
READ_ONCE() nor WRITE_ONCE() are optional! Without
the READ_ONCE(), the compiler might combine the load
from x with other loads from x. Without the WRITE_
ONCE(), the compiler might combine the store to y with
other stores to y. Either can result in highly counterintu-
itive effects on ordering.

Worse yet, if the compiler is able to prove (say) that
the value of variable x is always non-zero, it would be
well within its rights to optimize the original example by
eliminating the “if” statement as follows:

1 q = READ_ONCE(x);
2 WRITE_ONCE(y, 1); /* BUG: CPU can reorder!!! */

It is tempting to try to enforce ordering on identical
stores on both branches of the “if” statement as follows:

1 q = READ_ONCE(x);
2 if (q) {
3 barrier();
4 WRITE_ONCE(y, 1);
5 do_something();
6 } else {
7 barrier();
8 WRITE_ONCE(y, 1);
9 do_something_else();

10 }

Unfortunately, current compilers will transform this as
follows at high optimization levels:

1 q = READ_ONCE(x);
2 barrier();
3 WRITE_ONCE(y, 1); /* BUG: No ordering!!! */
4 if (q) {
5 do_something();
6 } else {
7 do_something_else();
8 }

Now there is no conditional between the load from x
and the store to y, which means that the CPU is within
its rights to reorder them: The conditional is absolutely
required, and must be present in the assembly code even
after all compiler optimizations have been applied. There-
fore, if you need ordering in this example, you need ex-
plicit memory-ordering operations, for example, a release
store:

1 q = READ_ONCE(x);
2 if (q) {
3 smp_store_release(&y, 1);
4 do_something();
5 } else {
6 smp_store_release(&y, 1);
7 do_something_else();
8 }

The initial READ_ONCE() is still required to prevent the
compiler from proving the value of x.

In addition, you need to be careful what you do with the
local variable q, otherwise the compiler might be able to
guess the value and again remove the needed conditional.
For example:

1 q = READ_ONCE(x);
2 if (q % MAX) {
3 WRITE_ONCE(y, 1);
4 do_something();
5 } else {
6 WRITE_ONCE(y, 2);
7 do_something_else();
8 }

If MAX is defined to be 1, then the compiler knows that
(q%MAX) is equal to zero, in which case the compiler
is within its rights to transform the above code into the
following:

1 q = READ_ONCE(x);
2 WRITE_ONCE(y, 2);
3 do_something_else();

Given this transformation, the CPU is not required to
respect the ordering between the load from variable x and
the store to variable y. It is tempting to add a barrier()
to constrain the compiler, but this does not help. The
conditional is gone, and the barrier() won’t bring it
back. Therefore, if you are relying on this ordering, you
should make sure that MAX is greater than one, perhaps as
follows:

1 q = READ_ONCE(x);
2 BUILD_BUG_ON(MAX <= 1);
3 if (q % MAX) {
4 WRITE_ONCE(y, 1);
5 do_something();
6 } else {
7 WRITE_ONCE(y, 2);
8 do_something_else();
9 }

Please note once again that the stores to y differ. If they
were identical, as noted earlier, the compiler could pull
this store outside of the “if” statement.

You must also avoid excessive reliance on boolean
short-circuit evaluation. Consider this example:

1 q = READ_ONCE(x);
2 if (q || 1 > 0)
3 WRITE_ONCE(y, 1);

Because the first condition cannot fault and the second
condition is always true, the compiler can transform this
example as following, defeating control dependency:

1 q = READ_ONCE(x);
2 WRITE_ONCE(y, 1);

15.3. COMPILE-TIME CONSTERNATION 295

This example underscores the need to ensure that the
compiler cannot out-guess your code. More generally, al-
though READ_ONCE() does force the compiler to actually
emit code for a given load, it does not force the compiler
to use the results.

In addition, control dependencies apply only to the
then-clause and else-clause of the if-statement in ques-
tion. In particular, it does not necessarily apply to code
following the if-statement:

1 q = READ_ONCE(x);
2 if (q) {
3 WRITE_ONCE(y, 1);
4 } else {
5 WRITE_ONCE(y, 2);
6 }
7 WRITE_ONCE(z, 1); /* BUG: No ordering. */

It is tempting to argue that there in fact is ordering
because the compiler cannot reorder volatile accesses and
also cannot reorder the writes to y with the condition.
Unfortunately for this line of reasoning, the compiler
might compile the two writes to y as conditional-move
instructions, as in this fanciful pseudo-assembly language:

1 ld r1,x
2 cmp r1,$0
3 cmov,ne r4,$1
4 cmov,eq r4,$2
5 st r4,y
6 st $1,z

A weakly ordered CPU would have no dependency of
any sort between the load from x and the store to z. The
control dependencies would extend only to the pair of
cmov instructions and the store depending on them. In
short, control dependencies apply only to the stores in
the “then” and “else” of the “if” in question (includ-
ing functions invoked by those two clauses), not to code
following that “if”.

Finally, control dependencies do not provide cumula-
tivity.14 This is demonstrated by two related litmus tests,
namely Listings 15.29 and 15.30 with the initial values
of x and y both being zero.

The exists clause in the two-thread example of
Listing 15.29 (C-LB+o-cgt-o+o-cgt-o.litmus) will
never trigger. If control dependencies guaranteed cumu-
lativity (which they do not), then adding a thread to the
example as in Listing 15.30 (C-WWC+o-cgt-o+o-cgt-
o+o.litmus) would guarantee the related exists clause
never to trigger.

But because control dependencies do not provide cu-
mulativity, the exists clause in the three-thread litmus
test can trigger. If you need the three-thread example to

14 Refer to Section 15.2.7.1 for the meaning of cumulativity.

Listing 15.29: LB Litmus Test With Control Dependency
1 C C-LB+o-cgt-o+o-cgt-o
2 {
3 }
4
5 P0(int *x, int *y)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x);

10 if (r1 > 0)
11 WRITE_ONCE(*y, 1);
12 }
13
14 P1(int *x, int *y)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*y);
19 if (r2 > 0)
20 WRITE_ONCE(*x, 1);
21 }
22
23 exists (0:r1=1 /\ 1:r2=1)

provide ordering, you will need smp_mb() between the
load and store in P0(), that is, just before or just after
the “if” statements. Furthermore, the original two-thread
example is very fragile and should be avoided.

Quick Quiz 15.34: Can’t you instead add an smp_
mb() to P1() in Listing 15.30?

The following list of rules summarizes the lessons of
this section:

1. Compilers do not understand control dependencies,
so it is your job to make sure that the compiler cannot
break your code.

2. Control dependencies can order prior loads against
later stores. However, they do not guarantee any
other sort of ordering: Not prior loads against later
loads, nor prior stores against later anything. If you
need these other forms of ordering, use smp_rmb(),
smp_wmb(), or, in the case of prior stores and later
loads, smp_mb().

3. If both legs of the “if” statement begin with identi-
cal stores to the same variable, then those stores must
be ordered, either by preceding both of them with
smp_mb() or by using smp_store_release() to
carry out the stores. Please note that it is not suf-
ficient to use barrier() at beginning of each leg
of the “if” statement because, as shown by the ex-
ample above, optimizing compilers can destroy the
control dependency while respecting the letter of the
barrier() law.

4. Control dependencies require at least one run-time

296 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.30: WWC Litmus Test With Control Dependency
(Cumulativity?)

1 C C-WWC+o-cgt-o+o-cgt-o+o
2 {
3 }
4
5 P0(int *x, int *y)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x);

10 if (r1 > 0)
11 WRITE_ONCE(*y, 1);
12 }
13
14 P1(int *x, int *y)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*y);
19 if (r2 > 0)
20 WRITE_ONCE(*x, 1);
21 }
22
23 P2(int *x)
24 {
25 WRITE_ONCE(*x, 2);
26 }
27
28 exists (0:r1=2 /\ 1:r2=1 /\ x=2)

conditional between the prior load and the subse-
quent store, and this conditional must involve the
prior load. If the compiler is able to optimize the con-
ditional away, it will have also optimized away the
ordering. Careful use of READ_ONCE() and WRITE_
ONCE() can help to preserve the needed conditional.

5. Control dependencies require that the compiler
avoid reordering the dependency into nonexistence.
Careful use of READ_ONCE(), atomic_read(), or
atomic64_read() can help to preserve your con-
trol dependency.

6. Control dependencies apply only to the “then” and
“else” of the “if” containing the control depen-
dency, including any functions that these two clauses
call. Control dependencies do not apply to code fol-
lowing the end of the “if” statement containing the
control dependency.

7. Control dependencies pair normally with other types
of memory-ordering operations.

8. Control dependencies do not provide cumulativity.
If you need cumulativity, use smp_mb().

In short, many popular languages were designed pri-
marily with single-threaded use in mind. Successfully us-
ing these languages to construct multi-threaded software

requires that you pay special attention to your memory
references and dependencies.

15.4 Hardware Specifics
Each CPU has its own peculiar approach to memory order-
ing, which can make portability a challenge, as indicated
by Table 15.5. In fact, some software environments sim-
ply prohibit direct use of memory-ordering operations,
restricting the programmer to mutual-exclusion primitives
that incorporate them to the extent that they are required.
Please note that this section is not intended to be a refer-
ence manual covering all (or even most) aspects of each
CPU family, but rather a high-level overview giving a
rough comparison. For full details, see the reference man-
ual for the CPU of interest.

Getting back to Table 15.5, the first group of rows
look at memory-ordering properties and the second group
looks at instruction properties.

The first three rows indicate whether a given CPU al-
lows the four possible combinations of loads and stores to
be reordered, as discussed in Sections 15.1 and 15.2.2.1–
15.2.2.3. The next row (“Atomic Instructions Reordered
With Loads or Stores?”) indicates whether a given CPU
allows loads and stores to be reordered with atomic in-
structions.

The fifth and sixth rows cover reordering and depen-
dencies, which was covered in Sections 15.2.3–15.2.5
and which is explained in more detail in Section 15.4.1.
The short version is that Alpha requires memory barriers
for readers as well as updaters of linked data structures,
however, these memory barriers are provided by the Al-
pha architecture-specific code in v4.15 and later Linux
kernels.

The next row, “Non-Sequentially Consistent”, indicates
whether the CPU’s normal load and store instructions are
constrained by sequential consistency. Almost all are not
constrained in this way for performance reasons.

The next two rows cover multicopy atomicity, which
was defined in Section 15.2.7. The first is full-up (and
rare) multicopy atomicity, and the second is the weaker
other-multicopy atomicity.

The next row, “Non-Cache Coherent”, covers accesses
from multiple threads to a single variable, which was
discussed in Section 15.2.6.

The final three rows cover instruction-level choices and
issues. The first row indicates how each CPU implements
load-acquire and store-release, the second row classifies
CPUs by atomic-instruction type, and the third and final

15.4. HARDWARE SPECIFICS 297

Table 15.5: Summary of Memory Ordering

CPU Family

Property A
lp

ha

A
R

M
v7

-A
/R

A
R

M
v8

It
an

iu
m

M
IP

S

PO
W

E
R

SP
A

R
C

T
SO

x8
6

z
Sy

st
em

s

Memory Ordering Loads Reordered After Loads or Stores? Y Y Y Y Y Y
Stores Reordered After Stores? Y Y Y Y Y Y
Stores Reordered After Loads? Y Y Y Y Y Y Y Y Y

Atomic Instructions Reordered With
Loads or Stores?

Y Y Y Y Y

Dependent Loads Reordered? Y
Dependent Stores Reordered?
Non-Sequentially Consistent? Y Y Y Y Y Y Y Y Y
Non-Multicopy Atomic? Y Y Y Y Y Y Y Y
Non-Other-Multicopy Atomic? Y Y Y Y Y
Non-Cache Coherent? Y

Instructions Load-Acquire/Store-Release? F F i I F b
Atomic RMW Instruction Type? L L L C L L C C C
Incoherent Instruction Cache/Pipeline? Y Y Y Y Y Y Y Y Y

Key: Load-Acquire/Store-Release?
b: Lightweight memory barrier
F: Full memory barrier
i: Instruction with lightweight ordering
I: Instruction with heavyweight ordering

Atomic RMW Instruction Type?
C: Compare-and-exchange instruction
L: Load-linked/store-conditional instruction

row indicates whether a given CPU has an incoherent
instruction cache and pipeline. Such CPUs require special
instructions be executed for self-modifying code.

The common “just say no” approach to memory-
ordering operations can be eminently reasonable where
it applies, but there are environments, such as the Linux
kernel, where direct use of memory-ordering operations
is required. Therefore, Linux provides a carefully cho-
sen least-common-denominator set of memory-ordering
primitives, which are as follows:

smp_mb() (full memory barrier) that orders both loads
and stores. This means that loads and stores preced-
ing the memory barrier will be committed to memory
before any loads and stores following the memory
barrier.

smp_rmb() (read memory barrier) that orders only loads.

smp_wmb() (write memory barrier) that orders only
stores.

smp_read_barrier_depends() that forces subse-
quent operations that depend on prior operations to
be ordered. This primitive is a no-op on all platforms
except Alpha, but is normally not used directly, but
rather as part of something like READ_ONCE() or
rcu_dereference().

smp_mb__before_atomic() that forces ordering of ac-
cesses preceding the smp_mb__before_atomic()
against accesses following a later RMW atomic op-
eration. This is a noop on systems that fully order
atomic RMW operatings.

298 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

smp_mb__after_atomic() that forces ordering of ac-
cesses preceding an earlier RMW atomic operation
against accesses following the smp_mb__after_
atomic(). This is also a noop on systems that fully
order atomic RMW operatings.

mmiowb() that forces ordering on MMIO writes that
are guarded by global spinlocks, and is more
thoroughly described in a 2016 LWN article on
MMIO [MDR16a].

The smp_mb(), smp_rmb(), and smp_wmb() primitives
also force the compiler to eschew any optimizations
that would have the effect of reordering memory opti-
mizations across the barriers. The smp_read_barrier_
depends() primitive has a similar effect, but only on
Alpha CPUs.

These primitives generate code only in SMP kernels,
however, several have UP versions (mb(), rmb(), wmb(),
and read_barrier_depends(), respectively) that gen-
erate a memory barrier even in UP kernels. The smp_
versions should be used in most cases. However, these
latter primitives are useful when writing drivers, because
MMIO accesses must remain ordered even in UP kernels.
In absence of memory-ordering operations, both CPUs
and compilers would happily rearrange these accesses,
which at best would make the device act strangely, and
could crash your kernel or, in some cases, even damage
your hardware.

So most kernel programmers need not worry about the
memory-ordering peculiarities of each and every CPU,
as long as they stick to these interfaces. If you are work-
ing deep in a given CPU’s architecture-specific code, of
course, all bets are off.

Furthermore, all of Linux’s locking primitives (spin-
locks, reader-writer locks, semaphores, RCU, . . .) include
any needed ordering primitives. So if you are working
with code that uses these primitives properly, you need
not worry about Linux’s memory-ordering primitives.

That said, deep knowledge of each CPU’s memory-
consistency model can be very helpful when debugging,
to say nothing of when writing architecture-specific code
or synchronization primitives.

Besides, they say that a little knowledge is a very dan-
gerous thing. Just imagine the damage you could do with
a lot of knowledge! For those who wish to understand
more about individual CPUs’ memory consistency mod-
els, the next sections describe those of a few popular and
prominent CPUs. Although nothing can replace actually
reading a given CPU’s documentation, these sections give
a good overview.

Listing 15.31: Insert and Lock-Free Search (No Ordering)
1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = READ_ONCE(head.next);
18 while (p != &head) {
19 /* Prior to v4.15, BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = READ_ONCE(p->next);
24 };
25 return (NULL);
26 }

15.4.1 Alpha
It may seem strange to say much of anything about a CPU
whose end of life has long since past, but Alpha is interest-
ing because it is the only mainstream CPU that reorders
dependent loads, and has thus had outsized influence on
concurrency APIs, including within the Linux kernel. Un-
derstanding Alpha is therefore surprisingly important to
the Linux kernel hacker.

The dependent-load difference between Alpha and the
other CPUs is illustrated by the code shown in List-
ing 15.31. This smp_wmb() on line 9 of this listing guar-
antees that the element initialization in lines 6-8 is exe-
cuted before the element is added to the list on line 10, so
that the lock-free search will work correctly. That is, it
makes this guarantee on all CPUs except Alpha.15

Alpha actually allows the code on line 20 of List-
ing 15.31 could see the old garbage values that were
present before the initialization on lines 6-8.

Figure 15.13 shows how this can happen on an ag-
gressively parallel machine with partitioned caches, so
that alternating cache lines are processed by the differ-
ent partitions of the caches. For example, the load of
head.next on line 17 of Listing 15.31 might access
cache bank 0, and the load of p->key on line 20 and
of p->next on line 23 might access cache bank 1. On
Alpha, the smp_wmb() will guarantee that the cache in-

15 But Linux kernel versions v4.15 and later cause READ_ONCE()
to emit a memory barrier on Alpha, so this discussion applies only to
older versions of the Linux kernel.

15.4. HARDWARE SPECIFICS 299

Writing CPU Core Reading CPU Core

Cache
Bank 0

Cache
Bank 1

Cache
Bank 0
(Idle)

p->data = key;
smp_wmb();
head.next = p;

p = READ_ONCE(head.next);
BUG_ON(p && p->key != key);

Cache
Bank 1
(Busy)

head.next p->key
p->data
p->next

Figure 15.13: Why smp_read_barrier_depends() is
Required

validations performed by lines 6-8 of Listing 15.31 (for
p->next, p->key, and p->data) will reach the intercon-
nect before that of line 10 (for head.next), but makes
absolutely no guarantee about the order of propagation
through the reading CPU’s cache banks. For example, it
is possible that the reading CPU’s cache bank 1 is very
busy, but cache bank 0 is idle. This could result in the
cache invalidations for the new element (p->next, p->
key, and p->data) being delayed, so that the reading
CPU loads the new value for head.next, but loads the
old cached values for p->key and p->next. Yes, this
does mean that Alpha can in effect fetch the data pointed
to before it fetches the pointer itself, strange but true. See
the documentation [Com01, Pug00] called out earlier for
more information, or if you think that I am just making all
this up.16 The benefit of this unusual approach to ordering
is that Alpha can use simpler cache hardware, which in
turn permitted higher clock frequency in Alpha’s heyday.

One could place an smp_rmb() primitive between the
pointer fetch and dereference in order to force Alpha to
order the pointer fetch with the later dependent load. How-
ever, this imposes unneeded overhead on systems (such
as ARM, Itanium, PPC, and SPARC) that respect data
dependencies on the read side. A smp_read_barrier_
depends() primitive has therefore been added to the
Linux kernel to eliminate overhead on these systems, and
was also added to READ_ONCE() in v4.15 of the Linux
kernel so that core kernel code no longer needs to con-
cern itself with this aspect of DEC Alpha. This smp_
read_barrier_depends() primitive could be inserted
in place of line 19 of Listing 15.31, but it is better to use

16 Of course, the astute reader will have already recognized that
Alpha is nowhere near as mean and nasty as it could be, the (thankfully)
mythical architecture in Section C.6.1 being a case in point.

Listing 15.32: Safe Insert and Lock-Free Search
1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = rcu_dereference(head.next);
18 while (p != &head) {
19 if (p->key == key) {
20 return (p);
21 }
22 p = rcu_dereference(p->next);
23 };
24 return (NULL);
25 }

the rcu_dereference() wrapper macro as shown on
lines 17 and 22 of Listing 15.32.

It is also possible to implement a software mechanism
that could be used in place of smp_wmb() to force all
reading CPUs to see the writing CPU’s writes in order.
This software barrier could be implemented by sending
inter-processor interrupts (IPIs) to all other CPUs. Upon
receipt of such an IPI, a CPU would execute a memory-
barrier instruction, implementing a memory-barrier shoot-
down similar to that provided by the Linux kernel’s sys_
membarrier() system call. Additional logic is required
to avoid deadlocks. Of course, CPUs that respect data
dependencies would define such a barrier to simply be
smp_wmb(). However, this approach was deemed by the
Linux community to impose excessive overhead, and fur-
thermore would not be considered a reasonable approach
by those whose systems must meet aggressive real-time
response requirements.

The Linux memory-barrier primitives took their names
from the Alpha instructions, so smp_mb() is mb, smp_
rmb() is rmb, and smp_wmb() is wmb. Alpha is the only
CPU where smp_read_barrier_depends() is an smp_
mb() rather than a no-op.

Quick Quiz 15.35: Why is Alpha’s smp_read_
barrier_depends() an smp_mb() rather than smp_
rmb()?

Quick Quiz 15.36: Isn’t DEC Alpha significant as
having the weakest possible memory ordering?

For more on Alpha, see its reference manual [Cor02].

300 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

15.4.2 ARMv7-A/R

The ARM family of CPUs is extremely popular in em-
bedded applications, particularly for power-constrained
applications such as cellphones. Its memory model is sim-
ilar to that of POWER (see Section 15.4.6), but ARM uses
a different set of memory-barrier instructions [ARM10]:

DMB (data memory barrier) causes the specified type of
operations to appear to have completed before any
subsequent operations of the same type. The “type”
of operations can be all operations or can be re-
stricted to only writes (similar to the Alpha wmb and
the POWER eieio instructions). In addition, ARM
allows cache coherence to have one of three scopes:
single processor, a subset of the processors (“inner”)
and global (“outer”).

DSB (data synchronization barrier) causes the specified
type of operations to actually complete before any
subsequent operations (of any type) are executed.
The “type” of operations is the same as that of DMB.
The DSB instruction was called DWB (drain write buf-
fer or data write barrier, your choice) in early ver-
sions of the ARM architecture.

ISB (instruction synchronization barrier) flushes the CPU
pipeline, so that all instructions following the ISB
are fetched only after the ISB completes. For ex-
ample, if you are writing a self-modifying program
(such as a JIT), you should execute an ISB between
generating the code and executing it.

None of these instructions exactly match the semantics
of Linux’s rmb() primitive, which must therefore be im-
plemented as a full DMB. The DMB and DSB instructions
have a recursive definition of accesses ordered before and
after the barrier, which has an effect similar to that of
POWER’s cumulativity, both of which are stronger than
Section 15.2.7.1’s variant of cumulativity.

ARM also implements control dependencies, so that
if a conditional branch depends on a load, then any store
executed after that conditional branch will be ordered
after the load. However, loads following the conditional
branch will not be guaranteed to be ordered unless there
is an ISB instruction between the branch and the load.
Consider the following example:

LDLAR

Figure 15.14: Half Memory Barrier

1 r1 = x;
2 if (r1 == 0)
3 nop();
4 y = 1;
5 r2 = z;
6 ISB();
7 r3 = z;

In this example, load-store control dependency order-
ing causes the load from x on line 1 to be ordered before
the store to y on line 4. However, ARM does not respect
load-load control dependencies, so that the load on line 1
might well happen after the load on line 5. On the other
hand, the combination of the conditional branch on line 2
and the ISB instruction on line 6 ensures that the load on
line 7 happens after the load on line 1. Note that inserting
an additional ISB instruction somewhere between lines 3
and 4 would enforce ordering between lines 1 and 5.

15.4.3 ARMv8

ARMv8 is ARM’s new CPU family [ARM17] which in-
cludes 64-bit capabilities, in contrast to their 32-bit-only
CPU described in Section 15.4.2. ARMv8’s memory
model closely resembles its ARMv7 counterpart, but
adds load-acquire (LDLARB, LDLARH, and LDLAR) and
store-release (STLLRB, STLLRH, and STLLR) instructions.
These instructions act as “half memory barriers”, so that
ARMv8 CPUs can reorder previous accesses with a later
LDLAR instruction, but are prohibited from reordering an
earlier LDLAR instruction with later accesses, as fancifully
depicted in Figure 15.14. Similarly, ARMv8 CPUs can

15.4. HARDWARE SPECIFICS 301

reorder an earlier STLLR instruction with a subsequent ac-
cess, but are prohibited from reordering previous accesses
with a later STLLR instruction. As one might expect, this
means that these instructions directly support the C11
notion of load-acquire and store-release.

However, ARMv8 goes well beyond the C11 mem-
ory model by mandating that the combination of a store-
release and load-acquire act as a full barrier under many
circumstances. For example, in ARMv8, given a store
followed by a store-release followed a load-acquire fol-
lowed by a load, all to different variables and all from a
single CPU, all CPUs would agree that the initial store
preceded the final load. Interestingly enough, most TSO
architectures (including x86 and the mainframe) do not
make this guarantee, as the two loads could be reordered
before the two stores.

ARMv8 is one of only two architectures that needs
the smp_mb__after_spinlock() primitive to be a full
barrier, due to its relatively weak lock-acquisition imple-
mentation in the Linux kernel.

ARMv8 also has the distinction of being the first CPU
whose vendor publicly defined its memory ordering with
an executable formal model [ARM17].

15.4.4 Itanium
Itanium offers a weak consistency model, so that in ab-
sence of explicit memory-barrier instructions, Itanium
is within its rights to arbitrarily reorder memory refer-
ences [Int02b]. Itanium has a memory-fence instruc-
tion named mf, but also has “half-memory fence” mod-
ifiers to loads, stores, and to some of its atomic instruc-
tions [Int02a]. The acq modifier prevents subsequent
memory-reference instructions from being reordered be-
fore the acq, but permits prior memory-reference instruc-
tions to be reordered after the acq, similar to the ARMv8
load-acquire instructions. Similarly, the rel modifier
prevents prior memory-reference instructions from being
reordered after the rel, but allows subsequent memory-
reference instructions to be reordered before the rel.

These half-memory fences are useful for critical sec-
tions, since it is safe to push operations into a critical
section, but can be fatal to allow them to bleed out. How-
ever, as one of the few CPUs with this property, Itanium
at one time defined Linux’s semantics of memory order-
ing associated with lock acquisition and release.17 Oddly
enough, actual Itanium hardware is rumored to imple-
ment both load-acquire and store-release instructions as

17 PowerPC is now the architecture having this dubious privilege.

full barriers. Nevertheless, Itanium was the first main-
stream CPU to introduce the concept (if not the reality)
of load-acquire and store-release into its instruction set.

The Itanium mf instruction is used for the smp_rmb(),
smp_mb(), and smp_wmb() primitives in the Linux ker-
nel. Oh, and despite rumors to the contrary, the “mf”
mnemonic really does stand for “memory fence”.

Itanium also offers a global total order for “release” op-
erations, including the “mf” instruction. This provides the
notion of transitivity, where if a given code fragment sees
a given access as having happened, any later code frag-
ment will also see that earlier access as having happened.
Assuming, that is, that all the code fragments involved
correctly use memory barriers.

Finally, Itanium is the only architecture supporting
the Linux kernel that can reorder normal loads to the
same variable. The Linux kernel avoids this issue because
READ_ONCE() emits a volatile load, which is compiled
as a ld,acq instruction, which forces ordering of all
READ_ONCE() invocations by a given CPU, including
those to the same variable.

15.4.5 MIPS

The MIPS memory model [Ima17, page 479] appears
to resemble that of ARM, Itanium, and POWER, being
weakly ordered by default, but respecting dependencies.
MIPS has a wide variety of memory-barrier instructions,
but ties them not to hardware considerations, but rather to
the use cases provided by the Linux kernel and the C++11
standard [Smi15] in a manner similar to the ARMv8 ad-
ditions:

SYNC
Full barrier for a number of hardware operations
in addition to memory references, which is used to
implement the v4.13 Linux kernel’s smp_mb() for
OCTEON systems.

SYNC_WMB
Write memory barrier, which can be used on
OCTEON systems to implement the smp_wmb()
primitive in the v4.13 Linux kernel via the syncw
mnemonic. Other systems use plain sync.

SYNC_MB
Full memory barrier, but only for memory operations.
This may be used to implement the C++ atomic_
thread_fence(memory_order_seq_cst).

302 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

SYNC_ACQUIRE
Acquire memory barrier, which could be used to im-
plement C++’s atomic_thread_fence(memory_
order_acquire). In theory, it could also be used
to implement the v4.13 Linux-kernel smp_load_
acquire() primitive, but in practice sync is used
instead.

SYNC_RELEASE
Release memory barrier, which may be used to im-
plement C++’s atomic_thread_fence(memory_
order_release). In theory, it could also be used
to implement the v4.13 Linux-kernel smp_store_
release() primitive, but in practice sync is used
instead.

SYNC_RMB
Read memory barrier, which could in theory be used
to implement the smp_rmb() primitive in the Linux
kernel, except that current MIPS implementations
supported by the v4.13 Linux kernel do not need
an explicit instruction to force ordering. Therefore,
smp_rmb() instead simply constrains the compiler.

SYNCI
Instruction-cache synchronization, which is used in
conjunction with other instructions to allow self-
modifying code, such as that produced by just-in-
time (JIT) compilers.

Informal discussions with MIPS architects indicates
that MIPS has a definition of transitivity or cumulativity
similar to that of ARM and POWER. However, it appears
that different MIPS implementations can have different
memory-ordering properties, so it is important to consult
the documentation for the specific MIPS implementation
you are using.

15.4.6 POWER / PowerPC
The POWER and PowerPC CPU families have a wide
variety of memory-barrier instructions [IBM94, LHF05]:

sync causes all preceding operations to appear to have
completed before any subsequent operations are
started. This instruction is therefore quite expen-
sive.

lwsync (light-weight sync) orders loads with respect to
subsequent loads and stores, and also orders stores.
However, it does not order stores with respect to sub-
sequent loads. The lwsync instruction may be used

to implement load-acquire and store-release opera-
tions. Interestingly enough, the lwsync instruction
enforces the same within-CPU ordering as does x86,
z Systems, and coincidentally, SPARC TSO. How-
ever, placing the lwsync instruction between each
pair of memory-reference instructions will not result
in x86, z Systems, or SPARC TSO memory ordering.
On these other systems, if a pair of CPUs indepen-
dently execute stores to different variables, all other
CPUs will agree on the order of these stores. Not
so on PowerPC, even with an lwsync instruction
between each pair of memory-reference instructions,
because PowerPC is non-multicopy atomic.

eieio (enforce in-order execution of I/O, in case you
were wondering) causes all preceding cacheable
stores to appear to have completed before all subse-
quent stores. However, stores to cacheable memory
are ordered separately from stores to non-cacheable
memory, which means that eieio will not force an
MMIO store to precede a spinlock release.

isync forces all preceding instructions to appear to have
completed before any subsequent instructions start
execution. This means that the preceding instruc-
tions must have progressed far enough that any traps
they might generate have either happened or are guar-
anteed not to happen, and that any side-effects of
these instructions (for example, page-table changes)
are seen by the subsequent instructions.

Unfortunately, none of these instructions line up ex-
actly with Linux’s wmb() primitive, which requires all
stores to be ordered, but does not require the other high-
overhead actions of the sync instruction. But there is no
choice: ppc64 versions of wmb() and mb() are defined to
be the heavyweight sync instruction. However, Linux’s
smp_wmb() instruction is never used for MMIO (since
a driver must carefully order MMIOs in UP as well as
SMP kernels, after all), so it is defined to be the lighter
weight eieio or lwsync instruction [MDR16b]. This
instruction may well be unique in having a five-vowel
mnemonic. The smp_mb() instruction is also defined to
be the sync instruction, but both smp_rmb() and rmb()
are defined to be the lighter-weight lwsync instruction.

POWER features “cumulativity”, which can be used
to obtain transitivity. When used properly, any code see-
ing the results of an earlier code fragment will also see
the accesses that this earlier code fragment itself saw.
Much more detail is available from McKenney and Sil-
vera [MS09].

15.4. HARDWARE SPECIFICS 303

POWER respects control dependencies in much the
same way that ARM does, with the exception that the
POWER isync instruction is substituted for the ARM
ISB instruction.

Like ARMv8, POWER requires smp_mb__after_
spinlock() to be a full memory barrier. In addition,
POWER is the only architecture requiring smp_mb__
after_unlock_lock() to be a full memory barrier. In
both cases, this is because of the weak ordering properties
of POWER’s locking primitives, due to the use of the
lwsync instruction to provide ordering for both acquisi-
tion and release.

Many members of the POWER architecture have in-
coherent instruction caches, so that a store to memory
will not necessarily be reflected in the instruction cache.
Thankfully, few people write self-modifying code these
days, but JITs and compilers do it all the time. Further-
more, recompiling a recently run program looks just like
self-modifying code from the CPU’s viewpoint. The icbi
instruction (instruction cache block invalidate) invalidates
a specified cache line from the instruction cache, and may
be used in these situations.

15.4.7 SPARC TSO
Although SPARC’s TSO (total-store order) is used by
both Linux and Solaris, the architecture also defines PSO
(partial store order) and RMO (relaxed-memory order).
Any program that runs in RMO will also run in either PSO
or TSO, and similarly, a program that runs in PSO will
also run in TSO. Moving a shared-memory parallel pro-
gram in the other direction may require careful insertion
of memory barriers.

Although SPARC’s PSO and RMO modes are not used
much these days, they did give rise to a very flexible
memory-barrier instruction [SPA94] that permits fine-
grained control of ordering:

StoreStore orders preceding stores before subsequent
stores. (This option is used by the Linux smp_wmb()
primitive.)

LoadStore orders preceding loads before subsequent
stores.

StoreLoad orders preceding stores before subsequent
loads.

LoadLoad orders preceding loads before subsequent
loads. (This option is used by the Linux smp_rmb()
primitive.)

Sync fully completes all preceding operations before
starting any subsequent operations.

MemIssue completes preceding memory operations be-
fore subsequent memory operations, important for
some instances of memory-mapped I/O.

Lookaside does the same as MemIssue, but only applies
to preceding stores and subsequent loads, and even
then only for stores and loads that access the same
memory location.

So, why is “membar #MemIssue” needed? Because
a “membar #StoreLoad” could permit a subsequent
load to get its value from a store buffer, which would
be disastrous if the write was to an MMIO register
that induced side effects on the value to be read. In
contrast, “membar #MemIssue” would wait until the
store buffers were flushed before permitting the loads
to execute, thereby ensuring that the load actually
gets its value from the MMIO register. Drivers could
instead use “membar #Sync”, but the lighter-weight
“membar #MemIssue” is preferred in cases where the ad-
ditional function of the more-expensive “membar #Sync”
are not required.

The “membar #Lookaside” is a lighter-weight ver-
sion of “membar #MemIssue”, which is useful when
writing to a given MMIO register affects the value that
will next be read from that register. However, the heavier-
weight “membar #MemIssue” must be used when a write
to a given MMIO register affects the value that will next
be read from some other MMIO register.

SPARC requires a flush instruction be used be-
tween the time that an instruction is stored and exe-
cuted [SPA94]. This is needed to flush any prior value for
that location from the SPARC’s instruction cache. Note
that flush takes an address, and will flush only that ad-
dress from the instruction cache. On SMP systems, all
CPUs’ caches are flushed, but there is no convenient way
to determine when the off-CPU flushes complete, though
there is a reference to an implementation note.

But again, the Linux kernel runs SPARC in TSO mode,
so all of the above membar variants are strictly of his-
torical interest. In particular, the smp_mb() primitive
only needs to use #StoreLoad because the other three
reorderings are prohibited by TSO.

15.4.8 x86
Historically, the x86 CPUs provided “process ordering”
so that all CPUs agreed on the order of a given CPU’s

304 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

writes to memory. This allowed the smp_wmb() primitive
to be a no-op for the CPU [Int04b]. Of course, a compiler
directive was also required to prevent optimizations that
would reorder across the smp_wmb() primitive. In ancient
times, certain x86 CPUs gave no ordering guarantees
for loads, so the smp_mb() and smp_rmb() primitives
expanded to lock;addl. This atomic instruction acts as
a barrier to both loads and stores.

But those were ancient times. More recently, Intel
has published a memory model for x86 [Int07]. It turns
out that Intel’s modern CPUs enforce tighter ordering
than was claimed in the previous specifications, so this
model is in effect simply mandating this modern behavior.
Even more recently, Intel published an updated memory
model for x86 [Int11, Section 8.2], which mandates a
total global order for stores, although individual CPUs
are still permitted to see their own stores as having hap-
pened earlier than this total global order would indicate.
This exception to the total ordering is needed to allow
important hardware optimizations involving store buffers.
In addition, x86 provides other-multicopy atomicity, for
example, so that if CPU 0 sees a store by CPU 1, then
CPU 0 is guaranteed to see all stores that CPU 1 saw
prior to its store. Software may use atomic operations
to override these hardware optimizations, which is one
reason that atomic operations tend to be more expensive
than their non-atomic counterparts.

It is also important to note that atomic instructions
operating on a given memory location should all be of
the same size [Int11, Section 8.1.2.2]. For example, if
you write a program where one CPU atomically incre-
ments a byte while another CPU executes a 4-byte atomic
increment on that same location, you are on your own.

However, note that some SSE instructions are weakly
ordered (clflush and non-temporal move instruc-
tions [Int04a]). Code that uses these non-temporal move
instructions can also use mfence for smp_mb(), lfence
for smp_rmb(), and sfence for smp_wmb().

A few older variants of the x86 CPU have a mode
bit that enables out-of-order stores, and for these CPUs,
smp_wmb() must also be defined to be lock;addl.

Although newer x86 implementations accommodate
self-modifying code without any special instructions, to
be fully compatible with past and potential future x86
implementations, a given CPU must execute a jump in-
struction or a serializing instruction (e.g., cpuid) between
modifying the code and executing it [Int11, Section 8.1.3].

15.4.9 z Systems
The z Systems machines make up the IBM mainframe
family, previously known as the 360, 370, 390 and
zSeries [Int04c]. Parallelism came late to z Systems, but
given that these mainframes first shipped in the mid 1960s,
this is not saying much. The “bcr 15,0” instruction is
used for the Linux smp_mb() primitives, but compiler
constraints suffices for both the smp_rmb() and smp_
wmb() primitives. It also has strong memory-ordering
semantics, as shown in Table 15.5. In particular, all CPUs
will agree on the order of unrelated stores from different
CPUs, that is, z Systems is fully multicopy atomic.

As with most CPUs, the z Systems architecture does
not guarantee a cache-coherent instruction stream, hence,
self-modifying code must execute a serializing instruction
between updating the instructions and executing them.
That said, many actual z Systems machines do in fact
accommodate self-modifying code without serializing in-
structions. The z Systems instruction set provides a large
set of serializing instructions, including compare-and-
swap, some types of branches (for example, the aforemen-
tioned “bcr 15,0” instruction), and test-and-set, among
others.

15.5 Where is Memory Ordering
Needed?

This section revisits Table 15.3 and Section 15.1.3, sum-
marizing the intervening discussion with a more sophisti-
cated set of rules of thumb.

The first rule of thumb is that memory-ordering oper-
ations are only required where there is a possibility of
interaction involving at least two variables shared among
at least two threads. In light of the intervening material,
this single sentence encapsulates much of Section 15.1.3’s
basic rules of thumb, for example, keeping in mind that
“memory-barrier pairing” is a two-thread special case of
“cycle”. And, as always, if a single-threaded program will
provide sufficient performance, why bother with paral-
lelism?18 After all, avoiding parallelism also avoids the
added cost of memory-ordering operations.

The second rule of thumb involves load-buffering situ-
ations: If all thread-to-thread communication in a given
cycle use store-to-load links (that is, the next thread’s
load returning the value that the previous thread stored),

18 Hobbyists and researchers should of course feel free to ignore this
and other cautions.

15.5. WHERE IS MEMORY ORDERING NEEDED? 305

minimal ordering suffices. Minimal ordering includes
dependencies and acquires as well as all stronger ordering
operations.

The third rule of thumb involves release-acquire chains:
If all but one of the links in a given cycle is a store-
to-load link, it is sufficient to use release-acquire pairs
for each of those store-to-load links, as illustrated by
Listings 15.23 and 15.24. You can replace a given ac-
quire with a a dependency in environments permitting
this, keeping in mind that the C11 standard’s memory
model does not fully respect dependencies. Therefore,
a dependency leading to a load must be headed by a
READ_ONCE() or an rcu_dereference(): a plain C-
language load is not sufficient. In addition, never forget
to carefully review Sections 15.3.2 and 15.3.3, because
a dependency broken by your compiler is no help at all!
The two threads sharing the sole non-store-to-load link
can usually substitute WRITE_ONCE() plus smp_wmb()
for smp_store_release() on the one hand, and READ_
ONCE() plus smp_rmb() for smp_load_acquire() on
the other. However, the wise developer will check such
substitutions carefully, for example, using the herd tool
as described in Section 12.3.

Quick Quiz 15.37: Why is it necessary to use heavier-
weight ordering for load-to-store and store-to-store links,
but not for store-to-load links? What on earth makes
store-to-load links so special???

The fourth and final rule of thumb identifies where full
memory barriers (or stronger) are required: If a given
cycle contains two or more non-store-to-load links (that
is, a total of two or more load-to-store and store-to-store
links), you will need at least one full barrier between
each pair of non-store-to-load links in that cycle, as il-
lustrated by Listing 15.19 as well as in the answer to
Quick Quiz 15.24. Full barriers include smp_mb(), suc-
cessful full-strength non-void atomic RMW operations,
and other atomic RMW operations in conjunction with ei-
ther smp_mb__before_atomic() or smp_mb__after_
atomic(). Any of RCU’s grace-period-wait primitives
(synchronize_rcu() and friends) also act as full bar-
riers, but at far greater expense than smp_mb(). With
strength comes expense, though full barriers usually hurt
performance more than they hurt scalability.

Note that these four rules of thumb encapsulate mini-
mum guarantees. Different architectures may give more
substantial guarantees, as discussed in Section 15.4, but
they may not be relied upon outside of code specifically
designed to run only on the corresponding architecture.
In addition, more involved memory models may give

stronger guarantees [AMM+18], at the expense of some-
what greater complexity.

One final word of advice: Use of raw memory-ordering
primitives is a last resort. It is almost always better to use
existing primitives, such as locking or RCU, thus letting
those primitives do the memory ordering for you.

306 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Creating a perfect API is like committing the perfect
crime. There are at least fifty things that can go
wrong, and if you are a genius, you might be able to
anticipate twenty-five of them.

With apologies to any Kathleen Turner fans who
might still be alive.

Chapter 16

Ease of Use

16.1 What is Easy?
“Easy” is a relative term. For example, many people would
consider a 15-hour airplane flight to be a bit of an ordeal—
unless they stopped to consider alternative modes of trans-
portation, especially swimming. This means that creating
an easy-to-use API requires that you know quite a bit
about your intended users.

The following question illustrates this point: “Given
a randomly chosen person among everyone alive today,
what one change would improve his or her life?”

There is no single change that would be guaranteed to
help everyone’s life. After all, there is an extremely wide
range of people, with a correspondingly wide range of
needs, wants, desires, and aspirations. A starving person
might need food, but additional food might well hasten
the death of a morbidly obese person. The high level of
excitement so fervently desired by many young people
might well be fatal to someone recovering from a heart
attack. Information critical to the success of one person
might contribute to the failure of someone suffering from
information overload. In short, if you are working on
a software project that is intended to help someone you
know nothing about, you should not be surprised when
that someone is less than impressed with your efforts.

If you really want to help a given group of people, there
is simply no substitute for working closely with them over
an extended period of time. Nevertheless, there are some
simple things that you can do to increase the odds of your
users being happy with your software, and some of these
things are covered in the next section.

16.2 Rusty Scale for API Design
This section is adapted from portions of Rusty Russell’s
2003 Ottawa Linux Symposium keynote address [Rus03,

Slides 39-57]. Rusty’s key point is that the goal should
not be merely to make an API easy to use, but rather to
make the API hard to misuse. To that end, Rusty proposed
his “Rusty Scale” in decreasing order of this important
hard-to-misuse property.

The following list attempts to generalize the Rusty
Scale beyond the Linux kernel:

1. It is impossible to get wrong. Although this is the
standard to which all API designers should strive,
only the mythical dwim()1 command manages to
come close.

2. The compiler or linker won’t let you get it wrong.

3. The compiler or linker will warn you if you get it
wrong.

4. The simplest use is the correct one.

5. The name tells you how to use it.

6. Do it right or it will always break at runtime.

7. Follow common convention and you will get it right.
The malloc() library function is a good example.
Although it is easy to get memory allocation wrong,
a great many projects do manage to get it right, at
least most of the time. Using malloc() in conjunc-
tion with Valgrind [The11] moves malloc() almost
up to the “do it right or it will always break at run-
time” point on the scale.

8. Read the documentation and you will get it right.

9. Read the implementation and you will get it right.

1 The dwim() function is an acronym that expands to “do what I
mean”.

307

308 CHAPTER 16. EASE OF USE

10. Read the right mailing-list archive and you will get
it right.

11. Read the right mailing-list archive and you will get
it wrong.

12. Read the implementation and you will get it wrong.
The original non-CONFIG_PREEMPT implementation
of rcu_read_lock() [McK07a] is an infamous ex-
ample of this point on the scale.

13. Read the documentation and you will get it wrong.
For example, the DEC Alpha wmb instruction’s
documentation [Cor02] fooled a number of devel-
opers into thinking that that this instruction had
much stronger memory-order semantics than it ac-
tually does. Later documentation clarified this
point [Com01, Pug00], moving the wmb instruction
up to the “read the documentation and you will get
it right” point on the scale.

14. Follow common convention and you will get it
wrong. The printf() statement is an example of
this point on the scale because developers almost
always fail to check printf()’s error return.

15. Do it right and it will break at runtime.

16. The name tells you how not to use it.

17. The obvious use is wrong. The Linux kernel smp_
mb() function is an example of this point on the
scale. Many developers assume that this function has
much stronger ordering semantics than it possesses.
Chapter 15 contains the information needed to avoid
this mistake, as does the Linux-kernel source tree’s
Documentation directory.

18. The compiler or linker will warn you if you get it
right.

19. The compiler or linker won’t let you get it right.

20. It is impossible to get right. The gets() function
is a famous example of this point on the scale. In
fact, gets() can perhaps best be described as an
unconditional buffer-overflow security hole.

16.3 Shaving the Mandelbrot Set
The set of useful programs resembles the Mandelbrot set
(shown in Figure 16.1) in that it does not have a clear-cut

smooth boundary—if it did, the halting problem would
be solvable. But we need APIs that real people can use,
not ones that require a Ph.D. dissertation be completed
for each and every potential use. So, we “shave the Man-
delbrot set”,2 restricting the use of the API to an easily
described subset of the full set of potential uses.

Figure 16.1: Mandelbrot Set (Courtesy of Wikipedia)

Such shaving may seem counterproductive. After all,
if an algorithm works, why shouldn’t it be used?

To see why at least some shaving is absolutely neces-
sary, consider a locking design that avoids deadlock, but
in perhaps the worst possible way. This design uses a
circular doubly linked list, which contains one element
for each thread in the system along with a header element.
When a new thread is spawned, the parent thread must
insert a new element into this list, which requires some
sort of synchronization.

One way to protect the list is to use a global lock.
However, this might be a bottleneck if threads were being
created and deleted frequently.3 Another approach would
be to use a hash table and to lock the individual hash
buckets, but this can perform poorly when scanning the
list in order.

A third approach is to lock the individual list elements,
and to require the locks for both the predecessor and
successor to be held during the insertion. Since both
locks must be acquired, we need to decide which order to
acquire them in. Two conventional approaches would be
to acquire the locks in address order, or to acquire them
in the order that they appear in the list, so that the header

2 Due to Josh Triplett.
3 Those of you with strong operating-system backgrounds, please

suspend disbelief. If you are unable to suspend disbelief, send us a
better example.

16.3. SHAVING THE MANDELBROT SET 309

is always acquired first when it is one of the two elements
being locked. However, both of these methods require
special checks and branches.

The to-be-shaven solution is to unconditionally acquire
the locks in list order. But what about deadlock?

Deadlock cannot occur.
To see this, number the elements in the list starting

with zero for the header up to N for the last element in
the list (the one preceding the header, given that the list
is circular). Similarly, number the threads from zero to
N − 1. If each thread attempts to lock some consecutive
pair of elements, at least one of the threads is guaranteed
to be able to acquire both locks.

Why?
Because there are not enough threads to reach all the

way around the list. Suppose thread 0 acquires element 0’s
lock. To be blocked, some other thread must have already
acquired element 1’s lock, so let us assume that thread 1
has done so. Similarly, for thread 1 to be blocked, some
other thread must have acquired element 2’s lock, and so
on, up through thread N−1, who acquires element N−1’s
lock. For thread N − 1 to be blocked, some other thread
must have acquired element N’s lock. But there are no
more threads, and so thread N − 1 cannot be blocked.
Therefore, deadlock cannot occur.

So why should we prohibit use of this delightful little
algorithm?

The fact is that if you really want to use it, we cannot
stop you. We can, however, recommend against such
code being included in any project that we care about.

But, before you use this algorithm, please think through
the following Quick Quiz.

Quick Quiz 16.1: Can a similar algorithm be used
when deleting elements?

The fact is that this algorithm is extremely specialized
(it only works on certain sized lists), and also quite fragile.
Any bug that accidentally failed to add a node to the list
could result in deadlock. In fact, simply adding the node
a bit too late could result in deadlock.

In addition, the other algorithms described above are
“good and sufficient”. For example, simply acquiring the
locks in address order is fairly simple and quick, while
allowing the use of lists of any size. Just be careful of the
special cases presented by empty lists and lists containing
only one element!

Quick Quiz 16.2: Yetch! What ever possessed some-
one to come up with an algorithm that deserves to be
shaved as much as this one does???

In summary, we do not use algorithms simply because

they happen to work. We instead restrict ourselves to
algorithms that are useful enough to make it worthwhile
learning about them. The more difficult and complex
the algorithm, the more generally useful it must be in
order for the pain of learning it and fixing its bugs to be
worthwhile.

Quick Quiz 16.3: Give an exception to this rule.
Exceptions aside, we must continue to shave the soft-

ware “Mandelbrot set” so that our programs remain main-
tainable, as shown in Figure 16.2.

Figure 16.2: Shaving the Mandelbrot Set

310 CHAPTER 16. EASE OF USE

Prediction is very difficult, especially about the
future.

Niels BohrChapter 17

Conflicting Visions of the Future

This chapter presents some conflicting visions of the fu-
ture of parallel programming. It is not clear which of
these will come to pass, in fact, it is not clear that any of
them will. They are nevertheless important because each
vision has its devoted adherents, and if enough people
believe in something fervently enough, you will need to
deal with at least the shadow of that thing’s existence in
the form of its influence on the thoughts, words, and deeds
of its adherents. Besides which, it is entirely possible that
one or more of these visions will actually come to pass.
But most are bogus. Tell which is which and you’ll be
rich [Spi77]!

Therefore, the following sections give an overview of
transactional memory, hardware transactional memory,
formal verification in regression testing, and parallel func-
tional programming. But first, a cautionary tale on prog-
nostication taken from the early 2000s.

17.1 The Future of CPU Technol-
ogy Ain’t What it Used to Be

Years past always seem so simple and innocent when
viewed through the lens of many years of experience.
And the early 2000s were for the most part innocent of
the impending failure of Moore’s Law to continue deliver-
ing the then-traditional increases in CPU clock frequency.
Oh, there were the occasional warnings about the lim-
its of technology, but such warnings had been sounded
for decades. With that in mind, consider the following
scenarios:

1. Uniprocessor Über Alles (Figure 17.1),

2. Multithreaded Mania (Figure 17.2),

3. More of the Same (Figure 17.3), and

Figure 17.1: Uniprocessor Über Alles

4. Crash Dummies Slamming into the Memory Wall
(Figure 17.4).

Each of these scenarios are covered in the following
sections.

17.1.1 Uniprocessor Über Alles
As was said in 2004 [McK04]:

In this scenario, the combination of Moore’s-
Law increases in CPU clock rate and continued
progress in horizontally scaled computing ren-
der SMP systems irrelevant. This scenario is
therefore dubbed “Uniprocessor Über Alles”,
literally, uniprocessors above all else.

311

312 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Figure 17.2: Multithreaded Mania

These uniprocessor systems would be subject
only to instruction overhead, since memory bar-
riers, cache thrashing, and contention do not
affect single-CPU systems. In this scenario,
RCU is useful only for niche applications, such
as interacting with NMIs. It is not clear that
an operating system lacking RCU would see
the need to adopt it, although operating systems
that already implement RCU might continue to
do so.

However, recent progress with multithreaded
CPUs seems to indicate that this scenario is
quite unlikely.

Unlikely indeed! But the larger software community
was reluctant to accept the fact that they would need to
embrace parallelism, and so it was some time before this
community concluded that the “free lunch” of Moore’s-
Law-induced CPU core-clock frequency increases was
well and truly finished. Never forget: belief is an emotion,
not necessarily the result of a rational technical thought
process!

17.1.2 Multithreaded Mania
Also from 2004 [McK04]:

A less-extreme variant of Uniprocessor Über
Alles features uniprocessors with hardware mul-
tithreading, and in fact multithreaded CPUs are

Figure 17.3: More of the Same

now standard for many desktop and laptop com-
puter systems. The most aggressively multi-
threaded CPUs share all levels of cache hier-
archy, thereby eliminating CPU-to-CPU mem-
ory latency, in turn greatly reducing the perfor-
mance penalty for traditional synchronization
mechanisms. However, a multithreaded CPU
would still incur overhead due to contention
and to pipeline stalls caused by memory barri-
ers. Furthermore, because all hardware threads
share all levels of cache, the cache available to
a given hardware thread is a fraction of what
it would be on an equivalent single-threaded
CPU, which can degrade performance for ap-
plications with large cache footprints. There is
also some possibility that the restricted amount
of cache available will cause RCU-based algo-
rithms to incur performance penalties due to
their grace-period-induced additional memory
consumption. Investigating this possibility is
future work.

However, in order to avoid such performance
degradation, a number of multithreaded CPUs
and multi-CPU chips partition at least some of
the levels of cache on a per-hardware-thread

17.1. THE FUTURE OF CPU TECHNOLOGY AIN’T WHAT IT USED TO BE 313

Figure 17.4: Crash Dummies Slamming into the Memory
Wall

basis. This increases the amount of cache avail-
able to each hardware thread, but re-introduces
memory latency for cachelines that are passed
from one hardware thread to another.

And we all know how this story has played out, with
multiple multi-threaded cores on a single die plugged into
a single socket. The question then becomes whether or
not future shared-memory systems will always fit into a
single socket.

17.1.3 More of the Same

Again from 2004 [McK04]:

The More-of-the-Same scenario assumes that
the memory-latency ratios will remain roughly
where they are today.

This scenario actually represents a change,
since to have more of the same, interconnect
performance must begin keeping up with the
Moore’s-Law increases in core CPU perfor-
mance. In this scenario, overhead due to pipe-
line stalls, memory latency, and contention re-
mains significant, and RCU retains the high
level of applicability that it enjoys today.

And the change has been the ever-increasing levels of
integration that Moore’s Law is still providing. But longer
term, which will it be? More CPUs per die? Or more I/O,
cache, and memory?

0.1

1

10

100

1000

10000

82 84 86 88 90 92 94 96 98 00 02
In

st
ru

ct
io

ns
 p

er
 M

em
or

y
R

ef
er

en
ce

 T
im

e
Year

Figure 17.5: Instructions per Local Memory Reference
for Sequent Computers

Servers seem to be choosing the former, while em-
bedded systems on a chip (SoCs) continue choosing the
latter.

17.1.4 Crash Dummies Slamming into the
Memory Wall

0.1

1

1 10 100 1000

B
re

ak
ev

en
 U

pd
at

e
Fr

ac
tio

n

Memory-Latency Ratio

RCU

spinlock

Figure 17.6: Breakevens vs. r , λ Large, Four CPUs

And one more quote from 2004 [McK04]:

314 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

0.0001

0.001

0.01

0.1

1

1 10 100 1000

B
re

ak
ev

en
 U

pd
at

e
Fr

ac
tio

n

Memory-Latency Ratio

RCU

drw

spinlock

Figure 17.7: Breakevens vs. r , λ Small, Four CPUs

If the memory-latency trends shown in Fig-
ure 17.5 continue, then memory latency
will continue to grow relative to instruction-
execution overhead. Systems such as Linux that
have significant use of RCU will find additional
use of RCU to be profitable, as shown in Fig-
ure 17.6 As can be seen in this figure, if RCU
is heavily used, increasing memory-latency ra-
tios give RCU an increasing advantage over
other synchronization mechanisms. In contrast,
systems with minor use of RCU will require in-
creasingly high degrees of read intensity for use
of RCU to pay off, as shown in Figure 17.7. As
can be seen in this figure, if RCU is lightly used,
increasing memory-latency ratios put RCU at
an increasing disadvantage compared to other
synchronization mechanisms. Since Linux has
been observed with over 1,600 callbacks per
grace period under heavy load [SM04], it seems
safe to say that Linux falls into the former cate-
gory.

On the one hand, this passage failed to anticipate the
cache-warmth issues that RCU can suffer from in work-
loads with significant update intensity, in part because it
seemed unlikely that RCU would really be used for such
workloads. In the event, the SLAB_DESTROY_BY_RCU has
been pressed into service in a number of instances where
these cache-warmth issues would otherwise be problem-
atic, as has sequence locking. On the other hand, this
passage also failed to anticipate that RCU would be used

to reduce scheduling latency or for security.
In short, beware of prognostications, including those in

the remainder of this chapter.

17.2 Transactional Memory
The idea of using transactions outside of databases goes
back many decades [Lom77], with the key difference
between database and non-database transactions being
that non-database transactions drop the “D” in the “ACID”
properties defining database transactions. The idea of
supporting memory-based transactions, or “transactional
memory” (TM), in hardware is more recent [HM93], but
unfortunately, support for such transactions in commodity
hardware was not immediately forthcoming, despite other
somewhat similar proposals being put forward [SSHT93].
Not long after, Shavit and Touitou proposed a software-
only implementation of transactional memory (STM) that
was capable of running on commodity hardware, give
or take memory-ordering issues [ST95]. This proposal
languished for many years, perhaps due to the fact that
the research community’s attention was absorbed by non-
blocking synchronization (see Section 14.2).

But by the turn of the century, TM started receiving
more attention [MT01, RG01], and by the middle of the
decade, the level of interest can only be termed “incan-
descent” [Her05, Gro07], despite a few voices of cau-
tion [BLM05, MMW07].

The basic idea behind TM is to execute a section of
code atomically, so that other threads see no intermediate
state. As such, the semantics of TM could be implemented
by simply replacing each transaction with a recursively
acquirable global lock acquisition and release, albeit with
abysmal performance and scalability. Much of the com-
plexity inherent in TM implementations, whether hard-
ware or software, is efficiently detecting when concurrent
transactions can safely run in parallel. Because this detec-
tion is done dynamically, conflicting transactions can be
aborted or “rolled back”, and in some implementations,
this failure mode is visible to the programmer.

Because transaction roll-back is increasingly unlikely
as transaction size decreases, TM might become quite
attractive for small memory-based operations, such as
linked-list manipulations used for stacks, queues, hash
tables, and search trees. However, it is currently much
more difficult to make the case for large transactions, par-
ticularly those containing non-memory operations such
as I/O and process creation. The following sections look
at current challenges to the grand vision of “Transac-

17.2. TRANSACTIONAL MEMORY 315

tional Memory Everywhere” [McK09b]. Section 17.2.1
examines the challenges faced interacting with the outside
world, Section 17.2.2 looks at interactions with process
modification primitives, Section 17.2.3 explores interac-
tions with other synchronization primitives, and finally
Section 17.2.4 closes with some discussion.

17.2.1 Outside World
In the words of Donald Knuth:

Many computer users feel that input and out-
put are not actually part of “real programming,”
they are merely things that (unfortunately) must
be done in order to get information in and out
of the machine.

Whether we believe that input and output are “real
programming” or not, the fact is that for most computer
systems, interaction with the outside world is a first-class
requirement. This section therefore critiques transactional
memory’s ability to so interact, whether via I/O opera-
tions, time delays, or persistent storage.

17.2.1.1 I/O Operations

One can execute I/O operations within a lock-based crit-
ical section, and, at least in principle, from within a
userspace-RCU read-side critical section. What happens
when you attempt to execute an I/O operation from within
a transaction?

The underlying problem is that transactions may be
rolled back, for example, due to conflicts. Roughly speak-
ing, this requires that all operations within any given trans-
action be revocable, so that executing the operation twice
has the same effect as executing it once. Unfortunately,
I/O is in general the prototypical irrevocable operation,
making it difficult to include general I/O operations in
transactions. In fact, general I/O is irrevocable: Once you
have pushed the button launching the nuclear warheads,
there is no turning back.

Here are some options for handling of I/O within trans-
actions:

1. Restrict I/O within transactions to buffered I/O with
in-memory buffers. These buffers may then be in-
cluded in the transaction in the same way that any
other memory location might be included. This
seems to be the mechanism of choice, and it does
work well in many common cases of situations such

as stream I/O and mass-storage I/O. However, spe-
cial handling is required in cases where multiple
record-oriented output streams are merged onto a
single file from multiple processes, as might be done
using the “a+” option to fopen() or the O_APPEND
flag to open(). In addition, as will be seen in the
next section, common networking operations cannot
be handled via buffering.

2. Prohibit I/O within transactions, so that any attempt
to execute an I/O operation aborts the enclosing
transaction (and perhaps multiple nested transac-
tions). This approach seems to be the conventional
TM approach for unbuffered I/O, but requires that
TM interoperate with other synchronization primi-
tives that do tolerate I/O.

3. Prohibit I/O within transactions, but enlist the com-
piler’s aid in enforcing this prohibition.

4. Permit only one special irrevocable transac-
tion [SMS08] to proceed at any given time, thus
allowing irrevocable transactions to contain I/O op-
erations.1 This works in general, but severely limits
the scalability and performance of I/O operations.
Given that scalability and performance is a first-class
goal of parallelism, this approach’s generality seems
a bit self-limiting. Worse yet, use of irrevocability to
tolerate I/O operations seems to prohibit use of man-
ual transaction-abort operations.2 Finally, if there is
an irrevocable transaction manipulating a given data
item, any other transaction manipulating that same
data item cannot have non-blocking semantics.

5. Create new hardware and protocols such that I/O op-
erations can be pulled into the transactional substrate.
In the case of input operations, the hardware would
need to correctly predict the result of the operation,
and to abort the transaction if the prediction failed.

I/O operations are a well-known weakness of TM, and
it is not clear that the problem of supporting I/O in trans-
actions has a reasonable general solution, at least if “rea-
sonable” is to include usable performance and scalability.
Nevertheless, continued time and attention to this problem
will likely produce additional progress.

1 In earlier literature, irrevocable transactions are termed inevitable
transactions.

2 This difficulty was pointed out by Michael Factor.

316 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

17.2.1.2 RPC Operations

One can execute RPCs within a lock-based critical section,
as well as from within a userspace-RCU read-side critical
section. What happens when you attempt to execute an
RPC from within a transaction?

If both the RPC request and its response are to be con-
tained within the transaction, and if some part of the trans-
action depends on the result returned by the response, then
it is not possible to use the memory-buffer tricks that can
be used in the case of buffered I/O. Any attempt to take
this buffering approach would deadlock the transaction, as
the request could not be transmitted until the transaction
was guaranteed to succeed, but the transaction’s success
might not be knowable until after the response is received,
as is the case in the following example:

1 begin_trans();
2 rpc_request();
3 i = rpc_response();
4 a[i]++;
5 end_trans();

The transaction’s memory footprint cannot be deter-
mined until after the RPC response is received, and until
the transaction’s memory footprint can be determined, it
is impossible to determine whether the transaction can be
allowed to commit. The only action consistent with trans-
actional semantics is therefore to unconditionally abort
the transaction, which is, to say the least, unhelpful.

Here are some options available to TM:

1. Prohibit RPC within transactions, so that any at-
tempt to execute an RPC operation aborts the enclos-
ing transaction (and perhaps multiple nested transac-
tions). Alternatively, enlist the compiler to enforce
RPC-free transactions. This approach does work,
but will require TM to interact with other synchro-
nization primitives.

2. Permit only one special irrevocable transac-
tion [SMS08] to proceed at any given time, thus
allowing irrevocable transactions to contain RPC op-
erations. This works in general, but severely limits
the scalability and performance of RPC operations.
Given that scalability and performance is a first-class
goal of parallelism, this approach’s generality seems
a bit self-limiting. Furthermore, use of irrevoca-
ble transactions to permit RPC operations rules out
manual transaction-abort operations once the RPC
operation has started. Finally, if there is an irrevoca-
ble transaction manipulating a given data item, any

other transaction manipulating that same data item
cannot have non-blocking semantics.

3. Identify special cases where the success of the trans-
action may be determined before the RPC response
is received, and automatically convert these to irrev-
ocable transactions immediately before sending the
RPC request. Of course, if several concurrent trans-
actions attempt RPC calls in this manner, it might be
necessary to roll all but one of them back, with con-
sequent degradation of performance and scalability.
This approach nevertheless might be valuable given
long-running transactions ending with an RPC. This
approach still has problems with manual transaction-
abort operations.

4. Identify special cases where the RPC response may
be moved out of the transaction, and then proceed
using techniques similar to those used for buffered
I/O.

5. Extend the transactional substrate to include the RPC
server as well as its client. This is in theory possible,
as has been demonstrated by distributed databases.
However, it is unclear whether the requisite perfor-
mance and scalability requirements can be met by
distributed-database techniques, given that memory-
based TM cannot hide such latencies behind those
of slow disk drives. Of course, given the advent of
solid-state disks, it is also unclear how much longer
databases will be permitted to hide their latencies
behind those of disks drives.

As noted in the prior section, I/O is a known weakness
of TM, and RPC is simply an especially problematic case
of I/O.

17.2.1.3 Time Delays

An important special case of interaction with extra-
transactional accesses involves explicit time delays within
a transaction. Of course, the idea of a time delay within
a transaction flies in the face of TM’s atomicity property,
but one can argue that this sort of thing is what weak
atomicity is all about. Furthermore, correct interaction
with memory-mapped I/O sometimes requires carefully
controlled timing, and applications often use time delays
for varied purposes.

So, what can TM do about time delays within transac-
tions?

17.2. TRANSACTIONAL MEMORY 317

1. Ignore time delays within transactions. This has
an appearance of elegance, but like too many other
“elegant” solutions, fails to survive first contact with
legacy code. Such code, which might well have
important time delays in critical sections, would fail
upon being transactionalized.

2. Abort transactions upon encountering a time-delay
operation. This is attractive, but it is unfortunately
not always possible to automatically detect a time-
delay operation. Is that tight loop computing some-
thing important, or is it instead waiting for time to
elapse?

3. Enlist the compiler to prohibit time delays within
transactions.

4. Let the time delays execute normally. Unfortunately,
some TM implementations publish modifications
only at commit time, which would in many cases
defeat the purpose of the time delay.

It is not clear that there is a single correct answer. TM
implementations featuring weak atomicity that publish
changes immediately within the transaction (rolling these
changes back upon abort) might be reasonably well served
by the last alternative. Even in this case, the code (or
possibly even hardware) at the other end of the transaction
may require a substantial redesign to tolerate aborted
transactions. This need for redesign would make it more
difficult to apply transactional memory to legacy code.

17.2.1.4 Persistence

There are many different types of locking primitives.
One interesting distinction is persistence, in other words,
whether the lock can exist independently of the address
space of the process using the lock.

Non-persistent locks include pthread_mutex_
lock(), pthread_rwlock_rdlock(), and most
kernel-level locking primitives. If the memory locations
instantiating a non-persistent lock’s data structures
disappear, so does the lock. For typical use of pthread_
mutex_lock(), this means that when the process exits,
all of its locks vanish. This property can be exploited in
order to trivialize lock cleanup at program shutdown time,
but makes it more difficult for unrelated applications to
share locks, as such sharing requires the applications to
share memory.

Persistent locks help avoid the need to share memory
among unrelated applications. Persistent locking APIs

include the flock family, lockf(), System V semaphores,
or the O_CREAT flag to open(). These persistent APIs
can be used to protect large-scale operations spanning
runs of multiple applications, and, in the case of O_CREAT
even surviving operating-system reboot. If need be, locks
can even span multiple computer systems via distributed
lock managers and distributed filesystems—and persist
across reboots of any or all of these computer systems.

Persistent locks can be used by any application, in-
cluding applications written using multiple languages and
software environments. In fact, a persistent lock might
well be acquired by an application written in C and re-
leased by an application written in Python.

How could a similar persistent functionality be pro-
vided for TM?

1. Restrict persistent transactions to special-purpose
environments designed to support them, for example,
SQL. This clearly works, given the decades-long
history of database systems, but does not provide
the same degree of flexibility provided by persistent
locks.

2. Use snapshot facilities provided by some storage de-
vices and/or filesystems. Unfortunately, this does not
handle network communication, nor does it handle
I/O to devices that do not provide snapshot capabili-
ties, for example, memory sticks.

3. Build a time machine.

Of course, the fact that it is called transactional memory
should give us pause, as the name itself conflicts with
the concept of a persistent transaction. It is nevertheless
worthwhile to consider this possibility as an important
test case probing the inherent limitations of transactional
memory.

17.2.2 Process Modification
Processes are not eternal: They are created and destroyed,
their memory mappings are modified, they are linked to
dynamic libraries, and they are debugged. These sections
look at how transactional memory can handle an ever-
changing execution environment.

17.2.2.1 Multithreaded Transactions

It is perfectly legal to create processes and threads while
holding a lock or, for that matter, from within a userspace-
RCU read-side critical section. Not only is it legal, but it

318 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

is quite simple, as can be seen from the following code
fragment:

1 pthread_mutex_lock(...);
2 for (i = 0; i < ncpus; i++)
3 pthread_create(&tid[i], ...);
4 for (i = 0; i < ncpus; i++)
5 pthread_join(tid[i], ...);
6 pthread_mutex_unlock(...);

This pseudo-code fragment uses pthread_create()
to spawn one thread per CPU, then uses pthread_
join() to wait for each to complete, all under the pro-
tection of pthread_mutex_lock(). The effect is to ex-
ecute a lock-based critical section in parallel, and one
could obtain a similar effect using fork() and wait().
Of course, the critical section would need to be quite
large to justify the thread-spawning overhead, but there
are many examples of large critical sections in production
software.

What might TM do about thread spawning within a
transaction?

1. Declare pthread_create() to be illegal within
transactions, resulting in transaction abort (preferred)
or undefined behavior. Alternatively, enlist the com-
piler to enforce pthread_create()-free transac-
tions.

2. Permit pthread_create() to be executed within a
transaction, but only the parent thread will be con-
sidered to be part of the transaction. This approach
seems to be reasonably compatible with existing and
posited TM implementations, but seems to be a trap
for the unwary. This approach raises further ques-
tions, such as how to handle conflicting child-thread
accesses.

3. Convert the pthread_create()s to function calls.
This approach is also an attractive nuisance, as it
does not handle the not-uncommon cases where the
child threads communicate with one another. In
addition, it does not permit parallel execution of the
body of the transaction.

4. Extend the transaction to cover the parent and all
child threads. This approach raises interesting ques-
tions about the nature of conflicting accesses, given
that the parent and children are presumably permit-
ted to conflict with each other, but not with other
threads. It also raises interesting questions as to
what should happen if the parent thread does not

wait for its children before committing the transac-
tion. Even more interesting, what happens if the par-
ent conditionally executes pthread_join() based
on the values of variables participating in the transac-
tion? The answers to these questions are reasonably
straightforward in the case of locking. The answers
for TM are left as an exercise for the reader.

Given that parallel execution of transactions is com-
monplace in the database world, it is perhaps surprising
that current TM proposals do not provide for it. On the
other hand, the example above is a fairly sophisticated
use of locking that is not normally found in simple text-
book examples, so perhaps its omission is to be expected.
That said, there are rumors that some TM researchers
are investigating fork/join parallelism within transactions,
so perhaps this topic will soon be addressed more thor-
oughly.

17.2.2.2 The exec() System Call

One can execute an exec() system call while holding a
lock, and also from within an userspace-RCU read-side
critical section. The exact semantics depends on the type
of primitive.

In the case of non-persistent primitives (includ-
ing pthread_mutex_lock(), pthread_rwlock_
rdlock(), and userspace RCU), if the exec() succeeds,
the whole address space vanishes, along with any locks
being held. Of course, if the exec() fails, the address
space still lives, so any associated locks would also still
live. A bit strange perhaps, but reasonably well defined.

On the other hand, persistent primitives (including
the flock family, lockf(), System V semaphores, and
the O_CREAT flag to open()) would survive regardless
of whether the exec() succeeded or failed, so that the
exec()ed program might well release them.

Quick Quiz 17.1: What about non-persistent primi-
tives represented by data structures in mmap() regions of
memory? What happens when there is an exec() within
a critical section of such a primitive?

What happens when you attempt to execute an exec()
system call from within a transaction?

1. Disallow exec() within transactions, so that the
enclosing transactions abort upon encountering the
exec(). This is well defined, but clearly requires
non-TM synchronization primitives for use in con-
junction with exec().

17.2. TRANSACTIONAL MEMORY 319

2. Disallow exec() within transactions, with the com-
piler enforcing this prohibition. There is a draft
specification for TM in C++ that takes this ap-
proach, allowing functions to be decorated with the
transaction_safe and transaction_unsafe
attributes.3 This approach has some advantages
over aborting the transaction at runtime, but again
requires non-TM synchronization primitives for use
in conjunction with exec().

3. Treat the transaction in a manner similar to non-
persistent Locking primitives, so that the transac-
tion survives if exec() fails, and silently commits
if the exec() succeeds. The case where some of
the variables affected by the transaction reside in
mmap()ed memory (and thus could survive a suc-
cessful exec() system call) is left as an exercise for
the reader.

4. Abort the transaction (and the exec() system call)
if the exec() system call would have succeeded,
but allow the transaction to continue if the exec()
system call would fail. This is in some sense the
“correct” approach, but it would require considerable
work for a rather unsatisfying result.

The exec() system call is perhaps the strangest ex-
ample of an obstacle to universal TM applicability, as it
is not completely clear what approach makes sense, and
some might argue that this is merely a reflection of the
perils of interacting with execs in real life. That said, the
two options prohibiting exec() within transactions are
perhaps the most logical of the group.

Similar issues surround the exit() and kill() sys-
tem calls, as well as a longjmp() or an exception that
would exit the transaction. (Where did the longjmp() or
exception come from?)

17.2.2.3 Dynamic Linking and Loading

Both lock-based critical sections and userspace-RCU read-
side critical sections can legitimately contain code that
invokes dynamically linked and loaded functions, includ-
ing C/C++ shared libraries and Java class libraries. Of
course, the code contained in these libraries is by defini-
tion unknowable at compile time. So, what happens if a
dynamically loaded function is invoked within a transac-
tion?

3 Thanks to Mark Moir for pointing me at this spec, and to Michael
Wong for having pointed me at an earlier revision some time back.

This question has two parts: (a) how do you dynam-
ically link and load a function within a transaction and
(b) what do you do about the unknowable nature of the
code within this function? To be fair, item (b) poses
some challenges for locking and userspace-RCU as well,
at least in theory. For example, the dynamically linked
function might introduce a deadlock for locking or might
(erroneously) introduce a quiescent state into a userspace-
RCU read-side critical section. The difference is that
while the class of operations permitted in locking and
userspace-RCU critical sections is well-understood, there
appears to still be considerable uncertainty in the case
of TM. In fact, different implementations of TM seem to
have different restrictions.

So what can TM do about dynamically linked and
loaded library functions? Options for part (a), the ac-
tual loading of the code, include the following:

1. Treat the dynamic linking and loading in a manner
similar to a page fault, so that the function is loaded
and linked, possibly aborting the transaction in the
process. If the transaction is aborted, the retry will
find the function already present, and the transaction
can thus be expected to proceed normally.

2. Disallow dynamic linking and loading of functions
from within transactions.

Options for part (b), the inability to detect TM-
unfriendly operations in a not-yet-loaded function, possi-
bilities include the following:

1. Just execute the code: if there are any TM-unfriendly
operations in the function, simply abort the transac-
tion. Unfortunately, this approach makes it impos-
sible for the compiler to determine whether a given
group of transactions may be safely composed. One
way to permit composability regardless is irrevocable
transactions, however, current implementations per-
mit only a single irrevocable transaction to proceed
at any given time, which can severely limit perfor-
mance and scalability. Irrevocable transactions also
seem to rule out use of manual transaction-abort op-
erations. Finally, if there is an irrevocable transaction
manipulating a given data item, any other transac-
tion manipulating that same data item cannot have
non-blocking semantics.

2. Decorate the function declarations indicating which
functions are TM-friendly. These decorations can
then be enforced by the compiler’s type system.

320 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Of course, for many languages, this requires lan-
guage extensions to be proposed, standardized, and
implemented, with the corresponding time delays.
That said, the standardization effort is already in
progress [ATS09].

3. As above, disallow dynamic linking and loading of
functions from within transactions.

I/O operations are of course a known weakness of TM,
and dynamic linking and loading can be thought of as yet
another special case of I/O. Nevertheless, the proponents
of TM must either solve this problem, or resign them-
selves to a world where TM is but one tool of several in
the parallel programmer’s toolbox. (To be fair, a number
of TM proponents have long since resigned themselves to
a world containing more than just TM.)

17.2.2.4 Memory-Mapping Operations

It is perfectly legal to execute memory-mapping
operations (including mmap(), shmat(), and
munmap() [Gro01]) within a lock-based critical
section, and, at least in principle, from within a
userspace-RCU read-side critical section. What happens
when you attempt to execute such an operation from
within a transaction? More to the point, what happens
if the memory region being remapped contains some
variables participating in the current thread’s transaction?
And what if this memory region contains variables
participating in some other thread’s transaction?

It should not be necessary to consider cases where the
TM system’s metadata is remapped, given that most lock-
ing primitives do not define the outcome of remapping
their lock variables.

Here are some memory-mapping options available to
TM:

1. Memory remapping is illegal within a transaction,
and will result in all enclosing transactions being
aborted. This does simplify things somewhat, but
also requires that TM interoperate with synchro-
nization primitives that do tolerate remapping from
within their critical sections.

2. Memory remapping is illegal within a transaction,
and the compiler is enlisted to enforce this prohibi-
tion.

3. Memory mapping is legal within a transaction, but
aborts all other transactions having variables in the
region mapped over.

4. Memory mapping is legal within a transaction, but
the mapping operation will fail if the region being
mapped overlaps with the current transaction’s foot-
print.

5. All memory-mapping operations, whether within or
outside a transaction, check the region being mapped
against the memory footprint of all transactions in
the system. If there is overlap, then the memory-
mapping operation fails.

6. The effect of memory-mapping operations that over-
lap the memory footprint of any transaction in the
system is determined by the TM conflict manager,
which might dynamically determine whether to fail
the memory-mapping operation or abort any conflict-
ing transactions.

It is interesting to note that munmap() leaves the rel-
evant region of memory unmapped, which could have
additional interesting implications.4

17.2.2.5 Debugging

The usual debugging operations such as breakpoints
work normally within lock-based critical sections and
from usespace-RCU read-side critical sections. How-
ever, in initial transactional-memory hardware implemen-
tations [DLMN09] an exception within a transaction will
abort that transaction, which in turn means that break-
points abort all enclosing transactions.

So how can transactions be debugged?

1. Use software emulation techniques within transac-
tions containing breakpoints. Of course, it might
be necessary to emulate all transactions any time a
breakpoint is set within the scope of any transaction.
If the runtime system is unable to determine whether
or not a given breakpoint is within the scope of a
transaction, then it might be necessary to emulate all
transactions just to be on the safe side. However, this
approach might impose significant overhead, which
might in turn obscure the bug being pursued.

2. Use only hardware TM implementations that are
capable of handling breakpoint exceptions. Unfortu-
nately, as of this writing (September 2008), all such
implementations are strictly research prototypes.

4 This difference between mapping and unmapping was noted by
Josh Triplett.

17.2. TRANSACTIONAL MEMORY 321

3. Use only software TM implementations, which are
(very roughly speaking) more tolerant of exceptions
than are the simpler of the hardware TM implemen-
tations. Of course, software TM tends to have higher
overhead than hardware TM, so this approach may
not be acceptable in all situations.

4. Program more carefully, so as to avoid having bugs
in the transactions in the first place. As soon as you
figure out how to do this, please do let everyone
know the secret!

There is some reason to believe that transactional mem-
ory will deliver productivity improvements compared to
other synchronization mechanisms, but it does seem quite
possible that these improvements could easily be lost if
traditional debugging techniques cannot be applied to
transactions. This seems especially true if transactional
memory is to be used by novices on large transactions. In
contrast, macho “top-gun” programmers might be able to
dispense with such debugging aids, especially for small
transactions.

Therefore, if transactional memory is to deliver on its
productivity promises to novice programmers, the debug-
ging problem does need to be solved.

17.2.3 Synchronization
If transactional memory someday proves that it can be
everything to everyone, it will not need to interact with
any other synchronization mechanism. Until then, it will
need to work with synchronization mechanisms that can
do what it cannot, or that work more naturally in a given
situation. The following sections outline the current chal-
lenges in this area.

17.2.3.1 Locking

It is commonplace to acquire locks while holding other
locks, which works quite well, at least as long as the
usual well-known software-engineering techniques are
employed to avoid deadlock. It is not unusual to acquire
locks from within RCU read-side critical sections, which
eases deadlock concerns because RCU read-side prim-
itives cannot participate in lock-based deadlock cycles.
But what happens when you attempt to acquire a lock
from within a transaction?

In theory, the answer is trivial: simply manipulate the
data structure representing the lock as part of the trans-
action, and everything works out perfectly. In practice, a

number of non-obvious complications [VGS08] can arise,
depending on implementation details of the TM system.
These complications can be resolved, but at the cost of a
45 % increase in overhead for locks acquired outside of
transactions and a 300 % increase in overhead for locks
acquired within transactions. Although these overheads
might be acceptable for transactional programs contain-
ing small amounts of locking, they are often completely
unacceptable for production-quality lock-based programs
wishing to use the occasional transaction.

1. Use only locking-friendly TM implementations. Un-
fortunately, the locking-unfriendly implementations
have some attractive properties, including low over-
head for successful transactions and the ability to
accommodate extremely large transactions.

2. Use TM only “in the small” when introducing TM
to lock-based programs, thereby accommodating the
limitations of locking-friendly TM implementations.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based
systems, as was done by the TxLinux [RHP+07]
group. This approach seems sound, but leaves the
locking design constraints (such as the need to avoid
deadlock) firmly in place.

5. Strive to reduce the overhead imposed on locking
primitives.

The fact that there could possibly be a problem inter-
facing TM and locking came as a surprise to many, which
underscores the need to try out new mechanisms and prim-
itives in real-world production software. Fortunately, the
advent of open source means that a huge quantity of such
software is now freely available to everyone, including
researchers.

17.2.3.2 Reader-Writer Locking

It is commonplace to read-acquire reader-writer locks
while holding other locks, which just works, at least as
long as the usual well-known software-engineering tech-
niques are employed to avoid deadlock. Read-acquiring

322 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

reader-writer locks from within RCU read-side critical
sections also works, and doing so eases deadlock concerns
because RCU read-side primitives cannot participate in
lock-based deadlock cycles. But what happens when you
attempt to read-acquire a reader-writer lock from within a
transaction?

Unfortunately, the straightforward approach to read-
acquiring the traditional counter-based reader-writer lock
within a transaction defeats the purpose of the reader-
writer lock. To see this, consider a pair of transactions
concurrently attempting to read-acquire the same reader-
writer lock. Because read-acquisition involves modifying
the reader-writer lock’s data structures, a conflict will
result, which will roll back one of the two transactions.
This behavior is completely inconsistent with the reader-
writer lock’s goal of allowing concurrent readers.

Here are some options available to TM:

1. Use per-CPU or per-thread reader-writer lock-
ing [HW92], which allows a given CPU (or thread,
respectively) to manipulate only local data when
read-acquiring the lock. This would avoid the con-
flict between the two transactions concurrently read-
acquiring the lock, permitting both to proceed, as in-
tended. Unfortunately, (1) the write-acquisition over-
head of per-CPU/thread locking can be extremely
high, (2) the memory overhead of per-CPU/thread
locking can be prohibitive, and (3) this transforma-
tion is available only when you have access to the
source code in question. Other more-recent scalable
reader-writer locks [LLO09] might avoid some or
all of these problems.

2. Use TM only “in the small” when introducing
TM to lock-based programs, thereby avoiding read-
acquiring reader-writer locks from within transac-
tions.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based sys-
tems, as was done by the TxLinux [RHP+07] group.
This approach seems sound, but leaves the locking
design constraints (such as the need to avoid dead-
lock) firmly in place. Furthermore, this approach can

result in unnecessary transaction rollbacks when mul-
tiple transactions attempt to read-acquire the same
lock.

Of course, there might well be other non-obvious issues
surrounding combining TM with reader-writer locking,
as there in fact were with exclusive locking.

17.2.3.3 Deferred Reclamation

This section focuses mainly on RCU. Similar issues and
possible resolutions arise when combining TM with other
deferred-reclamation mechanisms such as reference coun-
ters and hazard pointers. In the text below, known differ-
ences are specifically called out.

Because read-copy update (RCU) finds its main use in
the Linux kernel, one might be forgiven for assuming that
there had been no academic work on combining RCU and
TM.5 However, the TxLinux group from the University
of Texas at Austin had no choice [RHP+07]. The fact that
they applied TM to the Linux 2.6 kernel, which uses RCU,
forced them to integrate TM and RCU, with TM taking
the place of locking for RCU updates. Unfortunately,
although the paper does state that the RCU implementa-
tion’s locks (e.g., rcu_ctrlblk.lock) were converted
to transactions, it is silent about what happened to locks
used in RCU-based updates (e.g., dcache_lock).

It is important to note that RCU permits readers and
updaters to run concurrently, further permitting RCU read-
ers to access data that is in the act of being updated. Of
course, this property of RCU, whatever its performance,
scalability, and real-time-response benefits might be, flies
in the face of the underlying atomicity properties of TM.

So how should TM-based updates interact with concur-
rent RCU readers? Some possibilities are as follows:

1. RCU readers abort concurrent conflicting TM up-
dates. This is in fact the approach taken by the
TxLinux project. This approach does preserve RCU
semantics, and also preserves RCU’s read-side per-
formance, scalability, and real-time-response prop-
erties, but it does have the unfortunate side-effect of
unnecessarily aborting conflicting updates. In the
worst case, a long sequence of RCU readers could
potentially starve all updaters, which could in theory
result in system hangs. In addition, not all TM im-
plementations offer the strong atomicity required to
implement this approach.

5 However, the in-kernel excuse is wearing thin with the advent of
user-space RCU [Des09b, DMS+12].

17.2. TRANSACTIONAL MEMORY 323

2. RCU readers that run concurrently with conflicting
TM updates get old (pre-transaction) values from any
conflicting RCU loads. This preserves RCU seman-
tics and performance, and also prevents RCU-update
starvation. However, not all TM implementations
can provide timely access to old values of variables
that have been tentatively updated by an in-flight
transaction. In particular, log-based TM implemen-
tations that maintain old values in the log (thus mak-
ing for excellent TM commit performance) are not
likely to be happy with this approach. Perhaps the
rcu_dereference() primitive can be leveraged
to permit RCU to access the old values within a
greater range of TM implementations, though per-
formance might still be an issue. Nevertheless, there
are popular TM implementations that can be eas-
ily and efficiently integrated with RCU in this man-
ner [PW07, HW11, HW13].

3. If an RCU reader executes an access that conflicts
with an in-flight transaction, then that RCU access is
delayed until the conflicting transaction either com-
mits or aborts. This approach preserves RCU se-
mantics, but not RCU’s performance or real-time
response, particularly in presence of long-running
transactions. In addition, not all TM implementa-
tions are capable of delaying conflicting accesses.
That said, this approach seems eminently reasonable
for hardware TM implementations that support only
small transactions.

4. RCU readers are converted to transactions. This ap-
proach pretty much guarantees that RCU is compati-
ble with any TM implementation, but it also imposes
TM’s rollbacks on RCU read-side critical sections,
destroying RCU’s real-time response guarantees, and
also degrading RCU’s read-side performance. Fur-
thermore, this approach is infeasible in cases where
any of the RCU read-side critical sections contains
operations that the TM implementation in question
is incapable of handling. This approach is more dif-
ficult to apply to hazard pointers, which do not have
a sharply defined notion of a reader as a section of
code.

5. Many update-side uses of RCU modify a single
pointer to publish a new data structure. In some
of these cases, RCU can safely be permitted to see
a transactional pointer update that is subsequently
rolled back, as long as the transaction respects mem-
ory ordering and as long as the roll-back process uses

call_rcu() to free up the corresponding structure.
Unfortunately, not all TM implementations respect
memory barriers within a transaction. Apparently,
the thought is that because transactions are supposed
to be atomic, the ordering of the accesses within the
transaction is not supposed to matter.

6. Prohibit use of TM in RCU updates. This is guaran-
teed to work, but seems a bit restrictive.

It seems likely that additional approaches will be un-
covered, especially given the advent of user-level RCU
and hazard-pointer implementations.6

17.2.3.4 Extra-Transactional Accesses

Within a lock-based critical section, it is perfectly legal
to manipulate variables that are concurrently accessed or
even modified outside that lock’s critical section, with one
common example being statistical counters. The same
thing is possible within RCU read-side critical sections,
and is in fact the common case.

Given mechanisms such as the so-called “dirty reads”
that are prevalent in production database systems, it is not
surprising that extra-transactional accesses have received
serious attention from the proponents of TM, with the
concepts of weak and strong atomicity [BLM06] being
but one case in point.

Here are some extra-transactional options:

1. Conflicts due to extra-transactional accesses always
abort transactions. This is strong atomicity.

2. Conflicts due to extra-transactional accesses are ig-
nored, so only conflicts among transactions can abort
transactions. This is weak atomicity.

3. Transactions are permitted to carry out non-
transactional operations in special cases, such as
when allocating memory or interacting with lock-
based critical sections.

4. Produce hardware extensions that permit some op-
erations (for example, addition) to be carried out
concurrently on a single variable by multiple trans-
actions.

5. Introduce weak semantics to transactional memory.
One approach is the combination with RCU de-
scribed in Section 17.2.3.3, while Gramoli and Guer-
raoui survey a number of other weak-transaction

6 Kudos to the TxLinux group, Maged Michael, and Josh Triplett
for coming up with a number of the above alternatives.

324 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

approaches [GG14], for example, restricted parti-
tioning of large “elastic” transactions into smaller
transactions, thus reducing conflict probabilities (al-
beit with tepid performance and scalability). Per-
haps further experience will show that some uses of
extra-transactional accesses can be replaced by weak
transactions.

It appears that transactions were conceived as stand-
ing alone, with no interaction required with any other
synchronization mechanism. If so, it is no surprise that
much confusion and complexity arises when combining
transactions with non-transactional accesses. But unless
transactions are to be confined to small updates to iso-
lated data structures, or alternatively to be confined to
new programs that do not interact with the huge body of
existing parallel code, then transactions absolutely must
be so combined if they are to have large-scale practical
impact in the near term.

17.2.4 Discussion

The obstacles to universal TM adoption lead to the fol-
lowing conclusions:

1. One interesting property of TM is the fact that trans-
actions are subject to rollback and retry. This prop-
erty underlies TM’s difficulties with irreversible op-
erations, including unbuffered I/O, RPCs, memory-
mapping operations, time delays, and the exec()
system call. This property also has the unfortunate
consequence of introducing all the complexities in-
herent in the possibility of failure into synchroniza-
tion primitives, often in a developer-visible manner.

2. Another interesting property of TM, noted by Sh-
peisman et al. [SATG+09], is that TM intertwines
the synchronization with the data it protects. This
property underlies TM’s issues with I/O, memory-
mapping operations, extra-transactional accesses,
and debugging breakpoints. In contrast, conven-
tional synchronization primitives, including locking
and RCU, maintain a clear separation between the
synchronization primitives and the data that they
protect.

3. One of the stated goals of many workers in the TM
area is to ease parallelization of large sequential pro-
grams. As such, individual transactions are com-
monly expected to execute serially, which might

Figure 17.8: The STM Vision

do much to explain TM’s issues with multithreaded
transactions.

What should TM researchers and developers do about
all of this?

One approach is to focus on TM in the small, focusing
on situations where hardware assist potentially provides
substantial advantages over other synchronization primi-
tives. This is in fact the approach Sun took with its Rock
research CPU [DLMN09]. Some TM researchers seem to
agree with this approach, while others have much higher
hopes for TM.

Of course, it is quite possible that TM will be able to
take on larger problems, and this section lists a few of the
issues that must be resolved if TM is to achieve this lofty
goal.

Of course, everyone involved should treat this as a
learning experience. It would seem that TM researchers
have great deal to learn from practitioners who have suc-
cessfully built large software systems using traditional
synchronization primitives.

And vice versa.
But for the moment, the current state of STM can

best be summarized with a series of cartoons. First, Fig-
ure 17.8 shows the STM vision. As always, the reality is a
bit more nuanced, as fancifully depicted by Figures 17.9,
17.10, and 17.11. Less fanciful STM retrospectives are
also available [Duf10a, Duf10b].

17.3. HARDWARE TRANSACTIONAL MEMORY 325

Figure 17.9: The STM Reality: Conflicts

Recent advances in commercially available hardware
have opened the door for variants of HTM, which are
addressed in the following section.

17.3 Hardware Transactional
Memory

As of 2017, hardware transactional memory (HTM) is
available on several types of commercially available com-
modity computer systems [YHLR13, Mer11, JSG12].
This section makes a first attempt to find HTM’s place in
the parallel programmer’s toolbox.

From a conceptual viewpoint, HTM uses processor
caches and speculative execution to make a designated
group of statements (a “transaction”) take effect atomi-
cally from the viewpoint of any other transactions running
on other processors. This transaction is initiated by a
begin-transaction machine instruction and completed by
a commit-transaction machine instruction. There is typi-
cally also an abort-transaction machine instruction, which
squashes the speculation (as if the begin-transaction in-
struction and all following instructions had not executed)
and commences execution at a failure handler. The lo-
cation of the failure handler is typically specified by the
begin-transaction instruction, either as an explicit failure-
handler address or via a condition code set by the in-

Figure 17.10: The STM Reality: Irrevocable Operations

struction itself. Each transaction executes atomically with
respect to all other transactions.

HTM has a number of important benefits, including au-
tomatic dynamic partitioning of data structures, reducing
synchronization-primitive cache misses, and supporting a
fair number of practical applications.

However, it always pays to read the fine print, and HTM
is no exception. A major point of this section is determin-
ing under what conditions HTM’s benefits outweigh the
complications hidden in its fine print. To this end, Sec-
tion 17.3.1 describes HTM’s benefits and Section 17.3.2
describes its weaknesses. This is the same approach used
in earlier papers [MMW07, MMTW10], but focused on
HTM rather than TM as a whole.7

Section 17.3.3 then describes HTM’s weaknesses with
respect to the combination of synchronization primitives
used in the Linux kernel (and in some user-space applica-
tions). Section 17.3.4 looks at where HTM might best fit
into the parallel programmer’s toolbox, and Section 17.3.5
lists some events that might greatly increase HTM’s scope
and appeal. Finally, Section 17.3.6 presents concluding
remarks.

7 And I gratefully acknowledge many stimulating discussions with
the other authors, Maged Michael, Josh Triplett, and Jonathan Walpole,
as well as with Andi Kleen.

326 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Figure 17.11: The STM Reality: Realtime Response

17.3.1 HTM Benefits WRT to Locking

The primary benefits of HTM are (1) its avoidance of the
cache misses that are often incurred by other synchroniza-
tion primitives, (2) its ability to dynamically partition data
structures, and (3) the fact that it has a fair number of prac-
tical applications. I break from TM tradition by not listing
ease of use separately for two reasons. First, ease of use
should stem from HTM’s primary benefits, which this
section focuses on. Second, there has been considerable
controversy surrounding attempts to test for raw program-
ming talent [Bor06, DBA09] and even around the use of
small programming exercises in job interviews [Bra07].
This indicates that we really do not have a grasp on what
makes programming easy or hard. Therefore, this section
focuses on the three benefits listed above, each in one of
the following sections.

17.3.1.1 Avoiding Synchronization Cache Misses

Most synchronization mechanisms are based on data struc-
tures that are operated on by atomic instructions. Be-
cause these atomic instructions normally operate by first
causing the relevant cache line to be owned by the CPU
that they are running on, a subsequent execution of the
same instance of that synchronization primitive on some
other CPU will result in a cache miss. These communica-
tions cache misses severely degrade both the performance
and scalability of conventional synchronization mecha-
nisms [ABD+97, Section 4.2.3].

In contrast, HTM synchronizes by using the CPU’s
cache, avoiding the need for a synchronization data struc-
ture and resultant cache misses. HTM’s advantage is
greatest in cases where a lock data structure is placed in a
separate cache line, in which case, converting a given crit-
ical section to an HTM transaction can reduce that critical
section’s overhead by a full cache miss. These savings
can be quite significant for the common case of short
critical sections, at least for those situations where the
elided lock does not share a cache line with an oft-written
variable protected by that lock.

Quick Quiz 17.2: Why would it matter that oft-written
variables shared the cache line with the lock variable?

17.3.1.2 Dynamic Partitioning of Data Structures

A major obstacle to the use of some conventional synchro-
nization mechanisms is the need to statically partition data
structures. There are a number of data structures that are
trivially partitionable, with the most prominent example
being hash tables, where each hash chain constitutes a
partition. Allocating a lock for each hash chain then triv-
ially parallelizes the hash table for operations confined to
a given chain.8 Partitioning is similarly trivial for arrays,
radix trees, and a few other data structures.

However, partitioning for many types of trees and
graphs is quite difficult, and the results are often quite
complex [Ell80]. Although it is possible to use two-
phased locking and hashed arrays of locks to partition gen-
eral data structures, other techniques have proven prefer-
able [Mil06], as will be discussed in Section 17.3.3. Given
its avoidance of synchronization cache misses, HTM is
therefore a very real possibility for large non-partitionable
data structures, at least assuming relatively small updates.

Quick Quiz 17.3: Why are relatively small updates
important to HTM performance and scalability?

17.3.1.3 Practical Value

Some evidence of HTM’s practical value has been demon-
strated in a number of hardware platforms, including Sun
Rock [DLMN09] and Azul Vega [Cli09]. It is reasonable
to assume that practical benefits will flow from the more
recent IBM Blue Gene/Q, Intel Haswell TSX, and AMD
ASF systems.

Expected practical benefits include:

8 And it is also easy to extend this scheme to operations accessing
multiple hash chains by having such operations acquire the locks for all
relevant chains in hash order.

17.3. HARDWARE TRANSACTIONAL MEMORY 327

1. Lock elision for in-memory data access and up-
date [MT01, RG02].

2. Concurrent access and small random updates to large
non-partitionable data structures.

However, HTM also has some very real shortcomings,
which will be discussed in the next section.

17.3.2 HTM Weaknesses WRT Locking
The concept of HTM is quite simple: A group of accesses
and updates to memory occurs atomically. However, as
is the case with many simple ideas, complications arise
when you apply it to real systems in the real world. These
complications are as follows:

1. Transaction-size limitations.

2. Conflict handling.

3. Aborts and rollbacks.

4. Lack of forward-progress guarantees.

5. Irrevocable operations.

6. Semantic differences.

Each of these complications is covered in the following
sections, followed by a summary.

17.3.2.1 Transaction-Size Limitations

The transaction-size limitations of current HTM imple-
mentations stem from the use of the processor caches to
hold the data affected by the transaction. Although this al-
lows a given CPU to make the transaction appear atomic
to other CPUs by executing the transaction within the
confines of its cache, it also means that any transaction
that does not fit must be aborted. Furthermore, events that
change execution context, such as interrupts, system calls,
exceptions, traps, and context switches either must abort
any ongoing transaction on the CPU in question or must
further restrict transaction size due to the cache footprint
of the other execution context.

Of course, modern CPUs tend to have large caches, and
the data required for many transactions would fit easily
in a one-megabyte cache. Unfortunately, with caches,
sheer size is not all that matters. The problem is that
most caches can be thought of hash tables implemented
in hardware. However, hardware caches do not chain
their buckets (which are normally called sets), but rather

provide a fixed number of cachelines per set. The number
of elements provided for each set in a given cache is
termed that cache’s associativity.

Although cache associativity varies, the eight-way as-
sociativity of the level-0 cache on the laptop I am typing
this on is not unusual. What this means is that if a given
transaction needed to touch nine cache lines, and if all
nine cache lines mapped to the same set, then that trans-
action cannot possibly complete, never mind how many
megabytes of additional space might be available in that
cache. Yes, given randomly selected data elements in a
given data structure, the probability of that transaction
being able to commit is quite high, but there can be no
guarantee.

There has been some research work to alleviate this
limitation. Fully associative victim caches would alleviate
the associativity constraints, but there are currently strin-
gent performance and energy-efficiency constraints on the
sizes of victim caches. That said, HTM victim caches for
unmodified cache lines can be quite small, as they need to
retain only the address: The data itself can be written to
memory or shadowed by other caches, while the address
itself is sufficient to detect a conflicting write [RD12].

Unbounded transactional memory (UTM)
schemes [AAKL06, MBM+06] use DRAM as an
extremely large victim cache, but integrating such
schemes into a production-quality cache-coherence
mechanism is still an unsolved problem. In addition, use
of DRAM as a victim cache may have unfortunate perfor-
mance and energy-efficiency consequences, particularly
if the victim cache is to be fully associative. Finally, the
“unbounded” aspect of UTM assumes that all of DRAM
could be used as a victim cache, while in reality the large
but still fixed amount of DRAM assigned to a given CPU
would limit the size of that CPU’s transactions. Other
schemes use a combination of hardware and software
transactional memory [KCH+06] and one could imagine
using STM as a fallback mechanism for HTM.

However, to the best of my knowledge, currently avail-
able systems do not implement any of these research ideas,
and perhaps for good reason.

17.3.2.2 Conflict Handling

The first complication is the possibility of conflicts. For
example, suppose that transactions A and B are defined
as follows:

328 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Transaction A Transaction B

x = 1; y = 2;
y = 3; x = 4;

Suppose that each transaction executes concurrently on
its own processor. If transaction A stores to x at the same
time that transaction B stores to y, neither transaction
can progress. To see this, suppose that transaction A exe-
cutes its store to y. Then transaction A will be interleaved
within transaction B, in violation of the requirement that
transactions execute atomically with respect to each other.
Allowing transaction B to execute its store to x similarly
violates the atomic-execution requirement. This situation
is termed a conflict, which happens whenever two concur-
rent transactions access the same variable where at least
one of the accesses is a store. The system is therefore ob-
ligated to abort one or both of the transactions in order to
allow execution to progress. The choice of exactly which
transaction to abort is an interesting topic that will very
likely retain the ability to generate Ph.D. dissertations for
some time to come, see for example [ATC+11].9 For the
purposes of this section, we can assume that the system
makes a random choice.

Another complication is conflict detection, which is
comparatively straightforward, at least in the simplest
case. When a processor is executing a transaction, it
marks every cache line touched by that transaction. If
the processor’s cache receives a request involving a cache
line that has been marked as touched by the current trans-
action, a potential conflict has occurred. More sophisti-
cated systems might try to order the current processors’
transaction to precede that of the processor sending the
request, and optimization of this process will likely also
retain the ability to generate Ph.D. dissertations for quite
some time. However this section assumes a very simple
conflict-detection strategy.

However, for HTM to work effectively, the probability
of conflict must be suitably low, which in turn requires
that the data structures be organized so as to maintain a
sufficiently low probability of conflict. For example, a
red-black tree with simple insertion, deletion, and search
operations fits this description, but a red-black tree that
maintains an accurate count of the number of elements
in the tree does not.10 For another example, a red-black

9 Liu’s and Spear’s paper entitled “Toxic Transactions” [LS11] is
particularly instructive in this regard.

10 The need to update the count would result in additions to and
deletions from the tree conflicting with each other, resulting in strong
non-commutativity [AGH+11a, AGH+11b, McK11b].

tree that enumerates all elements in the tree in a single
transaction will have high conflict probabilities, degrading
performance and scalability. As a result, many serial
programs will require some restructuring before HTM can
work effectively. In some cases, practitioners will prefer
to take the extra steps (in the red-black-tree case, perhaps
switching to a partitionable data structure such as a radix
tree or a hash table), and just use locking, particularly
during the time before HTM is readily available on all
relevant architectures [Cli09].

Quick Quiz 17.4: How could a red-black tree possibly
efficiently enumerate all elements of the tree regardless
of choice of synchronization mechanism???

Furthermore, the fact that conflicts can occur brings
failure handling into the picture, as discussed in the next
section.

17.3.2.3 Aborts and Rollbacks

Because any transaction might be aborted at any time,
it is important that transactions contain no statements
that cannot be rolled back. This means that transactions
cannot do I/O, system calls, or debugging breakpoints (no
single stepping in the debugger for HTM transactions!!!).
Instead, transactions must confine themselves to accessing
normal cached memory. Furthermore, on some systems,
interrupts, exceptions, traps, TLB misses, and other events
will also abort transactions. Given the number of bugs that
have resulted from improper handling of error conditions,
it is fair to ask what impact aborts and rollbacks have on
ease of use.

Quick Quiz 17.5: But why can’t a debugger emulate
single stepping by setting breakpoints at successive lines
of the transaction, relying on the retry to retrace the steps
of the earlier instances of the transaction?

Of course, aborts and rollbacks raise the question of
whether HTM can be useful for hard real-time systems.
Do the performance benefits of HTM outweigh the costs
of the aborts and rollbacks, and if so under what condi-
tions? Can transactions use priority boosting? Or should
transactions for high-priority threads instead preferen-
tially abort those of low-priority threads? If so, how is
the hardware efficiently informed of priorities? The lit-
erature on real-time use of HTM is quite sparse, perhaps
because researchers are finding more than enough prob-
lems in getting transactions to work well in non-real-time
environments.

Because current HTM implementations might deter-
ministically abort a given transaction, software must pro-
vide fallback code. This fallback code must use some

17.3. HARDWARE TRANSACTIONAL MEMORY 329

other form of synchronization, for example, locking. If
the fallback is used frequently, then all the limitations of
locking, including the possibility of deadlock, reappear.
One can of course hope that the fallback isn’t used of-
ten, which might allow simpler and less deadlock-prone
locking designs to be used. But this raises the question
of how the system transitions from using the lock-based
fallbacks back to transactions.11 One approach is to use a
test-and-test-and-set discipline [MT02], so that everyone
holds off until the lock is released, allowing the system to
start from a clean slate in transactional mode at that point.
However, this could result in quite a bit of spinning, which
might not be wise if the lock holder has blocked or been
preempted. Another approach is to allow transactions to
proceed in parallel with a thread holding a lock [MT02],
but this raises difficulties in maintaining atomicity, espe-
cially if the reason that the thread is holding the lock is
because the corresponding transaction would not fit into
cache.

Finally, dealing with the possibility of aborts and roll-
backs seems to put an additional burden on the developer,
who must correctly handle all combinations of possible
error conditions.

It is clear that users of HTM must put considerable
validation effort into testing both the fallback code paths
and transition from fallback code back to transactional
code.

17.3.2.4 Lack of Forward-Progress Guarantees

Even though transaction size, conflicts, and aborts/roll-
backs can all cause transactions to abort, one might
hope that sufficiently small and short-duration transac-
tions could be guaranteed to eventually succeed. This
would permit a transaction to be unconditionally retried,
in the same way that compare-and-swap (CAS) and load-
linked/store-conditional (LL/SC) operations are uncon-
ditionally retried in code that uses these instructions to
implement atomic operations.

Unfortunately, most currently available HTM imple-
mentation refuse to make any sort of forward-progress
guarantee, which means that HTM cannot be used to
avoid deadlock on those systems.12 Hopefully future im-
plementations of HTM will provide some sort of forward-

11 The possibility of an application getting stuck in fallback mode
has been termed the “lemming effect”, a term that Dave Dice has been
credited with coining.

12 HTM might well be used to reduce the probability of deadlock, but
as long as there is some possibility of the fallback code being executed,
there is some possibility of deadlock.

progress guarantees. Until that time, HTM must be used
with extreme caution in real-time applications.13

The one exception to this gloomy picture as of 2013
is upcoming versions of the IBM mainframe, which pro-
vides a separate instruction that may be used to start a
special constrained transaction [JSG12]. As you might
guess from the name, such transactions must live within
the following constraints:

1. Each transaction’s data footprint must be contained
within four 32-byte blocks of memory.

2. Each transaction is permitted to execute at most 32
assembler instructions.

3. Transactions are not permitted to have backwards
branches (e.g., no loops).

4. Each transaction’s code is limited to 256 bytes of
memory.

5. If a portion of a given transaction’s data footprint
resides within a given 4K page, then that 4K page is
prohibited from containing any of that transaction’s
instructions.

These constraints are severe, but they nevertheless per-
mit a wide variety of data-structure updates to be imple-
mented, including stacks, queues, hash tables, and so on.
These operations are guaranteed to eventually complete,
and are free of deadlock and livelock conditions.

It will be interesting to see how hardware support of
forward-progress guarantees evolves over time.

17.3.2.5 Irrevocable Operations

Another consequence of aborts and rollbacks is that HTM
transactions cannot accommodate irrevocable operations.
Current HTM implementations typically enforce this lim-
itation by requiring that all of the accesses in the trans-
action be to cacheable memory (thus prohibiting MMIO
accesses) and aborting transactions on interrupts, traps,
and exceptions (thus prohibiting system calls).

Note that buffered I/O can be accommodated by HTM
transactions as long as the buffer fill/flush operations oc-
cur extra-transactionally. The reason that this works is
that adding data to and removing data from the buffer is
revocable: Only the actual buffer fill/flush operations are
irrevocable. Of course, this buffered-I/O approach has the

13 As of mid-2012, there has been surprisingly little work on trans-
actional memory’s real-time characteristics.

330 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

effect of including the I/O in the transaction’s footprint,
increasing the size of the transaction and thus increasing
the probability of failure.

17.3.2.6 Semantic Differences

Although HTM can in many cases be used as a drop-in
replacement for locking (hence the name transactional
lock elision [DHL+08]), there are subtle differences in
semantics. A particularly nasty example involving coordi-
nated lock-based critical sections that results in deadlock
or livelock when executed transactionally was given by
Blundell [BLM06], but a much simpler example is the
empty critical section.

In a lock-based program, an empty critical section will
guarantee that all processes that had previously been hold-
ing that lock have now released it. This idiom was used
by the 2.4 Linux kernel’s networking stack to coordinate
changes in configuration. But if this empty critical sec-
tion is translated to a transaction, the result is a no-op.
The guarantee that all prior critical sections have termi-
nated is lost. In other words, transactional lock elision
preserves the data-protection semantics of locking, but
loses locking’s time-based messaging semantics.

Quick Quiz 17.6: But why would anyone need an
empty lock-based critical section???

Quick Quiz 17.7: Can’t transactional lock elision triv-
ially handle locking’s time-based messaging semantics
by simply choosing not to elide empty lock-based critical
sections?

Quick Quiz 17.8: Given modern hardware [MOZ09],
how can anyone possibly expect parallel software relying
on timing to work?

One important semantic difference between locking
and transactions is the priority boosting that is used
to avoid priority inversion in lock-based real-time pro-
grams. One way in which priority inversion can occur is
when a low-priority thread holding a lock is preempted
by a medium-priority CPU-bound thread. If there is at
least one such medium-priority thread per CPU, the low-
priority thread will never get a chance to run. If a high-
priority thread now attempts to acquire the lock, it will
block. It cannot acquire the lock until the low-priority
thread releases it, the low-priority thread cannot release
the lock until it gets a chance to run, and it cannot get a
chance to run until one of the medium-priority threads
gives up its CPU. Therefore, the medium-priority threads
are in effect blocking the high-priority process, which is
the rationale for the name “priority inversion.”

Listing 17.1: Exploiting Priority Boosting
1 void boostee(void)
2 {
3 int i = 0;
4
5 acquire_lock(&boost_lock[i]);
6 for (;;) {
7 acquire_lock(&boost_lock[!i]);
8 release_lock(&boost_lock[i]);
9 i = i ^ 1;

10 do_something();
11 }
12 }
13
14 void booster(void)
15 {
16 int i = 0;
17
18 for (;;) {
19 usleep(1000); /* sleep 1 ms. */
20 acquire_lock(&boost_lock[i]);
21 release_lock(&boost_lock[i]);
22 i = i ^ 1;
23 }
24 }

One way to avoid priority inversion is priority inheri-
tance, in which a high-priority thread blocked on a lock
temporarily donates its priority to the lock’s holder, which
is also called priority boosting. However, priority boost-
ing can be used for things other than avoiding priority
inversion, as shown in Listing 17.1. Lines 1-12 of this
listing show a low-priority process that must neverthe-
less run every millisecond or so, while lines 14-24 of this
same listing show a high-priority process that uses prior-
ity boosting to ensure that boostee() runs periodically
as needed.

The boostee() function arranges this by always hold-
ing one of the two boost_lock[] locks, so that lines 20-
21 of booster() can boost priority as needed.

Quick Quiz 17.9: But the boostee() function in List-
ing 17.1 alternatively acquires its locks in reverse order!
Won’t this result in deadlock?

This arrangement requires that boostee() acquire its
first lock on line 5 before the system becomes busy, but
this is easily arranged, even on modern hardware.

Unfortunately, this arrangement can break down in pres-
ence of transactional lock elision. The boostee() func-
tion’s overlapping critical sections become one infinite
transaction, which will sooner or later abort, for example,
on the first time that the thread running the boostee()
function is preempted. At this point, boostee() will fall
back to locking, but given its low priority and that the
quiet initialization period is now complete (which after
all is why boostee() was preempted), this thread might
never again get a chance to run.

17.3. HARDWARE TRANSACTIONAL MEMORY 331

And if the boostee() thread is not holding the lock,
then the booster() thread’s empty critical section on
lines 20 and 21 of Listing 17.1 will become an empty
transaction that has no effect, so that boostee() never
runs. This example illustrates some of the subtle con-
sequences of transactional memory’s rollback-and-retry
semantics.

Given that experience will likely uncover additional
subtle semantic differences, application of HTM-based
lock elision to large programs should be undertaken with
caution. That said, where it does apply, HTM-based lock
elision can eliminate the cache misses associated with the
lock variable, which has resulted in tens of percent perfor-
mance increases in large real-world software systems as
of early 2015. We can therefore expect to see substantial
use of this technique on hardware supporting it.

Quick Quiz 17.10: So a bunch of people set out to
supplant locking, and they mostly end up just optimizing
locking???

17.3.2.7 Summary

Although it seems likely that HTM will have com-
pelling use cases, current implementations have serious
transaction-size limitations, conflict-handling complica-
tions, abort-and-rollback issues, and semantic differences
that will require careful handling. HTM’s current situa-
tion relative to locking is summarized in Table 17.1. As
can be seen, although the current state of HTM alleviates
some serious shortcomings of locking,14 it does so by
introducing a significant number of shortcomings of its
own. These shortcomings are acknowledged by leaders
in the TM community [MS12].15

In addition, this is not the whole story. Locking is
not normally used by itself, but is instead typically aug-
mented by other synchronization mechanisms, includ-
ing reference counting, atomic operations, non-blocking
data structures, hazard pointers [Mic04, HLM02], and
RCU [MS98a, MAK+01, HMBW07, McK12a]. The next

14 In fairness, it is important to emphasize that locking’s short-
comings do have well-known and heavily used engineering solutions,
including deadlock detectors [Cor06a], a wealth of data structures that
have been adapted to locking, and a long history of augmentation, as
discussed in Section 17.3.3. In addition, if locking really were as horri-
ble as a quick skim of many academic papers might reasonably lead one
to believe, where did all the large lock-based parallel programs (both
FOSS and proprietary) come from, anyway?

15 In addition, in early 2011, I was invited to deliver a critique of
some of the assumptions underlying transactional memory [McK11d].
The audience was surprisingly non-hostile, though perhaps they were
taking it easy on me due to the fact that I was heavily jet-lagged while
giving the presentation.

section looks at how such augmentation changes the equa-
tion.

17.3.3 HTM Weaknesses WRT to Locking
When Augmented

Practitioners have long used reference counting, atomic
operations, non-blocking data structures, hazard pointers,
and RCU to avoid some of the shortcomings of locking.
For example, deadlock can be avoided in many cases by
using reference counts, hazard pointers, or RCU to pro-
tect data structures, particularly for read-only critical sec-
tions [Mic04, HLM02, DMS+12, GMTW08, HMBW07].
These approaches also reduce the need to partition
data structures, as was see in Chapter 10. RCU fur-
ther provides contention-free wait-free read-side prim-
itives [DMS+12]. Adding these considerations to Ta-
ble 17.1 results in the updated comparison between aug-
mented locking and HTM shown in Table 17.2. A sum-
mary of the differences between the two tables is as fol-
lows:

1. Use of non-blocking read-side mechanisms allevi-
ates deadlock issues.

2. Read-side mechanisms such as hazard pointers and
RCU can operate efficiently on non-partitionable
data.

3. Hazard pointers and RCU do not contend with each
other or with updaters, allowing excellent perfor-
mance and scalability for read-mostly workloads.

4. Hazard pointers and RCU provide forward-progress
guarantees (lock freedom and wait-freedom, respec-
tively).

5. Privatization operations for hazard pointers and RCU
are straightforward.

For those with good eyesight, Table 17.3 combines
Tables 17.1 and 17.2.

Of course, it is also possible to augment HTM, as dis-
cussed in the next section.

17.3.4 Where Does HTM Best Fit In?
Although it will likely be some time before HTM’s area
of applicability can be as crisply delineated as that shown
for RCU in Figure 9.23 on page 147, that is no reason not
to start moving in that direction.

332 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Table 17.1: Comparison of Locking and HTM (Advantage , Disadvantage , Strong Disadvantage)

Locking Hardware Transactional Memory

Basic Idea Allow only one thread at a time to access a given
set of objects.

Cause a given operation over a set of objects to
execute atomically.

Scope Handles all operations. Handles revocable operations.

Irrevocable operations force fallback (typically to
locking).

Composability Limited by deadlock. Limited by irrevocable operations, transaction size,
and deadlock (assuming lock-based fallback code).

Scalability & Per-
formance

Data must be partitionable to avoid lock contention. Data must be partitionable to avoid conflicts.

Partioning must typically be fixed at design time. Dynamic adjustment of partitioning carried out au-
tomatically down to cacheline boundaries.

Partitioning required for fallbacks (less important
for rare fallbacks).

Locking primitives typically result in expensive
cache misses and memory-barrier instructions.

Transactions begin/end instructions typically do
not result in cache misses, but do have memory-
ordering consequences.

Contention effects are focused on acquisition and
release, so that the critical section runs at full speed.

Contention aborts conflicting transactions, even if
they have been running for a long time.

Privatization operations are simple, intuitive, per-
formant, and scalable.

Privatized data contributes to transaction size.

Hardware Support Commodity hardware suffices. New hardware required (and is starting to become
available).

Performance is insensitive to cache-geometry de-
tails.

Performance depends critically on cache geometry.

Software Support APIs exist, large body of code and experience, de-
buggers operate naturally.

APIs emerging, little experience outside of DBMS,
breakpoints mid-transaction can be problematic.

Interaction With
Other Mechanisms

Long experience of successful interaction. Just beginning investigation of interaction.

Practical Apps Yes. Yes.

Wide Applicability Yes. Jury still out, but likely to win significant use.

17.3. HARDWARE TRANSACTIONAL MEMORY 333

Table 17.2: Comparison of Locking (Augmented by RCU or Hazard Pointers) and HTM (Advantage , Disadvantage ,

Strong Disadvantage)

Locking with Userspace RCU or Hazard Pointers Hardware Transactional Memory

Basic Idea Allow only one thread at a time to access a given set
of objects.

Cause a given operation over a set of objects to execute
atomically.

Scope Handles all operations. Handles revocable operations.

Irrevocable operations force fallback (typically to lock-
ing).

Composability Readers limited only by grace-period-wait operations. Limited by irrevocable operations, transaction size,
and deadlock. (Assuming lock-based fallback code.)

Updaters limited by deadlock. Readers reduce dead-
lock.

Scalability & Per-
formance

Data must be partitionable to avoid lock contention
among updaters.

Data must be partitionable to avoid conflicts.

Partitioning not needed for readers.

Partitioning for updaters must typically be fixed at
design time.

Dynamic adjustment of partitioning carried out auto-
matically down to cacheline boundaries.

Partitioning not needed for readers. Partitioning required for fallbacks (less important for
rare fallbacks).

Updater locking primitives typically result in expen-
sive cache misses and memory-barrier instructions.

Transactions begin/end instructions typically do not
result in cache misses, but do have memory-ordering
consequences.

Update-side contention effects are focused on acquisi-
tion and release, so that the critical section runs at full
speed.

Contention aborts conflicting transactions, even if they
have been running for a long time.

Readers do not contend with updaters or with each
other.

Read-side primitives are typically wait-free with low
overhead. (Lock-free for hazard pointers.)

Read-only transactions subject to conflicts and roll-
backs. No forward-progress guarantees other than
those supplied by fallback code.

Privatization operations are simple, intuitive, perfor-
mant, and scalable when data is visible only to up-
daters.

Privatized data contributes to transaction size.

Privatization operations are expensive (though still
intuitive and scalable) for reader-visible data.

Hardware Support Commodity hardware suffices. New hardware required (and is starting to become
available).

Performance is insensitive to cache-geometry details. Performance depends critically on cache geometry.

Software Support APIs exist, large body of code and experience, debug-
gers operate naturally.

APIs emerging, little experience outside of DBMS,
breakpoints mid-transaction can be problematic.

Interaction With
Other Mechanisms

Long experience of successful interaction. Just beginning investigation of interaction.

Practical Apps Yes. Yes.

Wide Applicability Yes. Jury still out, but likely to win significant use.

334 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Table
17.3:

C
om

parison
ofL

ocking
(Plain

and
A

ugm
ented)and

H
T

M
(

A
dvantage

,
D

isadvantage
,

Strong
D

isadvantage
)

L
ocking

L
ocking

w
ith

U
serspace

R
C

U
orH

azard
Pointers

H
ardw

are
TransactionalM

em
ory

B
asic

Idea
A

llow
only

one
thread

ata
tim

e
to

access
a

given
set

ofobjects.
A

llow
only

one
thread

ata
tim

e
to

access
a

given
set

ofobjects.
C

ause
a

given
operation

overa
setofobjectsto

execute
atom

ically.

Scope
H

andles
alloperations.

H
andles

alloperations.
H

andles
revocable

operations.

Irrevocable
operationsforce

fallback
(typically

to
lock-

ing).

C
om

posability
L

im
ited

by
deadlock.

R
eaders

lim
ited

only
by

grace-period-w
aitoperations.

L
im

ited
by

irrevocable
operations,

transaction
size,

and
deadlock.(A

ssum
ing

lock-based
fallback

code.)

U
pdaters

lim
ited

by
deadlock.R

eaders
reduce

dead-
lock.

Scalability
&

Per-
form

ance
D

ata
m

ustbe
partitionable

to
avoid

lock
contention.

D
ata

m
ustbe

partitionable
to

avoid
lock

contention
am

ong
updaters.

D
ata

m
ustbe

partitionable
to

avoid
conflicts.

Partitioning
notneeded

forreaders.

Partitioning
m

usttypically
be

fixed
atdesign

tim
e.

Partitioning
for

updaters
m

ust
typically

be
fixed

at
design

tim
e.

D
ynam

ic
adjustm

entofpartitioning
carried

outauto-
m

atically
dow

n
to

cacheline
boundaries.

Partitioning
notneeded

forreaders.
Partitioning

required
forfallbacks

(less
im

portantfor
rare

fallbacks).

Locking
prim

itives
typically

resultin
expensive

cache
m

isses
and

m
em

ory-barrierinstructions.
U

pdater
locking

prim
itives

typically
resultin

expen-
sive

cache
m

isses
and

m
em

ory-barrierinstructions.
Transactions

begin
/end

instructions
typically

do
not

resultin
cache

m
isses,butdo

have
m

em
ory-ordering

consequences.

C
ontention

e
ff

ects
are

focused
on

acquisition
and

re-
lease,so

thatthe
criticalsection

runs
atfullspeed.

U
pdate-side

contention
effects

are
focused

on
acquisi-

tion
and

release,so
thatthe

criticalsection
runs

atfull
speed.

C
ontention

aborts
conflicting

transactions,even
ifthey

have
been

running
fora

long
tim

e.

R
eaders

do
not

contend
w

ith
updaters

or
w

ith
each

other.

R
ead-side

prim
itives

are
typically

w
ait-free

w
ith

low
overhead.(L

ock-free
forhazard

pointers.)
R

ead-only
transactions

subject
to

conflicts
and

roll-
backs.

N
o

forw
ard-progress

guarantees
other

than
those

supplied
by

fallback
code.

Privatization
operations

are
sim

ple,intuitive,perfor-
m

ant,and
scalable.

Privatization
operations

are
sim

ple,intuitive,perfor-
m

ant,
and

scalable
w

hen
data

is
visible

only
to

up-
daters.

Privatized
data

contributes
to

transaction
size.

Privatization
operations

are
expensive

(though
still

intuitive
and

scalable)forreader-visible
data.

H
ardw

are
Support

C
om

m
odity

hardw
are

su
ffi

ces.
C

om
m

odity
hardw

are
su

ffi
ces.

N
ew

hardw
are

required
(and

is
starting

to
becom

e
available).

Perform
ance

is
insensitive

to
cache-geom

etry
details.

Perform
ance

is
insensitive

to
cache-geom

etry
details.

Perform
ance

depends
critically

on
cache

geom
etry.

Softw
are

Support
A

PIs
exist,large

body
ofcode

and
experience,debug-

gers
operate

naturally.
A

PIs
exist,large

body
ofcode

and
experience,debug-

gers
operate

naturally.
A

PIs
em

erging,
little

experience
outside

of
D

B
M

S,
breakpoints

m
id-transaction

can
be

problem
atic.

Interaction
W

ith
O

therM
echanism

s
L

ong
experience

ofsuccessfulinteraction.
L

ong
experience

ofsuccessfulinteraction.
Justbeginning

investigation
ofinteraction.

PracticalA
pps

Y
es.

Y
es.

Y
es.

W
ide

A
pplicability

Y
es.

Y
es.

Jury
stillout,butlikely

to
w

in
significantuse.

17.3. HARDWARE TRANSACTIONAL MEMORY 335

HTM seems best suited to update-heavy workloads
involving relatively small changes to disparate portions
of relatively large in-memory data structures running on
large multiprocessors, as this meets the size restrictions
of current HTM implementations while minimizing the
probability of conflicts and attendant aborts and rollbacks.
This scenario is also one that is relatively difficult to han-
dle given current synchronization primitives.

Use of locking in conjunction with HTM seems likely
to overcome HTM’s difficulties with irrevocable opera-
tions, while use of RCU or hazard pointers might alleviate
HTM’s transaction-size limitations for read-only opera-
tions that traverse large fractions of the data structure.
Current HTM implementations unconditionally abort an
update transaction that conflicts with an RCU or hazard-
pointer reader, but perhaps future HTM implementations
will interoperate more smoothly with these synchroniza-
tion mechanisms. In the meantime, the probability of an
update conflicting with a large RCU or hazard-pointer
read-side critical section should be much smaller than the
probability of conflicting with the equivalent read-only
transaction.16 Nevertheless, it is quite possible that a
steady stream of RCU or hazard-pointer readers might
starve updaters due to a corresponding steady stream of
conflicts. This vulnerability could be eliminated (perhaps
at significant hardware cost and complexity) by giving
extra-transactional reads the pre-transaction copy of the
memory location being loaded.

The fact that HTM transactions must have fallbacks
might in some cases force static partitionability of data
structures back onto HTM. This limitation might be alle-
viated if future HTM implementations provide forward-
progress guarantees, which might eliminate the need for
fallback code in some cases, which in turn might allow
HTM to be used efficiently in situations with higher con-
flict probabilities.

In short, although HTM is likely to have important
uses and applications, it is another tool in the parallel
programmer’s toolbox, not a replacement for the toolbox
in its entirety.

16 It is quite ironic that strictly transactional mechanisms are ap-
pearing in shared-memory systems at just about the time that NoSQL
databases are relaxing the traditional database-application reliance on
strict transactions. Nevertheless, HTM has in fact realized the ease-of-
use promise of TM, albeit for black-hat attacks on the Linux kernel’s
address-space randomization defense mechanism [JLK16a, JLK16b].

17.3.5 Potential Game Changers
Game changers that could greatly increase the need for
HTM include the following:

1. Forward-progress guarantees.

2. Transaction-size increases.

3. Improved debugging support.

4. Weak atomicity.

These are expanded upon in the following sections.

17.3.5.1 Forward-Progress Guarantees

As was discussed in Section 17.3.2.4, current HTM imple-
mentations lack forward-progress guarantees, which re-
quires that fallback software be available to handle HTM
failures. Of course, it is easy to demand guarantees, but
not always easy to provide them. In the case of HTM,
obstacles to guarantees can include cache size and asso-
ciativity, TLB size and associativity, transaction duration
and interrupt frequency, and scheduler implementation.

Cache size and associativity was discussed in Sec-
tion 17.3.2.1, along with some research intended to work
around current limitations. However, HTM forward-
progress guarantees would come with size limits, large
though these limits might one day be. So why don’t
current HTM implementations provide forward-progress
guarantees for small transactions, for example, limited
to the associativity of the cache? One potential reason
might be the need to deal with hardware failure. For ex-
ample, a failing cache SRAM cell might be handled by
deactivating the failing cell, thus reducing the associa-
tivity of the cache and therefore also the maximum size
of transactions that can be guaranteed forward progress.
Given that this would simply decrease the guaranteed
transaction size, it seems likely that other reasons are at
work. Perhaps providing forward progress guarantees on
production-quality hardware is more difficult than one
might think, an entirely plausible explanation given the
difficulty of making forward-progress guarantees in soft-
ware. Moving a problem from software to hardware does
not necessarily make it easier to solve.

Given a physically tagged and indexed cache, it is not
enough for the transaction to fit in the cache. Its ad-
dress translations must also fit in the TLB. Any forward-
progress guarantees must therefore also take TLB size
and associativity into account.

336 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Given that interrupts, traps, and exceptions abort trans-
actions in current HTM implementations, it is neces-
sary that the execution duration of a given transaction
be shorter than the expected interval between interrupts.
No matter how little data a given transaction touches,
if it runs too long, it will be aborted. Therefore, any
forward-progress guarantees must be conditioned not only
on transaction size, but also on transaction duration.

Forward-progress guarantees depend critically on the
ability to determine which of several conflicting trans-
actions should be aborted. It is all too easy to imagine
an endless series of transactions, each aborting an earlier
transaction only to itself be aborted by a later transac-
tions, so that none of the transactions actually commit.
The complexity of conflict handling is evidenced by the
large number of HTM conflict-resolution policies that
have been proposed [ATC+11, LS11]. Additional com-
plications are introduced by extra-transactional accesses,
as noted by Blundell [BLM06]. It is easy to blame the
extra-transactional accesses for all of these problems, but
the folly of this line of thinking is easily demonstrated by
placing each of the extra-transactional accesses into its
own single-access transaction. It is the pattern of accesses
that is the issue, not whether or not they happen to be
enclosed in a transaction.

Finally, any forward-progress guarantees for transac-
tions also depend on the scheduler, which must let the
thread executing the transaction run long enough to suc-
cessfully commit.

So there are significant obstacles to HTM vendors of-
fering forward-progress guarantees. However, the impact
of any of them doing so would be enormous. It would
mean that HTM transactions would no longer need soft-
ware fallbacks, which would mean that HTM could finally
deliver on the TM promise of deadlock elimination.

And as of late 2012, the IBM Mainframe announced
an HTM implementation that includes constrained trans-
actions in addition to the usual best-effort HTM imple-
mentation [JSG12]. A constrained transaction starts with
the tbeginc instruction instead of the tbegin instruc-
tion that is used for best-effort transactions. Constrained
transactions are guaranteed to always complete (eventu-
ally), so if a transaction aborts, rather than branching to a
fallback path (as is done for best-effort transactions), the
hardware instead restarts the transaction at the tbeginc
instruction.

The Mainframe architects needed to take extreme mea-
sures to deliver on this forward-progress guarantee. If a
given constrained transaction repeatedly fails, the CPU

might disable branch prediction, force in-order execution,
and even disable pipelining. If the repeated failures are
due to high contention, the CPU might disable specula-
tive fetches, introduce random delays, and even serialize
execution of the conflicting CPUs. “Interesting” forward-
progress scenarios involve as few as two CPUs or as many
as one hundred CPUs. Perhaps these extreme measures
provide some insight as to why other CPUs have thus far
refrained from offering constrained transactions.

As the name implies, constrained transactions are in
fact severely constrained:

1. The maximum data footprint is four blocks of mem-
ory, where each block can be no larger than 32 bytes.

2. The maximum code footprint is 256 bytes.

3. If a given 4K page contains a constrained transac-
tion’s code, then that page may not contain that trans-
action’s data.

4. The maximum number of assembly instructions that
may be executed is 32.

5. Backwards branches are forbidden.

Nevertheless, these constraints support a number of
important data structures, including linked lists, stacks,
queues, and arrays. Constrained HTM therefore seems
likely to become an important tool in the parallel program-
mer’s toolbox.

Note that these forward-progress guarantees need not
be absolute. For example, suppose that a use of HTM
uses a global lock as fallback. Assuming that the fall-
back mechanism has been carefully designed to avoid the
“lemming effect” discussed in Section 17.3.2.3, then if
HTM rollbacks are sufficiently infrequent, the global lock
will not be a bottleneck. That said, the larger the system,
the longer the critical sections, and the longer the time
required to recover from the “lemming effect”, the more
rare “sufficiently infrequent” needs to be.

17.3.5.2 Transaction-Size Increases

Forward-progress guarantees are important, but as we
saw, they will be conditional guarantees based on trans-
action size and duration. It is important to note that even
small-sized guarantees will be quite useful. For example,
a guarantee of two cache lines is sufficient for a stack,
queue, or dequeue. However, larger data structures re-
quire larger guarantees, for example, traversing a tree in

17.4. FORMAL REGRESSION TESTING? 337

order requires a guarantee equal to the number of nodes
in the tree.

Therefore, increasing the size of the guarantee also
increases the usefulness of HTM, thereby increasing the
need for CPUs to either provide it or provide good-and-
sufficient workarounds.

17.3.5.3 Improved Debugging Support

Another inhibitor to transaction size is the need to debug
the transactions. The problem with current mechanisms
is that a single-step exception aborts the enclosing trans-
action. There are a number of workarounds for this issue,
including emulating the processor (slow!), substituting
STM for HTM (slow and slightly different semantics!),
playback techniques using repeated retries to emulate for-
ward progress (strange failure modes!), and full support
of debugging HTM transactions (complex!).

Should one of the HTM vendors produce an HTM sys-
tem that allows straightforward use of classical debugging
techniques within transactions, including breakpoints, sin-
gle stepping, and print statements, this will make HTM
much more compelling. Some transactional-memory re-
searchers are starting to recognize this problem as of 2013,
with at least one proposal involving hardware-assisted
debugging facilities [GKP13]. Of course, this proposal
depends on readily available hardware gaining such facil-
ities.

17.3.5.4 Weak Atomicity

Given that HTM is likely to face some sort of size limi-
tations for the foreseeable future, it will be necessary for
HTM to interoperate smoothly with other mechanisms.
HTM’s interoperability with read-mostly mechanisms
such as hazard pointers and RCU would be improved
if extra-transactional reads did not unconditionally abort
transactions with conflicting writes—instead, the read
could simply be provided with the pre-transaction value.
In this way, hazard pointers and RCU could be used to
allow HTM to handle larger data structures and to reduce
conflict probabilities.

This is not necessarily simple, however. The most
straightforward way of implementing this requires an ad-
ditional state in each cache line and on the bus, which is
a non-trivial added expense. The benefit that goes along
with this expense is permitting large-footprint readers
without the risk of starving updaters due to continual con-
flicts. An alternative approach, applied to great effect
to binary search trees by Siakavaras et al. [SNGK17], is

to use RCU for read-only traversals and HTM only for
the actual updates themselves. This combination outper-
formed other transactional-memory techniques by up to
220 %, a speedup similar to that observed by Howard and
Walpole [HW11] when they combined RCU with STM.
In both cases, the weak atomicity is implemented in soft-
ware rather than in hardware. It would nevertheless be
interesting to see what additional speedups could be ob-
tained by implementing weak atomicity in both hardware
and software.

17.3.6 Conclusions

Although current HTM implementations have delivered
real performance benefits in some situations, they also
have significant shortcomings. The most significant short-
comings appear to be limited transaction sizes, the need
for conflict handling, the need for aborts and rollbacks,
the lack of forward-progress guarantees, the inability to
handle irrevocable operations, and subtle semantic differ-
ences from locking.

Some of these shortcomings might be alleviated in
future implementations, but it appears that there will con-
tinue to be a strong need to make HTM work well with
the many other types of synchronization mechanisms, as
noted earlier [MMW07, MMTW10].

In short, current HTM implementations appear to be
welcome and useful additions to the parallel program-
mer’s toolbox, and much interesting and challenging work
is required to make use of them. However, they cannot be
considered to be a magic wand with which to wave away
all parallel-programming problems.

17.4 Formal Regression Testing?

Formal verification has proven useful in some cases, but a
pressing open question is whether hard-core formal verifi-
cation will ever be included in the automated regression-
test suites used for continuous integration within com-
plex concurrent code bases, such as the Linux kernel.
Although there is already a proof of concept for Linux-
kernel SRCU [Roy17], this test is for a small portion
of one of the simplest RCU implementations, and has
proven difficult to keep it current with the ever-changing
Linux kernel. It is therefore worth asking what would be
required to incorporate formal verification as first-class
members of the Linux kernel’s regression tests.

The following list is a good start [McK15a, slide 34]:

338 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

1. Any required translation must be automated.

2. The environment (including memory ordering) must
be correctly handled.

3. The memory and CPU overhead must be acceptably
modest.

4. Specific information leading to the location of the
bug must be provided.

5. Information beyond the source code and inputs must
be modest in scope.

6. The bugs located must be relevant to the code’s users.

This list builds on, but is somewhat more modest
than, Richard Bornat’s dictum: “Formal-verification re-
searchers should verify the code that developers write, in
the language they write it in, running in the environment
that it runs in, as they write it.” The following sections
discuss each of the above requirements, followed by a
section presenting a scorecard of how well a few tools
stack up against these requirements.

17.4.1 Automatic Translation

Although Promela and spin are invaluable design aids, if
you need to formally regression-test your C-language pro-
gram, you must hand-translate to Promela each time you
would like to re-verify your code. If your code happens to
be in the Linux kernel, which releases every 60-90 days,
you will need to hand-translate from four to six times each
year. Over time, human error will creep in, which means
that the verification won’t match the source code, render-
ing the verification useless. Repeated verification clearly
requires either that the formal-verification tooling input
your code directly, or that there be automatic translation
of your code to the form required for verification.

PPCMEM and herd can in theory directly input assem-
bly language and C++ code, but these tools work only on
very small litmus tests, which normally means that you
must extract the core of your mechanism—by hand. As
with Promela and spin, both PPCMEM and herd are ex-
tremely useful, but they are not well-suited for regression
suites.

In contrast, cbmc and Nidhugg can input C programs
of reasonable (though still quite limited) size, and if their
capabilities continue to grow, could well become excellent
additions to regression suites.

One shortcoming of taking C code as input is that it
assumes that the compiler is correct. An alternative ap-
proach is to take the binary produced by the C compiler as
input, thereby accounting for any relevant compiler bugs.
This approach has been used in a number of verification ef-
forts, perhaps most notably by the SEL4 project [SM13].

Quick Quiz 17.11: Given the groundbreaking nature
of the various verifiers used in the SEL4 project, why
doesn’t this chapter cover them in more depth?

However, verifying directly from either the source or
binary both have the advantage of eliminating human
translation errors, which is critically important for reliable
regression testing.

This is not to say that tools with special-purpose lan-
guages are useless. On the contrary, they can be quite
helpful for design-time verification, as was discussed in
Chapter 12. However, such tools are not particularly help-
ful for automated regression testing.

17.4.2 Environment

It is critically important that formal-verification tools cor-
rectly model their environment. One all-too-common
omission is the memory model, where a great many
formal-verification tools, including Promela/spin, are re-
stricted to sequential consistency. The QRCU experience
related in Section 12.1.4.6 is an important cautionary tale.

Promela and spin assume sequential consistency,
which is not a good match for modern computer sys-
tems, as was seen in Chapter 15. In contrast, one of the
great strengths of PPCMEM and herd is their detailed
modeling of various CPU families memory models, in-
cluding x86, ARM, Power, and, in the case of herd, even
a Linux-kernel memory model [AMM+18], which has
been accepted into version 4.17 of the Linux kernel.

The cbmc and Nidhugg tools provide some ability to
select memory models, but do not provide the variety that
PPCMEM and herd do. However, it is likely that the
larger-scale tools will adopt a greater variety of memory
models as time goes on.

In the longer term, it would be helpful for formal-
verification tools to include I/O [MDR16a], but it may be
some time before this comes to pass.

Nevertheless, tools that fail to match the environment
can still be useful. For example, a great many concur-
rency bugs would still be bugs on a mythical sequentially
consistent system, and these bugs could be located by a
tool that over-approximated the system’s memory model
with sequential consistency. Nevertheless, these tools will

17.4. FORMAL REGRESSION TESTING? 339

fail to find bugs involving missing memory-ordering di-
rectives, as noted in the aforementioned cautionary tale
of Section 12.1.4.6.

17.4.3 Overhead
Almost all hard-core formal-verification tools are expo-
nential in nature, which might seem discouraging until
you consider that many of the most interesting software
questions are in fact undecidable. However, there are
differences in degree, even among exponentials.

PPCMEM by design is unoptimized, in order to provide
greater assurance that the memory models of interest are
in fact accurately represented. The herd tool optimizes
more aggressively, and so as described in Section 12.3, is
orders of magnitude faster than PPCMEM. Nevertheless,
both PPCMEM and herd target very small litmus tests
rather than larger bodies of code.

In contrast, Promela/spin, cbmc, and Nidhugg
are designed for (somewhat) larger bodies of code.
Promela/spin was used to verify the Curiosity rover’s
filesystem [GHH+14] and, as noted earlier, both cbmc
and Nidhugg were appled to Linux-kernel RCU.

If advances in heuristics continue at the rate of the past
quarter century, we can look forward to large reductions in
overhead for formal verification. That said, combinatorial
explosion is still combinatorial explosion, which would be
expected to sharply limit the size of programs that could
be verified, with or without continued improvements in
heuristics.

However, the flip side of combinatorial explosion is
Philip II of Macedon’s timeless advice: “Divide and rule.”
If a large program can be divided and the pieces verified,
the result can be combinatorial implosion [McK11d]. One
natural place to divide is on API boundaries, for example,
those of locking primitives. One verification pass can
then verify that the locking implementation is correct, and
additional verification passes can verify correct use of the
locking APIs.

Table 17.4: Emulating Locking: Performance (s)

Threads Locking cmpxchg_acquire

2 0.004 0.022
3 0.041 0.743
4 0.374 59.565
5 4.905

The performance benefits of this approach can

Listing 17.2: Emulating Locking with cmpxchg_acquire()
1 C C-SB+l-o-o-u+l-o-o-u-C
2

3 {
4 }
5

6 P0(int *sl, int *x0, int *x1)
7 {
8 int r2;
9 int r1;

10

11 r2 = cmpxchg_acquire(sl, 0, 1);
12 WRITE_ONCE(*x0, 1);
13 r1 = READ_ONCE(*x1);
14 smp_store_release(sl, 0);
15 }
16

17 P1(int *sl, int *x0, int *x1)
18 {
19 int r2;
20 int r1;
21

22 r2 = cmpxchg_acquire(sl, 0, 1);
23 WRITE_ONCE(*x1, 1);
24 r1 = READ_ONCE(*x0);
25 smp_store_release(sl, 0);
26 }
27

28 filter (0:r2=0 /\ 1:r2=0)
29 exists (0:r1=0 /\ 1:r1=0)

be demonstrated using the Linux-kernel memory
model [AMM+18]. This model provides spin_lock()
and spin_unlock() primitives, but these primitives can
also be emulated using cmpxchg_acquire() and smp_
store_release(), as shown in Listing 17.2 (C-SB+l-
o-o-u+l-o-o-*u.litmus and C-SB+l-o-o-u+l-o-
o-u*-C.litmus). Table 17.4 compares the performance
and scalability of using the model’s spin_lock() and
spin_unlock() against emulating these primitives as
shown in the listing. The difference is not insignificant:
At four processes, the model is more than two orders of
magnitude faster than emulation!

Quick Quiz 17.12: Why bother with a separate
filter command on line 28 of Listing 17.2 instead of
just adding the condition to the exists clause? And
wouldn’t it be simpler to use xchg_acquire() instead
of cmpxchg_acquire()?

It would of course be quite useful for tools to automati-
cally divide up large programs, verify the pieces, and then
verify the combinations of pieces. In the meantime, veri-
fication of large programs will require significant manual
intervention. This intervention will preferably mediated
by scripting, the better to reliably carry out repeated veri-
fications on each release, and preferably eventually in a
manner well-suited for continuous integration.

In any case, we can expect formal-verification capa-
bilities to continue to increase over time, and any such

340 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

increases will in turn increase the applicability of formal
verification to regression testing.

17.4.4 Locate Bugs

Any software artifact of any size contains bugs. Therefore,
a formal-verification tool that reports only the presence or
absence of bugs is not particularly useful. What is needed
is a tool that gives at least some information as to where
the bug is located and the nature of that bug.

The cbmc output includes a traceback mapping back
to the source code, similar to Promela/spin’s, as does
Nidhugg. Of course, these tracebacks can be quite long,
and analyzing them can be quite tedious. However, doing
so is usually quite a bit faster and more pleasant than
locating bugs the old-fashioned way.

In addition, one of the simplest tests of formal-
verification tools is bug injection. After all, not only
could any of us write printf("VERIFIED\n"), but the
plain fact is that developers of formal-verification tools
are just as bug-prone as are the rest of us. Therefore,
formal-verification tools that just proclaim that a bug ex-
ists are fundamentally less trustworthy because it is more
difficult to verify them on real-world code.

All that aside, people writing formal-verification tools
are permitted to leverage existing tools. For example, a
tool designed to determine only the presence or absence
of a serious but rare bug might leverage bisection. If an
old version of the program under test did not contain the
bug, but a new version did, then bisection could be used
to quickly locate the commit that inserted the bug, which
might be sufficient information to find and fix the bug.
Of course, this sort of strategy would not work well for
common bugs because in this case bisection would fail
due to all commits having at least one instance of the
common bug.

Therefore, the execution traces provided by many
formal-verification tools will continue to be valuable, par-
ticularly for complex and difficult-to-understand bugs.

17.4.5 Minimal Scaffolding

In the old days, formal-verification researchers demanded
a full specification against which the software would be
verified. Unfortunately, a mathematically rigorous specifi-
cation might well be larger than the actual code, and each
line of specification is just as likely to contain bugs as is
each line of code. A formal verification effort proving that
the code faithfully implemented the specification would

be a proof of bug-for-bug compatibility between the two,
which would not likely be all that helpful.

Worse yet, the requirements for a number of software
artifacts, including Linux-kernel RCU, are empirical in
nature [McK15e, McK15c, McK15d].17 For this com-
mon type of software, a complete specification is a polite
fiction. Nor are complete specifications any less fictional
for hardware, as was made clear by the late 2017 advent of
the Meltdown and Spectre side-channel attacks [Hor18].

This situation might cause one to give up all hope of
formal verification of real-world software and hardware
artifacts, but it turns out that there is quite a bit that can
be done. For example, design and coding rules can act
as a partial specification, as can assertions contained in
the code. And in fact formal-verification tools such as
cbmc and Nidhugg both check for assertions that can be
triggered, implicitly treating these assertions as part of
the specification. However, the assertions are also part
of the code, which makes it less likely that they will
become obsolete, especially if the code is also subjected
to stress tests.18 The cbmc tool also checks for array-out-
of-bound references, thus implicitly adding them to the
specification.

This implicit-specification approach makes quite a bit
of sense, particularly if you look at formal verification
not as a full proof of correctness, but rather an alternative
form of validation with a different set of strengths and
weaknesses than the common case, that is, testing. From
this viewpoint, software will always have bugs, and there-
fore any tool of any kind that helps to find those bugs is a
very good thing indeed.

17.4.6 Relevant Bugs
Finding bugs—and fixing them—is of course the whole
point of any type of validation effort. Clearly, false posi-
tives are to be avoided. But even in the absense of false
positives, there are bugs and there are bugs.

For example, suppose that a software artifact had ex-
actly 100 remaining bugs, each of which manifested on
average once every million years of runtime. Suppose fur-
ther that an omniscient formal-verification tool located all
100 bugs, which the developers duly fixed. What happens
to the reliability of this software artifact?

The perhaps surprising answer is that the reliability
decreases.

17 Or, in formal-verification parlance, Linux-kernel RCU has an
incomplete specification.

18 And you do stress-test your code, don’t you?

17.4. FORMAL REGRESSION TESTING? 341

To see this, keep in mind that historical experience indi-
cates that about 7 % of fixes introduce a new bug [BJ12].
Therefore, fixing the 100 bugs, which had a combined
mean time to failure (MTBF) of about 10,000 years, will
introduce seven more bugs. Historical statistics indicate
that each new bug will have an MTBF much less than
70,000 years. This in turn suggests that the combined
MTBF of these seven new bugs will most likely be much
less than 10,000 years, which in turn means that the well-
intentioned fixing of the original 100 bugs actually de-
creased the reliability of the overall software.

Quick Quiz 17.13: How do we know that the MTBFs
of known bugs is a good estimate of the MTBFs of bugs
that have not yet been located?

Quick Quiz 17.14: But the formal-verification tools
should immediately find all the bugs introduced by the
fixes, so why is this a problem?

Worse yet, imagine another software artifact with one
bug that fails once every day on average and 99 more
that fail every million years each. Suppose that a formal-
verification tool located the 99 million-year bugs, but
failed to find the one-day bug. Fixing the 99 bugs located
will take time and effort, likely slightly decrease reliability,
and do nothing at all about the pressing each-day failure
that is likely causing much embarrassment and perhaps
much worse besides.

Therefore, it would be best to have a validation tool
that preferentially located the most troublesome bugs.
However, as noted in Section 17.4.4, it is permissible
to leverage additional tools. One powerful tool is none
other than plain old testing. Given knowledge of the
bug, it should be possible to construct specific tests for
it, possibly also using some of the techniques described
in Section 11.6.4 to increase the probability of the bug
manifesting. These techniques should allow calculation
of a rough estimate of the bug’s raw failure rate, which
could in turn be used to prioritize bug-fix efforts.

Quick Quiz 17.15: But many formal-verification tools
can only find one bug at a time, so that each bug must be
fixed before the tool can locate the next. How can bug-fix
efforts be prioritized given such a tool?

Identifying relevant bugs might sound like too much to
ask, but it is what is really required if we are to actually
increase software reliability.

17.4.7 Formal Regression Scorecard

Table 17.5 shows a rough-and-ready scorecard for the
formal-verification tools covered in this chapter. Shorter

wavelengths are better than longer wavelengths.
Promela requires hand translation and supports only

sequential consistency, so its first two cells are red. It
has reasonable overhead (for formal verification, anyway)
and provides a traceback, so its next two cells are yel-
low. Despite requiring hand translation, Promela handles
assertions in a natural way, so its fifth cell is green.

PPCMEM usually requires hand translation due to the
small size of litmus tests that it supports, so its first cell is
orange. It handles several memory models, so its second
cell is green. Its overhead is quite high, so its third cell is
red. It provides a graphical display of relations among op-
erations, which is not as helpful as a traceback, but is still
quite useful, so its fourth cell is yellow. It requires con-
structing an exists clause and cannot take intra-process
assertions, so its fifth cell is also yellow.

The herd tool has size restrictions similar to those of
PPCMEM, so herd’s first cell is also orange. It supports a
wide variety of memory models, so its second cell is blue.
It has reasonable overhead, so its third cell is yellow. Its
bug-location and assertion capabilities are quite similar to
those of PPCMEM, so herd also gets yellow for the next
two cells.

The cbmc tool inputs C code directly, so its first cell is
blue. It supports a few memory models, so its second cell
is yellow. It has reasonable overhead, so its third cell is
also yellow, however, perhaps SAT-solver performance
will continue improving. It provides a traceback, so its
fourth cell is green. It takes assertions directly from the C
code, so its fifth cell is blue.

Nidhugg also inputs C code directly, so its first cell is
also blue. It supports only a couple of memory models,
so its second cell is orange. Its overhead is quite low (for
formal-verification), so its third cell is green. It provides
a traceback, so its fourth cell is green. It takes assertions
directly from the C code, so its fifth cell is blue.

So what about the sixth and final row? It is too early to
tell how any of the tools do at finding the right bugs, so
they are all yellow with question marks.

Quick Quiz 17.16: How would testing stack up in the
scorecard shown in Table 17.5?

Quick Quiz 17.17: But aren’t there a great many more
formal-verification systems than are shown in Table 17.5?

Once again, please note that this table rates these tools
for use in regression testing. Just because many of them
are poor fit for regression testing does not at all mean that
they are useless, in fact, many of them have proven their

342 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Table 17.5: Formal Regression Scorecard

Promela PPCMEM herd cbmc Nidhugg

(1) Automated

(2) Environment (MM) (MM) (MM)

(3) Overhead (SAT)

(4) Locate Bugs

(5) Minimal Scaffolding

(6) Relevant Bugs ??? ??? ??? ??? ???

worth many times over.19 Just not for regression testing.
However, this might well change. After all, formal

verification tools made impressive strides in the 2010s.
If that progress continues, formal verification might well
become an indespensible tool in the parallel programmer’s
validation toolbox.

17.5 Functional Programming for
Parallelism

When I took my first-ever functional-programming class
in the early 1980s, the professor asserted that the side-
effect-free functional-programming style was well-suited
to trivial parallelization and analysis. Thirty years later,
this assertion remains, but mainstream production use of
parallel functional languages is minimal, a state of affairs
that might well stem from this professor’s additional as-
sertion that programs should neither maintain state nor do
I/O. There is niche use of functional languages such as Er-
lang, and multithreaded support has been added to several
other functional languages, but mainstream production
usage remains the province of procedural languages such
as C, C++, Java, and Fortran (usually augmented with
OpenMP, MPI, or, in the case of Fortran, coarrays).

This situation naturally leads to the question “If analy-
sis is the goal, why not transform the procedural language
into a functional language before doing the analysis?”
There are of course a number of objections to this ap-
proach, of which I list but three:

1. Procedural languages often make heavy use of global
variables, which can be updated independently by
different functions, or, worse yet, by multiple threads.
Note that Haskell’s monads were invented to deal

19 For but one example, Promela was used to verify the file system
of none other than the Curiosity Rover. Was your formal verification
tool used on a Mars rover?

with single-threaded global state, and that multi-
threaded access to global state requires additional
violence to the functional model.

2. Multithreaded procedural languages often use syn-
chronization primitives such as locks, atomic opera-
tions, and transactions, which inflict added violence
upon the functional model.

3. Procedural languages can alias function arguments,
for example, by passing a pointer to the same struc-
ture via two different arguments to the same invoca-
tion of a given function. This can result in the func-
tion unknowingly updating that structure via two
different (and possibly overlapping) code sequences,
which greatly complicates analysis.

Of course, given the importance of global state, syn-
chronization primitives, and aliasing, clever functional-
programming experts have proposed any number of at-
tempts to reconcile the function programming model to
them, monads being but one case in point.

Another approach is to compile the parallel procedural
program into a functional program, then to use functional-
programming tools to analyze the result. But it is possible
to do much better than this, given that any real computa-
tion is a large finite-state machine with finite input that
runs for a finite time interval. This means that any real
program can be transformed into an expression, possibly
albeit an impractically large one [DHK12].

However, a number of the low-level kernels of paral-
lel algorithms transform into expressions that are small
enough to fit easily into the memories of modern comput-
ers. If such an expression is coupled with an assertion,
checking to see if the assertion would ever fire becomes
a satisfiability problem. Even though satisfiability prob-
lems are NP-complete, they can often be solved in much
less time than would be required to generate the full state
space. In addition, the solution time appears to be only

17.5. FUNCTIONAL PROGRAMMING FOR PARALLELISM 343

weakly dependent on the underlying memory model, so
that algorithms running on weakly ordered systems can
also be checked [AKT13].

The general approach is to transform the program into
single-static-assignment (SSA) form, so that each assign-
ment to a variable creates a separate version of that vari-
able. This applies to assignments from all the active
threads, so that the resulting expression embodies all pos-
sible executions of the code in question. The addition
of an assertion entails asking whether any combination
of inputs and initial values can result in the assertion fir-
ing, which, as noted above, is exactly the satisfiability
problem.

One possible objection is that it does not gracefully
handle arbitrary looping constructs. However, in many
cases, this can be handled by unrolling the loop a finite
number of times. In addition, perhaps some loops will
also prove amenable to collapse via inductive methods.

Another possible objection is that spinlocks involve
arbitrarily long loops, and any finite unrolling would fail
to capture the full behavior of the spinlock. It turns out
that this objection is easily overcome. Instead of modeling
a full spinlock, model a trylock that attempts to obtain
the lock, and aborts if it fails to immediately do so. The
assertion must then be crafted so as to avoid firing in
cases where a spinlock aborted due to the lock not being
immediately available. Because the logic expression is
independent of time, all possible concurrency behaviors
will be captured via this approach.

A final objection is that this technique is unlikely to
be able to handle a full-sized software artifact such as
the millions of lines of code making up the Linux kernel.
This is likely the case, but the fact remains that exhaustive
validation of each of the much smaller parallel primitives
within the Linux kernel would be quite valuable. And
in fact the researchers spearheading this approach have
applied it to non-trivial real-world code, including the
Tree RCU implementation in the Linux kernel [LMKM16,
KS17a].

It remains to be seen how widely applicable this tech-
nique is, but it is one of the more interesting innovations
in the field of formal verification. Although it might well
be that the functional-programming advocates are at long
last correct in their assertion of the inevitable dominance
of functional programming, it is clearly the case that this
long-touted methodology is starting to see credible com-
petition on its formal-verification home turf. There is
therefore continued reason to doubt the inevitability of
functional-programming dominance.

344 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Ask me no questions, and I’ll tell you no fibs.

“She Stoops to Conquer”, Oliver GoldsmithAppendix A

Important Questions

The following sections discuss some important questions
relating to SMP programming. Each section also shows
how to avoid having to worry about the corresponding
question, which can be extremely important if your goal
is to simply get your SMP code working as quickly and
painlessly as possible—which is an excellent goal, by the
way!

Although the answers to these questions are often quite
a bit less intuitive than they would be in a single-threaded
setting, with a bit of work, they are not that difficult to
understand. If you managed to master recursion, there is
nothing in here that should pose an overwhelming chal-
lenge.

A.1 What Does “After” Mean?

“After” is an intuitive, but surprisingly difficult concept.
An important non-intuitive issue is that code can be de-
layed at any point for any amount of time. Consider
a producing and a consuming thread that communicate
using a global struct with a timestamp “t” and integer
fields “a”, “b”, and “c”. The producer loops recording
the current time (in seconds since 1970 in decimal), then
updating the values of “a”, “b”, and “c”, as shown in
Listing A.1. The consumer code loops, also recording the
current time, but also copying the producer’s timestamp
along with the fields “a”, “b”, and “c”, as shown in List-
ing A.2. At the end of the run, the consumer outputs a list
of anomalous recordings, e.g., where time has appeared
to go backwards.

Quick Quiz A.1: What SMP coding errors can you
see in these examples? See time.c for full code.

One might intuitively expect that the difference be-
tween the producer and consumer timestamps would be
quite small, as it should not take much time for the pro-

Listing A.1: “After” Producer Function
1 /* WARNING: BUGGY CODE. */
2 void *producer(void *ignored)
3 {
4 int i = 0;
5
6 producer_ready = 1;
7 while (!goflag)
8 sched_yield();
9 while (goflag) {

10 ss.t = dgettimeofday();
11 ss.a = ss.c + 1;
12 ss.b = ss.a + 1;
13 ss.c = ss.b + 1;
14 i++;
15 }
16 printf("producer exiting: %d samples\n", i);
17 producer_done = 1;
18 return (NULL);
19 }

ducer to record the timestamps or the values. An excerpt
of some sample output on a dual-core 1 GHz x86 is shown
in Table A.1. Here, the “seq” column is the number of
times through the loop, the “time” column is the time of
the anomaly in seconds, the “delta” column is the num-
ber of seconds the consumer’s timestamp follows that of
the producer (where a negative value indicates that the
consumer has collected its timestamp before the producer
did), and the columns labelled “a”, “b”, and “c” show
the amount that these variables increased since the prior
snapshot collected by the consumer.

Table A.1: “After” Program Sample Output

seq time (seconds) delta a b c

17563: 1152396.251585 (−16.928) 27 27 27
18004: 1152396.252581 (−12.875) 24 24 24
18163: 1152396.252955 (−19.073) 18 18 18
18765: 1152396.254449 (−148.773) 216 216 216
19863: 1152396.256960 (−6.914) 18 18 18
21644: 1152396.260959 (−5.960) 18 18 18
23408: 1152396.264957 (−20.027) 15 15 15

345

346 APPENDIX A. IMPORTANT QUESTIONS

Listing A.2: “After” Consumer Function
1 /* WARNING: BUGGY CODE. */
2 void *consumer(void *ignored)
3 {
4 struct snapshot_consumer curssc;
5 int i = 0;
6 int j = 0;
7
8 consumer_ready = 1;
9 while (ss.t == 0.0) {

10 sched_yield();
11 }
12 while (goflag) {
13 curssc.tc = dgettimeofday();
14 curssc.t = ss.t;
15 curssc.a = ss.a;
16 curssc.b = ss.b;
17 curssc.c = ss.c;
18 curssc.sequence = curseq;
19 curssc.iserror = 0;
20 if ((curssc.t > curssc.tc) ||
21 modgreater(ssc[i].a, curssc.a) ||
22 modgreater(ssc[i].b, curssc.b) ||
23 modgreater(ssc[i].c, curssc.c) ||
24 modgreater(curssc.a, ssc[i].a + maxdelta) ||
25 modgreater(curssc.b, ssc[i].b + maxdelta) ||
26 modgreater(curssc.c, ssc[i].c + maxdelta)) {
27 i++;
28 curssc.iserror = 1;
29 } else if (ssc[i].iserror)
30 i++;
31 ssc[i] = curssc;
32 curseq++;
33 if (i + 1 >= NSNAPS)
34 break;
35 }
36 printf("consumer exited, collected %d items of %d\n",
37 i, curseq);
38 if (ssc[0].iserror)
39 printf("0/%d: %.6f %.6f (%.3f) %d %d %d\n",
40 ssc[0].sequence, ssc[j].t, ssc[j].tc,
41 (ssc[j].tc - ssc[j].t) * 1000000,
42 ssc[j].a, ssc[j].b, ssc[j].c);
43 for (j = 0; j <= i; j++)
44 if (ssc[j].iserror)
45 printf("%d: %.6f (%.3f) %d %d %d\n",
46 ssc[j].sequence,
47 ssc[j].t, (ssc[j].tc - ssc[j].t) * 1000000,
48 ssc[j].a - ssc[j - 1].a,
49 ssc[j].b - ssc[j - 1].b,
50 ssc[j].c - ssc[j - 1].c);
51 consumer_done = 1;
52 }

Why is time going backwards? The number in paren-
theses is the difference in microseconds, with a large
number exceeding 10 microseconds, and one exceeding
even 100 microseconds! Please note that this CPU can
potentially execute more than 100,000 instructions in that
time.

One possible reason is given by the following sequence
of events:

1. Consumer obtains timestamp (Listing A.2, line 13).

2. Consumer is preempted.

3. An arbitrary amount of time passes.

4. Producer obtains timestamp (Listing A.1, line 10).

5. Consumer starts running again, and picks up the
producer’s timestamp (Listing A.2, line 14).

In this scenario, the producer’s timestamp might be an
arbitrary amount of time after the consumer’s timestamp.

How do you avoid agonizing over the meaning of “after”
in your SMP code?

Simply use SMP primitives as designed.
In this example, the easiest fix is to use locking, for

example, acquire a lock in the producer before line 10
in Listing A.1 and in the consumer before line 13 in
Listing A.2. This lock must also be released after line 13
in Listing A.1 and after line 17 in Listing A.2. These locks
cause the code segments in lines 10-13 of Listing A.1 and
in lines 13-17 of Listing A.2 to exclude each other, in
other words, to run atomically with respect to each other.
This is represented in Figure A.1: the locking prevents
any of the boxes of code from overlapping in time, so
that the consumer’s timestamp must be collected after the
prior producer’s timestamp. The segments of code in each
box in this figure are termed “critical sections”; only one
such critical section may be executing at a given time.

ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

curssc.c = ss.c;

curssc.tc = gettimeofday();
curssc.t = ss.t;
curssc.a = ss.a;
curssc.b = ss.b;

ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

Time

Producer

Consumer

Producer

Figure A.1: Effect of Locking on Snapshot Collection

This addition of locking results in output as shown in
Table A.2. Here there are no instances of time going
backwards, instead, there are only cases with more than

A.2. WHAT IS THE DIFFERENCE BETWEEN “CONCURRENT” AND “PARALLEL”? 347

1,000 counts difference between consecutive reads by the
consumer.

Table A.2: Locked “After” Program Sample Output

seq time (seconds) delta a b c

58597: 1156521.556296 (3.815) 1485 1485 1485
403927: 1156523.446636 (2.146) 2583 2583 2583

Quick Quiz A.2: How could there be such a large gap
between successive consumer reads? See timelocked.c
for full code.

In summary, if you acquire an exclusive lock, you know
that anything you do while holding that lock will appear
to happen after anything done by any prior holder of that
lock. No need to worry about which CPU did or did not
execute a memory barrier, no need to worry about the
CPU or compiler reordering operations—life is simple.
Of course, the fact that this locking prevents these two
pieces of code from running concurrently might limit
the program’s ability to gain increased performance on
multiprocessors, possibly resulting in a “safe but slow” sit-
uation. Chapter 6 describes ways of gaining performance
and scalability in many situations.

However, in most cases, if you find yourself worrying
about what happens before or after a given piece of code,
you should take this as a hint to make better use of the
standard primitives. Let these primitives do the worrying
for you.

A.2 What is the Difference Between
“Concurrent” and “Parallel”?

From a classic computing perspective, “concurrent” and
“parallel” are clearly synonyms. However, this has not
stopped many people from drawing distinctions between
the two, and it turns out that these distinctions can be
understood from a couple of different perspectives.

The first perspective treats “parallel” as an abbrevia-
tion for “data parallel”, and treats “concurrent” as pretty
much everything else. From this perspective, in parallel
computing, each partition of the overall problem can pro-
ceed completely independently, with no communication
with other partitions. In this case, little or no coordina-
tion among partitions is required. In contrast, concurrent
computing might well have tight interdependencies, in
the form of contended locks, transactions, or other syn-
chronization mechanisms.

Quick Quiz A.3: Suppose a portion of a program

uses RCU read-side primitives as its only synchronization
mechanism. Is this parallelism or concurrency?

This of course begs the question of why such a distinc-
tion matters, which brings us to the second perspective,
that of the underlying scheduler. Schedulers come in
a wide range of complexities and capabilities, and as a
rough rule of thumb, the more tightly and irregularly a set
of parallel processes communicate, the higher the level of
sophistication is required from the scheduler. As such, par-
allel computing’s avoidance of interdependencies means
that parallel-computing programs run well on the least-
capable schedulers. In fact, a pure parallel-computing
program can run successfully after being arbitrarily sub-
divided and interleaved onto a uniprocessor.1 In contrast,
concurrent-computing programs might well require ex-
treme subtlety on the part of the scheduler.

One could argue that we should simply demand a rea-
sonable level of competence from the scheduler, so that
we could simply ignore any distinctions between paral-
lelism and concurrency. Although this is often a good
strategy, there are important situations where efficiency,
performance, and scalability concerns sharply limit the
level of competence that the scheduler can reasonably
offer. One important example is when the scheduler is
implemented in hardware, as it often is in SIMD units or
GPGPUs. Another example is a workload where the units
of work are quite short, so that even a software-based
scheduler must make hard choices between subtlety on
the one hand and efficiency on the other.

Now, this second perspective can be thought of as mak-
ing the workload match the available scheduler, with par-
allel workloads able to operate on a simple scheduler
and concurrent workloads requiring more sophisticated
schedulers.

Unfortunately, this perspective does not always align
with the dependency-based distinction put forth by the
first perspective. For example, a highly interdependent
lock-based workload with one thread per CPU can make
do with a trivial scheduler because no scheduler decisions
are required. In fact, some workloads of this type can
even be run one after another on a sequential machine.
Therefore, such a workload would be labeled “concurrent”
by the first perspective and “parallel” by many taking the
second perspective.

Quick Quiz A.4: In what part of the second (scheduler-
based) perspective would the lock-based single-thread-
per-CPU workload be considered “concurrent”?

1 Yes, this does mean that parallel-computing programs are best-
suited for sequential execution. Why did you ask?

348 APPENDIX A. IMPORTANT QUESTIONS

Which is just fine. No rule that humankind writes
carries any weight against objective reality, including
the rule dividing multiprocessor programs into categories
such as “concurrent” and “parallel”.

This categorization failure does not mean such rules
are useless, but rather that you should take on a suitably
skeptical frame of mind when attempting to apply them
to new situations. As always, use such rules where they
apply and ignore them otherwise.

In fact, it is likely that new categories will arise in
addition to parallel, concurrent, map-reduce, task-based,
and so on. Some will stand the test of time, but good luck
guessing which!

A.3 What Time Is It?

Uh. When did

you ask?

What time is it?

Figure A.2: What Time Is It?

A key issue with timekeeping on multicore computer
systems is illustrated by Figure A.2. One problem is
that it takes time to read out the time. An instruction
might read from a hardware clock, and might have to
go off-core (or worse yet, off-socket) to complete this
read operation. It might also be necessary to do some
computation on the value read out, for example, to convert
it to the desired format, to apply network time protocol
(NTP) adjustments, and so on. So does the time eventually
returned correspond to the beginning of the resulting time
interval, the end, or somewhere in between?

Worse yet, the thread reading the time might be inter-
rupted or preempted. Furthermore, there will likely be
some computation between reading out the time and the

actual use of the time that has been read out. Both of these
possibilities further extend the interval of uncertainty.

One approach is to read the time twice, and take the
arithmetic mean of the two readings, perhaps one on each
side of the operation being timestamped. The difference
between the two readings is then a measure of uncertainty
of the time at which the intervening operation occurred.

Of course, in many cases, the exact time is not neces-
sary. For example, when printing the time for the benefit
of a human user, we can rely on slow human reflexes to
render internal hardware and software delays irrelevant.
Similarly, if a server needs to timestamp the response to a
client, any time between the reception of the request and
the transmission of the response will do equally well.

Appendix B

“Toy” RCU Implementations

The toy RCU implementations in this appendix are de-
signed not for high performance, practicality, or any kind
of production use,1 but rather for clarity. Nevertheless,
you will need a thorough understanding of Chapters 2, 3,
4, 6, and 9 for even these toy RCU implementations to be
easily understandable.

This appendix provides a series of RCU implemen-
tations in order of increasing sophistication, from the
viewpoint of solving the existence-guarantee problem.
Section B.1 presents a rudimentary RCU implementation
based on simple locking, while Sections B.2 through B.9
present a series of simple RCU implementations based
on locking, reference counters, and free-running counters.
Finally, Section B.10 provides a summary and a list of
desirable RCU properties.

B.1 Lock-Based RCU
Perhaps the simplest RCU implementation leverages lock-
ing, as shown in Listing B.1 (rcu_lock.h and rcu_
lock.c). In this implementation, rcu_read_lock() ac-
quires a global spinlock, rcu_read_unlock() releases
it, and synchronize_rcu() acquires it then immedi-
ately releases it.

Because synchronize_rcu() does not return until
it has acquired (and released) the lock, it cannot return
until all prior RCU read-side critical sections have com-
pleted, thus faithfully implementing RCU semantics. Of
course, only one RCU reader may be in its read-side crit-
ical section at a time, which almost entirely defeats the
purpose of RCU. In addition, the lock operations in rcu_
read_lock() and rcu_read_unlock() are extremely
heavyweight, with read-side overhead ranging from about

1 However, production-quality user-level RCU implementations are
available [Des09b, DMS+12].

100 nanoseconds on a single POWER5 CPU up to more
than 17 microseconds on a 64-CPU system. Worse yet,
these same lock operations permit rcu_read_lock() to
participate in deadlock cycles. Furthermore, in absence
of recursive locks, RCU read-side critical sections cannot
be nested, and, finally, although concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Quick Quiz B.1: Why wouldn’t any deadlock in the
RCU implementation in Listing B.1 also be a deadlock in
any other RCU implementation?

Quick Quiz B.2: Why not simply use reader-writer
locks in the RCU implementation in Listing B.1 in order
to allow RCU readers to proceed in parallel?

It is hard to imagine this implementation being useful
in a production setting, though it does have the virtue of
being implementable in almost any user-level application.
Furthermore, similar implementations having one lock
per CPU or using reader-writer locks have been used in
production in the 2.4 Linux kernel.

A modified version of this one-lock-per-CPU approach,
but instead using one lock per thread, is described in the
next section.

B.2 Per-Thread Lock-Based RCU

Listing B.2 (rcu_lock_percpu.h and rcu_lock_
percpu.c) shows an implementation based on one lock
per thread. The rcu_read_lock() and rcu_read_
unlock() functions acquire and release, respectively, the
current thread’s lock. The synchronize_rcu() function
acquires and releases each thread’s lock in turn. There-
fore, all RCU read-side critical sections running when
synchronize_rcu() starts must have completed before

349

350 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

synchronize_rcu() can return.
This implementation does have the virtue of permitting

concurrent RCU readers, and does avoid the deadlock
condition that can arise with a single global lock. Further-
more, the read-side overhead, though high at roughly 140
nanoseconds, remains at about 140 nanoseconds regard-
less of the number of CPUs. However, the update-side
overhead ranges from about 600 nanoseconds on a single
POWER5 CPU up to more than 100 microseconds on 64
CPUs.

Quick Quiz B.3: Wouldn’t it be cleaner to acquire
all the locks, and then release them all in the loop from
lines 15-18 of Listing B.2? After all, with this change,
there would be a point in time when there were no readers,
simplifying things greatly.

Quick Quiz B.4: Is the implementation shown in List-
ing B.2 free from deadlocks? Why or why not?

Quick Quiz B.5: Isn’t one advantage of the RCU algo-
rithm shown in Listing B.2 that it uses only primitives that
are widely available, for example, in POSIX pthreads?

This approach could be useful in some situations, given
that a similar approach was used in the Linux 2.4 ker-
nel [MM00].

The counter-based RCU implementation described next
overcomes some of the shortcomings of the lock-based
implementation.

B.3 Simple Counter-Based RCU

A slightly more sophisticated RCU implementation is
shown in Listing B.3 (rcu_rcg.h and rcu_rcg.c). This
implementation makes use of a global reference counter
rcu_refcnt defined on line 1. The rcu_read_lock()
primitive atomically increments this counter, then exe-
cutes a memory barrier to ensure that the RCU read-side

Listing B.1: Lock-Based RCU Implementation
1 static void rcu_read_lock(void)
2 {
3 spin_lock(&rcu_gp_lock);
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&rcu_gp_lock);
9 }

10
11 void synchronize_rcu(void)
12 {
13 spin_lock(&rcu_gp_lock);
14 spin_unlock(&rcu_gp_lock);
15 }

Listing B.2: Per-Thread Lock-Based RCU Implementation
1 static void rcu_read_lock(void)
2 {
3 spin_lock(&__get_thread_var(rcu_gp_lock));
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&__get_thread_var(rcu_gp_lock));
9 }

10
11 void synchronize_rcu(void)
12 {
13 int t;
14
15 for_each_running_thread(t) {
16 spin_lock(&per_thread(rcu_gp_lock, t));
17 spin_unlock(&per_thread(rcu_gp_lock, t));
18 }
19 }

Listing B.3: RCU Implementation Using Single Global Refer-
ence Counter

1 atomic_t rcu_refcnt;
2
3 static void rcu_read_lock(void)
4 {
5 atomic_inc(&rcu_refcnt);
6 smp_mb();
7 }
8
9 static void rcu_read_unlock(void)

10 {
11 smp_mb();
12 atomic_dec(&rcu_refcnt);
13 }
14
15 void synchronize_rcu(void)
16 {
17 smp_mb();
18 while (atomic_read(&rcu_refcnt) != 0) {
19 poll(NULL, 0, 10);
20 }
21 smp_mb();
22 }

critical section is ordered after the atomic increment. Sim-
ilarly, rcu_read_unlock() executes a memory barrier
to confine the RCU read-side critical section, then atomi-
cally decrements the counter. The synchronize_rcu()
primitive spins waiting for the reference counter to reach
zero, surrounded by memory barriers. The poll() on
line 19 merely provides pure delay, and from a pure RCU-
semantics point of view could be omitted. Again, once
synchronize_rcu() returns, all prior RCU read-side
critical sections are guaranteed to have completed.

In happy contrast to the lock-based implementation
shown in Section B.1, this implementation allows par-
allel execution of RCU read-side critical sections. In
happy contrast to the per-thread lock-based implementa-
tion shown in Section B.2, it also allows them to be nested.
In addition, the rcu_read_lock() primitive cannot pos-

B.4. STARVATION-FREE COUNTER-BASED RCU 351

sibly participate in deadlock cycles, as it never spins nor
blocks.

Quick Quiz B.6: But what if you hold a lock across a
call to synchronize_rcu(), and then acquire that same
lock within an RCU read-side critical section?

However, this implementations still has some seri-
ous shortcomings. First, the atomic operations in rcu_
read_lock() and rcu_read_unlock() are still quite
heavyweight, with read-side overhead ranging from about
100 nanoseconds on a single POWER5 CPU up to almost
40 microseconds on a 64-CPU system. This means that
the RCU read-side critical sections have to be extremely
long in order to get any real read-side parallelism. On
the other hand, in the absence of readers, grace periods
elapse in about 40 nanoseconds, many orders of magni-
tude faster than production-quality implementations in
the Linux kernel.

Quick Quiz B.7: How can the grace period possibly
elapse in 40 nanoseconds when synchronize_rcu()
contains a 10-millisecond delay?

Second, if there are many concurrent rcu_read_
lock() and rcu_read_unlock() operations, there will
be extreme memory contention on rcu_refcnt, resulting
in expensive cache misses. Both of these first two short-
comings largely defeat a major purpose of RCU, namely
to provide low-overhead read-side synchronization primi-
tives.

Finally, a large number of RCU readers with long read-
side critical sections could prevent synchronize_rcu()
from ever completing, as the global counter might never
reach zero. This could result in starvation of RCU updates,
which is of course unacceptable in production settings.

Quick Quiz B.8: Why not simply make rcu_read_
lock() wait when a concurrent synchronize_rcu()
has been waiting too long in the RCU implementation
in Listing B.3? Wouldn’t that prevent synchronize_
rcu() from starving?

Therefore, it is still hard to imagine this implementa-
tion being useful in a production setting, though it has
a bit more potential than the lock-based mechanism, for
example, as an RCU implementation suitable for a high-
stress debugging environment. The next section describes
a variation on the reference-counting scheme that is more
favorable to writers.

Listing B.4: RCU Global Reference-Count Pair Data
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 atomic_t rcu_refcnt[2];
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Listing B.5: RCU Read-Side Using Global Reference-Count
Pair

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;

10 atomic_inc(&rcu_refcnt[i]);
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 atomic_dec(&rcu_refcnt[i]);
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

B.4 Starvation-Free Counter-
Based RCU

Listing B.5 (rcu_rcgp.h) shows the read-side primitives
of an RCU implementation that uses a pair of reference
counters (rcu_refcnt[]), along with a global index that
selects one counter out of the pair (rcu_idx), a per-
thread nesting counter rcu_nesting, a per-thread snap-
shot of the global index (rcu_read_idx), and a global
lock (rcu_gp_lock), which are themselves shown in
Listing B.4.

Design It is the two-element rcu_refcnt[] array that
provides the freedom from starvation. The key point is
that synchronize_rcu() is only required to wait for
pre-existing readers. If a new reader starts after a given
instance of synchronize_rcu() has already begun exe-
cution, then that instance of synchronize_rcu() need
not wait on that new reader. At any given time, when
a given reader enters its RCU read-side critical section
via rcu_read_lock(), it increments the element of the

352 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

rcu_refcnt[] array indicated by the rcu_idx variable.
When that same reader exits its RCU read-side critical sec-
tion via rcu_read_unlock(), it decrements whichever
element it incremented, ignoring any possible subsequent
changes to the rcu_idx value.

This arrangement means that synchronize_rcu()
can avoid starvation by complementing the value of rcu_
idx, as in rcu_idx = !rcu_idx. Suppose that the old
value of rcu_idx was zero, so that the new value is one.
New readers that arrive after the complement operation
will increment rcu_refcnt[1], while the old readers
that previously incremented rcu_refcnt[0] will decre-
ment rcu_refcnt[0] when they exit their RCU read-
side critical sections. This means that the value of rcu_
refcnt[0] will no longer be incremented, and thus will
be monotonically decreasing.2 This means that all that
synchronize_rcu() need do is wait for the value of
rcu_refcnt[0] to reach zero.

With the background, we are ready to look at the im-
plementation of the actual primitives.

Implementation The rcu_read_lock() primitive
atomically increments the member of the rcu_refcnt[]
pair indexed by rcu_idx, and keeps a snapshot of this in-
dex in the per-thread variable rcu_read_idx. The rcu_
read_unlock() primitive then atomically decrements
whichever counter of the pair that the corresponding rcu_
read_lock() incremented. However, because only one
value of rcu_idx is remembered per thread, additional
measures must be taken to permit nesting. These addi-
tional measures use the per-thread rcu_nesting variable
to track nesting.

To make all this work, line 6 of rcu_read_lock() in
Listing B.5 picks up the current thread’s instance of rcu_
nesting, and if line 7 finds that this is the outermost
rcu_read_lock(), then lines 8-10 pick up the current
value of rcu_idx, save it in this thread’s instance of
rcu_read_idx, and atomically increment the selected
element of rcu_refcnt. Regardless of the value of rcu_
nesting, line 12 increments it. Line 13 executes a mem-
ory barrier to ensure that the RCU read-side critical sec-
tion does not bleed out before the rcu_read_lock()
code.

Similarly, the rcu_read_unlock() function executes
a memory barrier at line 21 to ensure that the RCU read-
side critical section does not bleed out after the rcu_

2 There is a race condition that this “monotonically decreasing”
statement ignores. This race condition will be dealt with by the code for
synchronize_rcu(). In the meantime, I suggest suspending disbelief.

Listing B.6: RCU Update Using Global Reference-Count Pair
1 void synchronize_rcu(void)
2 {
3 int i;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 i = atomic_read(&rcu_idx);
8 atomic_set(&rcu_idx, !i);
9 smp_mb();

10 while (atomic_read(&rcu_refcnt[i]) != 0) {
11 poll(NULL, 0, 10);
12 }
13 smp_mb();
14 atomic_set(&rcu_idx, i);
15 smp_mb();
16 while (atomic_read(&rcu_refcnt[!i]) != 0) {
17 poll(NULL, 0, 10);
18 }
19 spin_unlock(&rcu_gp_lock);
20 smp_mb();
21 }

read_unlock() code. Line 22 picks up this thread’s
instance of rcu_nesting, and if line 23 finds that this is
the outermost rcu_read_unlock(), then lines 24 and 25
pick up this thread’s instance of rcu_read_idx (saved by
the outermost rcu_read_lock()) and atomically decre-
ments the selected element of rcu_refcnt. Regardless
of the nesting level, line 27 decrements this thread’s in-
stance of rcu_nesting.

Listing B.6 (rcu_rcpg.c) shows the corresponding
synchronize_rcu() implementation. Lines 6 and 19
acquire and release rcu_gp_lock in order to prevent
more than one concurrent instance of synchronize_
rcu(). Lines 7-8 pick up the value of rcu_idx and com-
plement it, respectively, so that subsequent instances of
rcu_read_lock() will use a different element of rcu_
refcnt than did preceding instances. Lines 10-12 then
wait for the prior element of rcu_refcnt to reach zero,
with the memory barrier on line 9 ensuring that the check
of rcu_refcnt is not reordered to precede the comple-
menting of rcu_idx. Lines 13-18 repeat this process,
and line 20 ensures that any subsequent reclamation op-
erations are not reordered to precede the checking of
rcu_refcnt.

Quick Quiz B.9: Why the memory barrier on line 5 of
synchronize_rcu() in Listing B.6 given that there is a
spin-lock acquisition immediately after?

Quick Quiz B.10: Why is the counter flipped twice
in Listing B.6? Shouldn’t a single flip-and-wait cycle be
sufficient?

This implementation avoids the update-starvation is-
sues that could occur in the single-counter implementation
shown in Listing B.3.

B.5. SCALABLE COUNTER-BASED RCU 353

Discussion There are still some serious shortcomings.
First, the atomic operations in rcu_read_lock() and
rcu_read_unlock() are still quite heavyweight. In fact,
they are more complex than those of the single-counter
variant shown in Listing B.3, with the read-side primitives
consuming about 150 nanoseconds on a single POWER5
CPU and almost 40 microseconds on a 64-CPU system.
The update-side synchronize_rcu() primitive is more
costly as well, ranging from about 200 nanoseconds on
a single POWER5 CPU to more than 40 microseconds
on a 64-CPU system. This means that the RCU read-side
critical sections have to be extremely long in order to get
any real read-side parallelism.

Second, if there are many concurrent rcu_read_
lock() and rcu_read_unlock() operations, there will
be extreme memory contention on the rcu_refcnt ele-
ments, resulting in expensive cache misses. This further
extends the RCU read-side critical-section duration re-
quired to provide parallel read-side access. These first
two shortcomings defeat the purpose of RCU in most
situations.

Third, the need to flip rcu_idx twice imposes sub-
stantial overhead on updates, especially if there are large
numbers of threads.

Finally, despite the fact that concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Quick Quiz B.11: Given that atomic increment and
decrement are so expensive, why not just use non-atomic
increment on line 10 and a non-atomic decrement on
line 25 of Listing B.5?

Despite these shortcomings, one could imagine this
variant of RCU being used on small tightly coupled multi-
processors, perhaps as a memory-conserving implementa-
tion that maintains API compatibility with more complex
implementations. However, it would not likely scale well
beyond a few CPUs.

The next section describes yet another variation on the
reference-counting scheme that provides greatly improved
read-side performance and scalability.

B.5 Scalable Counter-Based RCU
Listing B.8 (rcu_rcpl.h) shows the read-side primitives
of an RCU implementation that uses per-thread pairs of
reference counters. This implementation is quite similar
to that shown in Listing B.5, the only difference being
that rcu_refcnt is now a per-thread array (as shown

Listing B.7: RCU Per-Thread Reference-Count Pair Data
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Listing B.8: RCU Read-Side Using Per-Thread Reference-
Count Pair

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;

10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

in Listing B.7). As with the algorithm in the previous
section, use of this two-element array prevents readers
from starving updaters. One benefit of per-thread rcu_
refcnt[] array is that the rcu_read_lock() and rcu_
read_unlock() primitives no longer perform atomic
operations.

Quick Quiz B.12: Come off it! We can see the
atomic_read() primitive in rcu_read_lock()!!! So
why are you trying to pretend that rcu_read_lock()
contains no atomic operations???

Listing B.9 (rcu_rcpl.c) shows the implementa-
tion of synchronize_rcu(), along with a helper
function named flip_counter_and_wait(). The
synchronize_rcu() function resembles that shown in
Listing B.6, except that the repeated counter flip is re-
placed by a pair of calls on lines 22 and 23 to the new
helper function.

The new flip_counter_and_wait() function up-
dates the rcu_idx variable on line 5, executes a memory
barrier on line 6, then lines 7-11 spin on each thread’s
prior rcu_refcnt element, waiting for it to go to zero.

354 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Listing B.9: RCU Update Using Per-Thread Reference-Count
Pair

1 static void flip_counter_and_wait(int i)
2 {
3 int t;
4
5 atomic_set(&rcu_idx, !i);
6 smp_mb();
7 for_each_thread(t) {
8 while (per_thread(rcu_refcnt, t)[i] != 0) {
9 poll(NULL, 0, 10);

10 }
11 }
12 smp_mb();
13 }
14
15 void synchronize_rcu(void)
16 {
17 int i;
18
19 smp_mb();
20 spin_lock(&rcu_gp_lock);
21 i = atomic_read(&rcu_idx);
22 flip_counter_and_wait(i);
23 flip_counter_and_wait(!i);
24 spin_unlock(&rcu_gp_lock);
25 smp_mb();
26 }

Once all such elements have gone to zero, it executes
another memory barrier on line 12 and returns.

This RCU implementation imposes important new re-
quirements on its software environment, namely, (1) that
it be possible to declare per-thread variables, (2) that these
per-thread variables be accessible from other threads, and
(3) that it is possible to enumerate all threads. These
requirements can be met in almost all software environ-
ments, but often result in fixed upper bounds on the num-
ber of threads. More-complex implementations might
avoid such bounds, for example, by using expandable
hash tables. Such implementations might dynamically
track threads, for example, by adding them on their first
call to rcu_read_lock().

Quick Quiz B.13: Great, if we have N threads, we
can have 2N ten-millisecond waits (one set per flip_
counter_and_wait() invocation, and even that as-
sumes that we wait only once for each thread. Don’t
we need the grace period to complete much more quickly?

This implementation still has several shortcomings.
First, the need to flip rcu_idx twice imposes substantial
overhead on updates, especially if there are large numbers
of threads.

Second, synchronize_rcu() must now examine a
number of variables that increases linearly with the num-
ber of threads, imposing substantial overhead on applica-
tions with large numbers of threads.

Listing B.10: RCU Read-Side Using Per-Thread Reference-
Count Pair and Shared Update Data

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 long rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Third, as before, although concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Finally, as noted in the text, the need for per-thread
variables and for enumerating threads may be problematic
in some software environments.

That said, the read-side primitives scale very nicely,
requiring about 115 nanoseconds regardless of whether
running on a single-CPU or a 64-CPU POWER5 system.
As noted above, the synchronize_rcu() primitive does
not scale, ranging in overhead from almost a microsecond
on a single POWER5 CPU up to almost 200 microseconds
on a 64-CPU system. This implementation could conceiv-
ably form the basis for a production-quality user-level
RCU implementation.

The next section describes an algorithm permitting
more efficient concurrent RCU updates.

B.6 Scalable Counter-Based RCU
With Shared Grace Periods

Listing B.11 (rcu_rcpls.h) shows the read-side primi-
tives for an RCU implementation using per-thread refer-
ence count pairs, as before, but permitting updates to share
grace periods. The main difference from the earlier imple-
mentation shown in Listing B.8 is that rcu_idx is now a
long that counts freely, so that line 8 of Listing B.11 must
mask off the low-order bit. We also switched from us-
ing atomic_read() and atomic_set() to using READ_
ONCE(). The data is also quite similar, as shown in List-
ing B.10, with rcu_idx now being a long instead of an
atomic_t.

Listing B.12 (rcu_rcpls.c) shows the implemen-
tation of synchronize_rcu() and its helper function
flip_counter_and_wait(). These are similar to those
in Listing B.9. The differences in flip_counter_and_
wait() include:

1. Line 6 uses WRITE_ONCE() instead of atomic_
set(), and increments rather than complementing.

B.6. SCALABLE COUNTER-BASED RCU WITH SHARED GRACE PERIODS 355

Listing B.11: RCU Read-Side Using Per-Thread Reference-
Count Pair and Shared Update

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = READ_ONCE(rcu_idx) & 0x1;
9 __get_thread_var(rcu_read_idx) = i;

10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Listing B.12: RCU Shared Update Using Per-Thread
Reference-Count Pair

1 static void flip_counter_and_wait(int ctr)
2 {
3 int i;
4 int t;
5
6 WRITE_ONCE(rcu_idx, ctr + 1);
7 i = ctr & 0x1;
8 smp_mb();
9 for_each_thread(t) {

10 while (per_thread(rcu_refcnt, t)[i] != 0) {
11 poll(NULL, 0, 10);
12 }
13 }
14 smp_mb();
15 }
16
17 void synchronize_rcu(void)
18 {
19 int ctr;
20 int oldctr;
21
22 smp_mb();
23 oldctr = READ_ONCE(rcu_idx);
24 smp_mb();
25 spin_lock(&rcu_gp_lock);
26 ctr = READ_ONCE(rcu_idx);
27 if (ctr - oldctr >= 3) {
28 spin_unlock(&rcu_gp_lock);
29 smp_mb();
30 return;
31 }
32 flip_counter_and_wait(ctr);
33 if (ctr - oldctr < 2)
34 flip_counter_and_wait(ctr + 1);
35 spin_unlock(&rcu_gp_lock);
36 smp_mb();
37 }

2. A new line 7 masks the counter down to its bottom
bit.

The changes to synchronize_rcu() are more perva-
sive:

1. There is a new oldctr local variable that cap-
tures the pre-lock-acquisition value of rcu_idx on
line 23.

2. Line 26 uses READ_ONCE() instead of atomic_
read().

3. Lines 27-30 check to see if at least three counter flips
were performed by other threads while the lock was
being acquired, and, if so, releases the lock, does a
memory barrier, and returns. In this case, there were
two full waits for the counters to go to zero, so those
other threads already did all the required work.

4. At lines 33-34, flip_counter_and_wait() is
only invoked a second time if there were fewer than
two counter flips while the lock was being acquired.
On the other hand, if there were two counter flips,
some other thread did one full wait for all the coun-
ters to go to zero, so only one more is required.

With this approach, if an arbitrarily large number of
threads invoke synchronize_rcu() concurrently, with
one CPU for each thread, there will be a total of only
three waits for counters to go to zero.

Despite the improvements, this implementation of RCU
still has a few shortcomings. First, as before, the need
to flip rcu_idx twice imposes substantial overhead on
updates, especially if there are large numbers of threads.

Second, each updater still acquires rcu_gp_lock,
even if there is no work to be done. This can result in a
severe scalability limitation if there are large numbers of
concurrent updates. There are ways of avoiding this, as
was done in a production-quality real-time implementa-
tion of RCU for the Linux kernel [McK07a].

Third, this implementation requires per-thread vari-
ables and the ability to enumerate threads, which again
can be problematic in some software environments.

Finally, on 32-bit machines, a given update thread
might be preempted long enough for the rcu_idx counter
to overflow. This could cause such a thread to force an
unnecessary pair of counter flips. However, even if each
grace period took only one microsecond, the offending
thread would need to be preempted for more than an hour,
in which case an extra pair of counter flips is likely the
least of your worries.

356 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Listing B.13: Data for Free-Running Counter Using RCU
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_gp);
4 DEFINE_PER_THREAD(long, rcu_reader_gp_snap);

As with the implementation described in Section B.3,
the read-side primitives scale extremely well, incurring
roughly 115 nanoseconds of overhead regardless of the
number of CPUs. The synchronize_rcu() primitive
is still expensive, ranging from about one microsecond
up to about 16 microseconds. This is nevertheless much
cheaper than the roughly 200 microseconds incurred by
the implementation in Section B.5. So, despite its short-
comings, one could imagine this RCU implementation
being used in production in real-life applications.

Quick Quiz B.14: All of these toy RCU implemen-
tations have either atomic operations in rcu_read_
lock() and rcu_read_unlock(), or synchronize_
rcu() overhead that increases linearly with the number
of threads. Under what circumstances could an RCU im-
plementation enjoy light-weight implementations for all
three of these primitives, all having deterministic (O (1))
overheads and latencies?

Referring back to Listing B.11, we see that there is
one global-variable access and no fewer than four ac-
cesses to thread-local variables. Given the relatively high
cost of thread-local accesses on systems implementing
POSIX threads, it is tempting to collapse the three thread-
local variables into a single structure, permitting rcu_
read_lock() and rcu_read_unlock() to access their
thread-local data with a single thread-local-storage access.
However, an even better approach would be to reduce the
number of thread-local accesses to one, as is done in the
next section.

B.7 RCU Based on Free-Running
Counter

Listing B.14 (rcu.h and rcu.c) shows an RCU imple-
mentation based on a single global free-running counter
that takes on only even-numbered values, with data shown
in Listing B.13. The resulting rcu_read_lock() imple-
mentation is extremely straightforward. Lines 3 and 4
simply add one to the global free-running rcu_gp_ctr
variable and stores the resulting odd-numbered value into
the rcu_reader_gp per-thread variable. Line 5 executes
a memory barrier to prevent the content of the subsequent
RCU read-side critical section from “leaking out”.

Listing B.14: Free-Running Counter Using RCU
1 static void rcu_read_lock(void)
2 {
3 __get_thread_var(rcu_reader_gp) =
4 ACCESS_ONCE(rcu_gp_ctr) + 1;
5 smp_mb();
6 }
7
8 static void rcu_read_unlock(void)
9 {

10 smp_mb();
11 __get_thread_var(rcu_reader_gp) =
12 ACCESS_ONCE(rcu_gp_ctr);
13 }
14
15 void synchronize_rcu(void)
16 {
17 int t;
18
19 smp_mb();
20 spin_lock(&rcu_gp_lock);
21 ACCESS_ONCE(rcu_gp_ctr) += 2;
22 smp_mb();
23 for_each_thread(t) {
24 while ((per_thread(rcu_reader_gp, t) & 0x1) &&
25 ((per_thread(rcu_reader_gp, t) -
26 ACCESS_ONCE(rcu_gp_ctr)) < 0)) {
27 poll(NULL, 0, 10);
28 }
29 }
30 spin_unlock(&rcu_gp_lock);
31 smp_mb();
32 }

The rcu_read_unlock() implementation is similar.
Line 10 executes a memory barrier, again to prevent the
prior RCU read-side critical section from “leaking out”.
Lines 11 and 12 then copy the rcu_gp_ctr global vari-
able to the rcu_reader_gp per-thread variable, leaving
this per-thread variable with an even-numbered value so
that a concurrent instance of synchronize_rcu() will
know to ignore it.

Quick Quiz B.15: If any even value is sufficient to tell
synchronize_rcu() to ignore a given task, why don’t
lines 10 and 11 of Listing B.14 simply assign zero to
rcu_reader_gp?

Thus, synchronize_rcu() could wait for all of the
per-thread rcu_reader_gp variables to take on even-
numbered values. However, it is possible to do much
better than that because synchronize_rcu() need only
wait on pre-existing RCU read-side critical sections.
Line 19 executes a memory barrier to prevent prior ma-
nipulations of RCU-protected data structures from being
reordered (by either the CPU or the compiler) to follow
the increment on line 21. Line 20 acquires the rcu_
gp_lock (and line 30 releases it) in order to prevent
multiple synchronize_rcu() instances from running
concurrently. Line 21 then increments the global rcu_
gp_ctr variable by two, so that all pre-existing RCU

B.8. NESTABLE RCU BASED ON FREE-RUNNING COUNTER 357

read-side critical sections will have corresponding per-
thread rcu_reader_gp variables with values less than
that of rcu_gp_ctr, modulo the machine’s word size.
Recall also that threads with even-numbered values of
rcu_reader_gp are not in an RCU read-side critical sec-
tion, so that lines 23-29 scan the rcu_reader_gp values
until they all are either even (line 24) or are greater than
the global rcu_gp_ctr (lines 25-26). Line 27 blocks
for a short period of time to wait for a pre-existing RCU
read-side critical section, but this can be replaced with a
spin-loop if grace-period latency is of the essence. Finally,
the memory barrier at line 31 ensures that any subsequent
destruction will not be reordered into the preceding loop.

Quick Quiz B.16: Why are the memory barriers on
lines 19 and 31 of Listing B.14 needed? Aren’t the mem-
ory barriers inherent in the locking primitives on lines 20
and 30 sufficient?

This approach achieves much better read-side perfor-
mance, incurring roughly 63 nanoseconds of overhead
regardless of the number of POWER5 CPUs. Updates in-
cur more overhead, ranging from about 500 nanoseconds
on a single POWER5 CPU to more than 100 microseconds
on 64 such CPUs.

Quick Quiz B.17: Couldn’t the update-side batching
optimization described in Section B.6 be applied to the
implementation shown in Listing B.14?

This implementation suffers from some serious short-
comings in addition to the high update-side overhead
noted earlier. First, it is no longer permissible to nest
RCU read-side critical sections, a topic that is taken up
in the next section. Second, if a reader is preempted at
line 3 of Listing B.14 after fetching from rcu_gp_ctr
but before storing to rcu_reader_gp, and if the rcu_
gp_ctr counter then runs through more than half but less
than all of its possible values, then synchronize_rcu()
will ignore the subsequent RCU read-side critical sec-
tion. Third and finally, this implementation requires that
the enclosing software environment be able to enumerate
threads and maintain per-thread variables.

Quick Quiz B.18: Is the possibility of readers being
preempted in lines 3-4 of Listing B.14 a real problem,
in other words, is there a real sequence of events that
could lead to failure? If not, why not? If so, what is the
sequence of events, and how can the failure be addressed?

Listing B.15: Data for Nestable RCU Using a Free-Running
Counter

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 #define RCU_GP_CTR_SHIFT 7
3 #define RCU_GP_CTR_BOTTOM_BIT (1 << RCU_GP_CTR_SHIFT)
4 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)
5 long rcu_gp_ctr = 0;
6 DEFINE_PER_THREAD(long, rcu_reader_gp);

Listing B.16: Nestable RCU Using a Free-Running Counter
1 static void rcu_read_lock(void)
2 {
3 long tmp;
4 long *rrgp;
5
6 rrgp = &__get_thread_var(rcu_reader_gp);
7 tmp = *rrgp;
8 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
9 tmp = ACCESS_ONCE(rcu_gp_ctr);

10 tmp++;
11 *rrgp = tmp;
12 smp_mb();
13 }
14
15 static void rcu_read_unlock(void)
16 {
17 long tmp;
18
19 smp_mb();
20 __get_thread_var(rcu_reader_gp)--;
21 }
22
23 void synchronize_rcu(void)
24 {
25 int t;
26
27 smp_mb();
28 spin_lock(&rcu_gp_lock);
29 ACCESS_ONCE(rcu_gp_ctr) +=
30 RCU_GP_CTR_BOTTOM_BIT;
31 smp_mb();
32 for_each_thread(t) {
33 while (rcu_gp_ongoing(t) &&
34 ((per_thread(rcu_reader_gp, t) -
35 rcu_gp_ctr) < 0)) {
36 poll(NULL, 0, 10);
37 }
38 }
39 spin_unlock(&rcu_gp_lock);
40 smp_mb();
41 }

B.8 Nestable RCU Based on Free-
Running Counter

Listing B.16 (rcu_nest.h and rcu_nest.c) show an
RCU implementation based on a single global free-
running counter, but that permits nesting of RCU read-
side critical sections. This nestability is accomplished
by reserving the low-order bits of the global rcu_gp_
ctr to count nesting, using the definitions shown in List-
ing B.15. This is a generalization of the scheme in Sec-
tion B.7, which can be thought of as having a single
low-order bit reserved for counting nesting depth. Two

358 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

C-preprocessor macros are used to arrange this, RCU_GP_
CTR_NEST_MASK and RCU_GP_CTR_BOTTOM_BIT. These
are related: RCU_GP_CTR_NEST_MASK=RCU_GP_CTR_
BOTTOM_BIT-1. The RCU_GP_CTR_BOTTOM_BIT macro
contains a single bit that is positioned just above the
bits reserved for counting nesting, and the RCU_GP_CTR_
NEST_MASK has all one bits covering the region of rcu_
gp_ctr used to count nesting. Obviously, these two C-
preprocessor macros must reserve enough of the low-
order bits of the counter to permit the maximum required
nesting of RCU read-side critical sections, and this imple-
mentation reserves seven bits, for a maximum RCU read-
side critical-section nesting depth of 127, which should
be well in excess of that needed by most applications.

The resulting rcu_read_lock() implementation is
still reasonably straightforward. Line 6 places a pointer
to this thread’s instance of rcu_reader_gp into the lo-
cal variable rrgp, minimizing the number of expensive
calls to the pthreads thread-local-state API. Line 7 records
the current value of rcu_reader_gp into another local
variable tmp, and line 8 checks to see if the low-order
bits are zero, which would indicate that this is the outer-
most rcu_read_lock(). If so, line 9 places the global
rcu_gp_ctr into tmp because the current value previ-
ously fetched by line 7 is likely to be obsolete. In either
case, line 10 increments the nesting depth, which you
will recall is stored in the seven low-order bits of the
counter. Line 11 stores the updated counter back into this
thread’s instance of rcu_reader_gp, and, finally, line 12
executes a memory barrier to prevent the RCU read-side
critical section from bleeding out into the code preceding
the call to rcu_read_lock().

In other words, this implementation of rcu_read_
lock() picks up a copy of the global rcu_gp_ctr unless
the current invocation of rcu_read_lock() is nested
within an RCU read-side critical section, in which case
it instead fetches the contents of the current thread’s in-
stance of rcu_reader_gp. Either way, it increments
whatever value it fetched in order to record an additional
nesting level, and stores the result in the current thread’s
instance of rcu_reader_gp.

Interestingly enough, despite their rcu_read_lock()
differences, the implementation of rcu_read_unlock()
is broadly similar to that shown in Section B.7. Line 19 ex-
ecutes a memory barrier in order to prevent the RCU read-
side critical section from bleeding out into code following
the call to rcu_read_unlock(), and line 20 decrements
this thread’s instance of rcu_reader_gp, which has the
effect of decrementing the nesting count contained in

Listing B.17: Data for Quiescent-State-Based RCU
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_qs_gp);

rcu_reader_gp’s low-order bits. Debugging versions of
this primitive would check (before decrementing!) that
these low-order bits were non-zero.

The implementation of synchronize_rcu() is quite
similar to that shown in Section B.7. There are two dif-
ferences. The first is that lines 29 and 30 adds RCU_GP_
CTR_BOTTOM_BIT to the global rcu_gp_ctr instead of
adding the constant “2”, and the second is that the com-
parison on line 33 has been abstracted out to a separate
function, where it checks the bit indicated by RCU_GP_
CTR_BOTTOM_BIT instead of unconditionally checking
the low-order bit.

This approach achieves read-side performance almost
equal to that shown in Section B.7, incurring roughly
65 nanoseconds of overhead regardless of the number
of POWER5 CPUs. Updates again incur more over-
head, ranging from about 600 nanoseconds on a single
POWER5 CPU to more than 100 microseconds on 64
such CPUs.

Quick Quiz B.19: Why not simply maintain a separate
per-thread nesting-level variable, as was done in previ-
ous section, rather than having all this complicated bit
manipulation?

This implementation suffers from the same shortcom-
ings as does that of Section B.7, except that nesting of
RCU read-side critical sections is now permitted. In addi-
tion, on 32-bit systems, this approach shortens the time re-
quired to overflow the global rcu_gp_ctr variable. The
following section shows one way to greatly increase the
time required for overflow to occur, while greatly reduc-
ing read-side overhead.

Quick Quiz B.20: Given the algorithm shown in List-
ing B.16, how could you double the time required to
overflow the global rcu_gp_ctr?

Quick Quiz B.21: Again, given the algorithm shown
in Listing B.16, is counter overflow fatal? Why or why
not? If it is fatal, what can be done to fix it?

B.9 RCU Based on Quiescent
States

Listing B.18 (rcu_qs.h) shows the read-side primitives
used to construct a user-level implementation of RCU

B.9. RCU BASED ON QUIESCENT STATES 359

Listing B.18: Quiescent-State-Based RCU Read Side
1 static void rcu_read_lock(void)
2 {
3 }
4
5 static void rcu_read_unlock(void)
6 {
7 }
8
9 rcu_quiescent_state(void)

10 {
11 smp_mb();
12 __get_thread_var(rcu_reader_qs_gp) =
13 ACCESS_ONCE(rcu_gp_ctr) + 1;
14 smp_mb();
15 }
16
17 static void rcu_thread_offline(void)
18 {
19 smp_mb();
20 __get_thread_var(rcu_reader_qs_gp) =
21 ACCESS_ONCE(rcu_gp_ctr);
22 smp_mb();
23 }
24
25 static void rcu_thread_online(void)
26 {
27 rcu_quiescent_state();
28 }

based on quiescent states, with the data shown in List-
ing B.17. As can be seen from lines 1-7 in the listing,
the rcu_read_lock() and rcu_read_unlock() prim-
itives do nothing, and can in fact be expected to be inlined
and optimized away, as they are in server builds of the
Linux kernel. This is due to the fact that quiescent-state-
based RCU implementations approximate the extents of
RCU read-side critical sections using the aforementioned
quiescent states. Each of these quiescent states contains a
call to rcu_quiescent_state(), which is shown from
lines 9-15 in the listing. Threads entering extended quies-
cent states (for example, when blocking) may instead call
rcu_thread_offline() (lines 17-23) when entering
an extended quiescent state and then call rcu_thread_
online() (lines 25-28) when leaving it. As such,
rcu_thread_online() is analogous to rcu_read_
lock() and rcu_thread_offline() is analogous to
rcu_read_unlock(). In addition, rcu_quiescent_
state() can be thought of as a rcu_thread_online()
immediately followed by a rcu_thread_offline().3

It is illegal to invoke rcu_quiescent_state(), rcu_
thread_offline(), or rcu_thread_online() from
an RCU read-side critical section.

In rcu_quiescent_state(), line 11 executes a

3 Although the code in the listing is consistent with rcu_
quiescent_state() being the same as rcu_thread_online() im-
mediately followed by rcu_thread_offline(), this relationship is
obscured by performance optimizations.

memory barrier to prevent any code prior to the qui-
escent state (including possible RCU read-side critical
sections) from being reordered into the quiescent state.
Lines 12-13 pick up a copy of the global rcu_gp_ctr,
using ACCESS_ONCE() to ensure that the compiler does
not employ any optimizations that would result in rcu_
gp_ctr being fetched more than once, and then adds one
to the value fetched and stores it into the per-thread rcu_
reader_qs_gp variable, so that any concurrent instance
of synchronize_rcu() will see an odd-numbered value,
thus becoming aware that a new RCU read-side critical
section has started. Instances of synchronize_rcu()
that are waiting on older RCU read-side critical sections
will thus know to ignore this new one. Finally, line 14
executes a memory barrier, which prevents subsequent
code (including a possible RCU read-side critical section)
from being re-ordered with the lines 12-13.

Quick Quiz B.22: Doesn’t the additional memory bar-
rier shown on line 14 of Listing B.18 greatly increase the
overhead of rcu_quiescent_state?

Some applications might use RCU only occasionally,
but use it very heavily when they do use it. Such ap-
plications might choose to use rcu_thread_online()
when starting to use RCU and rcu_thread_offline()
when no longer using RCU. The time between a call to
rcu_thread_offline() and a subsequent call to rcu_
thread_online() is an extended quiescent state, so that
RCU will not expect explicit quiescent states to be regis-
tered during this time.

The rcu_thread_offline() function simply sets the
per-thread rcu_reader_qs_gp variable to the current
value of rcu_gp_ctr, which has an even-numbered value.
Any concurrent instances of synchronize_rcu() will
thus know to ignore this thread.

Quick Quiz B.23: Why are the two memory barriers
on lines 19 and 22 of Listing B.18 needed?

The rcu_thread_online() function simply invokes
rcu_quiescent_state(), thus marking the end of the
extended quiescent state.

Listing B.19 (rcu_qs.c) shows the implementation of
synchronize_rcu(), which is quite similar to that of
the preceding sections.

This implementation has blazingly fast read-side primi-
tives, with an rcu_read_lock()-rcu_read_unlock()
round trip incurring an overhead of roughly 50 picosec-
onds. The synchronize_rcu() overhead ranges from
about 600 nanoseconds on a single-CPU POWER5 sys-
tem up to more than 100 microseconds on a 64-CPU

360 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Listing B.19: RCU Update Side Using Quiescent States
1 void synchronize_rcu(void)
2 {
3 int t;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 rcu_gp_ctr += 2;
8 smp_mb();
9 for_each_thread(t) {

10 while (rcu_gp_ongoing(t) &&
11 ((per_thread(rcu_reader_qs_gp, t) -
12 rcu_gp_ctr) < 0)) {
13 poll(NULL, 0, 10);
14 }
15 }
16 spin_unlock(&rcu_gp_lock);
17 smp_mb();
18 }

system.
Quick Quiz B.24: To be sure, the clock frequencies

of POWER systems in 2008 were quite high, but even a
5 GHz clock frequency is insufficient to allow loops to be
executed in 50 picoseconds! What is going on here?

However, this implementation requires that each thread
either invoke rcu_quiescent_state() periodically or
to invoke rcu_thread_offline() for extended quies-
cent states. The need to invoke these functions period-
ically can make this implementation difficult to use in
some situations, such as for certain types of library func-
tions.

Quick Quiz B.25: Why would the fact that the code
is in a library make any difference for how easy it is to
use the RCU implementation shown in Listings B.18 and
B.19?

Quick Quiz B.26: But what if you hold a lock across
a call to synchronize_rcu(), and then acquire that
same lock within an RCU read-side critical section? This
should be a deadlock, but how can a primitive that gener-
ates absolutely no code possibly participate in a deadlock
cycle?

In addition, this implementation does not permit con-
current calls to synchronize_rcu() to share grace pe-
riods. That said, one could easily imagine a production-
quality RCU implementation based on this version of
RCU.

B.10 Summary of Toy RCU Imple-
mentations

If you made it this far, congratulations! You should
now have a much clearer understanding not only of

RCU itself, but also of the requirements of enclosing
software environments and applications. Those wish-
ing an even deeper understanding are invited to read
descriptions of production-quality RCU implementa-
tions [DMS+12, McK07a, McK08a, McK09a].

The preceding sections listed some desirable properties
of the various RCU primitives. The following list is pro-
vided for easy reference for those wishing to create a new
RCU implementation.

1. There must be read-side primitives (such as
rcu_read_lock() and rcu_read_unlock()) and
grace-period primitives (such as synchronize_
rcu() and call_rcu()), such that any RCU read-
side critical section in existence at the start of a grace
period has completed by the end of the grace period.

2. RCU read-side primitives should have minimal over-
head. In particular, expensive operations such as
cache misses, atomic instructions, memory barriers,
and branches should be avoided.

3. RCU read-side primitives should have O (1) compu-
tational complexity to enable real-time use. (This
implies that readers run concurrently with updaters.)

4. RCU read-side primitives should be usable in all
contexts (in the Linux kernel, they are permitted
everywhere except in the idle loop). An important
special case is that RCU read-side primitives be us-
able within an RCU read-side critical section, in
other words, that it be possible to nest RCU read-
side critical sections.

5. RCU read-side primitives should be unconditional,
with no failure returns. This property is extremely
important, as failure checking increases complexity
and complicates testing and validation.

6. Any operation other than a quiescent state (and thus
a grace period) should be permitted in an RCU read-
side critical section. In particular, irrevocable opera-
tions such as I/O should be permitted.

7. It should be possible to update an RCU-protected
data structure while executing within an RCU read-
side critical section.

8. Both RCU read-side and update-side primitives
should be independent of memory allocator design
and implementation, in other words, the same RCU
implementation should be able to protect a given

B.10. SUMMARY OF TOY RCU IMPLEMENTATIONS 361

data structure regardless of how the data elements
are allocated and freed.

9. RCU grace periods should not be blocked by threads
that halt outside of RCU read-side critical sections.
(But note that most quiescent-state-based implemen-
tations violate this desideratum.)

Quick Quiz B.27: Given that grace periods are prohib-
ited within RCU read-side critical sections, how can an
RCU data structure possibly be updated while in an RCU
read-side critical section?

362 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Appendix C

Why Memory Barriers?

So what possessed CPU designers to cause them to inflict
memory barriers on poor unsuspecting SMP software
designers?

In short, because reordering memory references allows
much better performance, and so memory barriers are
needed to force ordering in things like synchronization
primitives whose correct operation depends on ordered
memory references.

Getting a more detailed answer to this question requires
a good understanding of how CPU caches work, and
especially what is required to make caches really work
well. The following sections:

1. present the structure of a cache,

2. describe how cache-coherency protocols ensure that
CPUs agree on the value of each location in memory,
and, finally,

3. outline how store buffers and invalidate queues help
caches and cache-coherency protocols achieve high
performance.

We will see that memory barriers are a necessary evil that
is required to enable good performance and scalability,
an evil that stems from the fact that CPUs are orders of
magnitude faster than are both the interconnects between
them and the memory they are attempting to access.

C.1 Cache Structure
Modern CPUs are much faster than are modern memory
systems. A 2006 CPU might be capable of executing
ten instructions per nanosecond, but will require many
tens of nanoseconds to fetch a data item from main mem-
ory. This disparity in speed—more than two orders of
magnitude—has resulted in the multi-megabyte caches

found on modern CPUs. These caches are associated with
the CPUs as shown in Figure C.1, and can typically be
accessed in a few cycles.1

CPU 0 CPU 1

CacheCache

Memory

Interconnect

Figure C.1: Modern Computer System Cache Structure

Data flows among the CPUs’ caches and memory in
fixed-length blocks called “cache lines”, which are nor-
mally a power of two in size, ranging from 16 to 256
bytes. When a given data item is first accessed by a given
CPU, it will be absent from that CPU’s cache, mean-
ing that a “cache miss” (or, more specifically, a “startup”
or “warmup” cache miss) has occurred. The cache miss
means that the CPU will have to wait (or be “stalled”) for
hundreds of cycles while the item is fetched from memory.
However, the item will be loaded into that CPU’s cache,
so that subsequent accesses will find it in the cache and
therefore run at full speed.

After some time, the CPU’s cache will fill, and subse-

1 It is standard practice to use multiple levels of cache, with a small
level-one cache close to the CPU with single-cycle access time, and a
larger level-two cache with a longer access time, perhaps roughly ten
clock cycles. Higher-performance CPUs often have three or even four
levels of cache.

363

364 APPENDIX C. WHY MEMORY BARRIERS?

0xF
0xE
0xD
0xC
0xB
0xA
0x9
0x8
0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

Way 0

0x12345E00
0x12345D00
0x12345C00
0x12345B00
0x12345A00
0x12345900
0x12345800
0x12345700
0x12345600
0x12345500
0x12345400
0x12345300
0x12345200
0x12345100
0x12345000

Way 1

0x43210E00

Figure C.2: CPU Cache Structure

quent misses will likely need to eject an item from the
cache in order to make room for the newly fetched item.
Such a cache miss is termed a “capacity miss”, because it
is caused by the cache’s limited capacity. However, most
caches can be forced to eject an old item to make room
for a new item even when they are not yet full. This is due
to the fact that large caches are implemented as hardware
hash tables with fixed-size hash buckets (or “sets”, as
CPU designers call them) and no chaining, as shown in
Figure C.2.

This cache has sixteen “sets” and two “ways” for a
total of 32 “lines”, each entry containing a single 256-byte
“cache line”, which is a 256-byte-aligned block of memory.
This cache line size is a little on the large size, but makes
the hexadecimal arithmetic much simpler. In hardware
parlance, this is a two-way set-associative cache, and is
analogous to a software hash table with sixteen buckets,
where each bucket’s hash chain is limited to at most two
elements. The size (32 cache lines in this case) and the
associativity (two in this case) are collectively called the
cache’s “geometry”. Since this cache is implemented in
hardware, the hash function is extremely simple: extract
four bits from the memory address.

In Figure C.2, each box corresponds to a cache entry,
which can contain a 256-byte cache line. However, a
cache entry can be empty, as indicated by the empty boxes
in the figure. The rest of the boxes are flagged with the
memory address of the cache line that they contain. Since
the cache lines must be 256-byte aligned, the low eight
bits of each address are zero, and the choice of hardware
hash function means that the next-higher four bits match
the hash line number.

The situation depicted in the figure might arise if the
program’s code were located at address 0x43210E00
through 0x43210EFF, and this program accessed data
sequentially from 0x12345000 through 0x12345EFF. Sup-
pose that the program were now to access location
0x12345F00. This location hashes to line 0xF, and both
ways of this line are empty, so the corresponding 256-
byte line can be accommodated. If the program were to
access location 0x1233000, which hashes to line 0x0, the
corresponding 256-byte cache line can be accommodated
in way 1. However, if the program were to access location
0x1233E00, which hashes to line 0xE, one of the existing
lines must be ejected from the cache to make room for the
new cache line. If this ejected line were accessed later, a
cache miss would result. Such a cache miss is termed an
“associativity miss”.

Thus far, we have been considering only cases where
a CPU reads a data item. What happens when it does
a write? Because it is important that all CPUs agree on
the value of a given data item, before a given CPU writes
to that data item, it must first cause it to be removed,
or “invalidated”, from other CPUs’ caches. Once this
invalidation has completed, the CPU may safely modify
the data item. If the data item was present in this CPU’s
cache, but was read-only, this process is termed a “write
miss”. Once a given CPU has completed invalidating a
given data item from other CPUs’ caches, that CPU may
repeatedly write (and read) that data item.

Later, if one of the other CPUs attempts to access the
data item, it will incur a cache miss, this time because
the first CPU invalidated the item in order to write to
it. This type of cache miss is termed a “communication
miss”, since it is usually due to several CPUs using the
data items to communicate (for example, a lock is a data
item that is used to communicate among CPUs using a
mutual-exclusion algorithm).

Clearly, much care must be taken to ensure that all
CPUs maintain a coherent view of the data. With all this
fetching, invalidating, and writing, it is easy to imagine
data being lost or (perhaps worse) different CPUs having
conflicting values for the same data item in their respec-
tive caches. These problems are prevented by “cache-
coherency protocols”, described in the next section.

C.2 Cache-Coherence Protocols

Cache-coherency protocols manage cache-line states so
as to prevent inconsistent or lost data. These protocols

C.2. CACHE-COHERENCE PROTOCOLS 365

can be quite complex, with many tens of states,2 but for
our purposes we need only concern ourselves with the
four-state MESI cache-coherence protocol.

C.2.1 MESI States
MESI stands for “modified”, “exclusive”, “shared”, and
“invalid”, the four states a given cache line can take on
using this protocol. Caches using this protocol therefore
maintain a two-bit state “tag” on each cache line in addi-
tion to that line’s physical address and data.

A line in the “modified” state has been subject to a
recent memory store from the corresponding CPU, and
the corresponding memory is guaranteed not to appear
in any other CPU’s cache. Cache lines in the “modified”
state can thus be said to be “owned” by the CPU. Because
this cache holds the only up-to-date copy of the data, this
cache is ultimately responsible for either writing it back
to memory or handing it off to some other cache, and
must do so before reusing this line to hold other data.

The “exclusive” state is very similar to the “modified”
state, the single exception being that the cache line has
not yet been modified by the corresponding CPU, which
in turn means that the copy of the cache line’s data that
resides in memory is up-to-date. However, since the CPU
can store to this line at any time, without consulting other
CPUs, a line in the “exclusive” state can still be said to be
owned by the corresponding CPU. That said, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “shared” state might be replicated in at
least one other CPU’s cache, so that this CPU is not
permitted to store to the line without first consulting with
other CPUs. As with the “exclusive” state, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “invalid” state is empty, in other words,
it holds no data. When new data enters the cache, it is
placed into a cache line that was in the “invalid” state if
possible. This approach is preferred because replacing a
line in any other state could result in an expensive cache
miss should the replaced line be referenced in the future.

Since all CPUs must maintain a coherent view of the
data carried in the cache lines, the cache-coherence proto-

2 See Culler et al. [CSG99] pages 670 and 671 for the nine-state
and 26-state diagrams for SGI Origin2000 and Sequent (now IBM)
NUMA-Q, respectively. Both diagrams are significantly simpler than
real life.

col provides messages that coordinate the movement of
cache lines through the system.

C.2.2 MESI Protocol Messages
Many of the transitions described in the previous section
require communication among the CPUs. If the CPUs are
on a single shared bus, the following messages suffice:

Read:
The “read” message contains the physical address of
the cache line to be read.

Read Response:
The “read response” message contains the data re-
quested by an earlier “read” message. This “read
response” message might be supplied either by mem-
ory or by one of the other caches. For example, if
one of the caches has the desired data in “modified”
state, that cache must supply the “read response”
message.

Invalidate:
The “invalidate” message contains the physical ad-
dress of the cache line to be invalidated. All other
caches must remove the corresponding data from
their caches and respond.

Invalidate Acknowledge:
A CPU receiving an “invalidate” message must re-
spond with an “invalidate acknowledge” message
after removing the specified data from its cache.

Read Invalidate:
The “read invalidate” message contains the physical
address of the cache line to be read, while at the
same time directing other caches to remove the data.
Hence, it is a combination of a “read” and an “inval-
idate”, as indicated by its name. A “read invalidate”
message requires both a “read response” and a set of
“invalidate acknowledge” messages in reply.

Writeback:
The “writeback” message contains both the address
and the data to be written back to memory (and
perhaps “snooped” into other CPUs’ caches along
the way). This message permits caches to eject lines
in the “modified” state as needed to make room for
other data.

Quick Quiz C.1: Where does a writeback message
originate from and where does it go to?

366 APPENDIX C. WHY MEMORY BARRIERS?

Interestingly enough, a shared-memory multiprocessor
system really is a message-passing computer under the
covers. This means that clusters of SMP machines that
use distributed shared memory are using message passing
to implement shared memory at two different levels of the
system architecture.

Quick Quiz C.2: What happens if two CPUs attempt
to invalidate the same cache line concurrently?

Quick Quiz C.3: When an “invalidate” message ap-
pears in a large multiprocessor, every CPU must give an
“invalidate acknowledge” response. Wouldn’t the result-
ing “storm” of “invalidate acknowledge” responses totally
saturate the system bus?

Quick Quiz C.4: If SMP machines are really using
message passing anyway, why bother with SMP at all?

C.2.3 MESI State Diagram

A given cache line’s state changes as protocol messages
are sent and received, as shown in Figure C.3.

M

E S

I

a

c d e

f

g

h

j k

l

b

i

Figure C.3: MESI Cache-Coherency State Diagram

The transition arcs in this figure are as follows:

Transition (a):
A cache line is written back to memory, but the CPU
retains it in its cache and further retains the right
to modify it. This transition requires a “writeback”
message.

Transition (b):
The CPU writes to the cache line that it already had
exclusive access to. This transition does not require
any messages to be sent or received.

Transition (c):
The CPU receives a “read invalidate” message for a
cache line that it has modified. The CPU must inval-
idate its local copy, then respond with both a “read
response” and an “invalidate acknowledge” message,
both sending the data to the requesting CPU and
indicating that it no longer has a local copy.

Transition (d):
The CPU does an atomic read-modify-write opera-
tion on a data item that was not present in its cache.
It transmits a “read invalidate”, receiving the data via
a “read response”. The CPU can complete the transi-
tion once it has also received a full set of “invalidate
acknowledge” responses.

Transition (e):
The CPU does an atomic read-modify-write oper-
ation on a data item that was previously read-only
in its cache. It must transmit “invalidate” messages,
and must wait for a full set of “invalidate acknowl-
edge” responses before completing the transition.

Transition (f):
Some other CPU reads the cache line, and it is sup-
plied from this CPU’s cache, which retains a read-
only copy, possibly also writing it back to mem-
ory. This transition is initiated by the reception of a
“read” message, and this CPU responds with a “read
response” message containing the requested data.

Transition (g):
Some other CPU reads a data item in this cache line,
and it is supplied either from this CPU’s cache or
from memory. In either case, this CPU retains a read-
only copy. This transition is initiated by the reception
of a “read” message, and this CPU responds with
a “read response” message containing the requested
data.

Transition (h):
This CPU realizes that it will soon need to write to
some data item in this cache line, and thus transmits
an “invalidate” message. The CPU cannot complete
the transition until it receives a full set of “invalidate
acknowledge” responses. Alternatively, all other
CPUs eject this cache line from their caches via
“writeback” messages (presumably to make room for
other cache lines), so that this CPU is the last CPU
caching it.

C.3. STORES RESULT IN UNNECESSARY STALLS 367

Transition (i):
Some other CPU does an atomic read-modify-write
operation on a data item in a cache line held only in
this CPU’s cache, so this CPU invalidates it from its
cache. This transition is initiated by the reception of
a “read invalidate” message, and this CPU responds
with both a “read response” and an “invalidate ac-
knowledge” message.

Transition (j):
This CPU does a store to a data item in a cache line
that was not in its cache, and thus transmits a “read
invalidate” message. The CPU cannot complete the
transition until it receives the “read response” and a
full set of “invalidate acknowledge” messages. The
cache line will presumably transition to “modified”
state via transition (b) as soon as the actual store
completes.

Transition (k):
This CPU loads a data item in a cache line that was
not in its cache. The CPU transmits a “read” mes-
sage, and completes the transition upon receiving
the corresponding “read response”.

Transition (l):
Some other CPU does a store to a data item in this
cache line, but holds this cache line in read-only state
due to its being held in other CPUs’ caches (such as
the current CPU’s cache). This transition is initiated
by the reception of an “invalidate” message, and
this CPU responds with an “invalidate acknowledge”
message.

Quick Quiz C.5: How does the hardware handle the
delayed transitions described above?

C.2.4 MESI Protocol Example

Let’s now look at this from the perspective of a cache
line’s worth of data, initially residing in memory at ad-
dress 0, as it travels through the various single-line direct-
mapped caches in a four-CPU system. Table C.1 shows
this flow of data, with the first column showing the se-
quence of operations, the second the CPU performing the
operation, the third the operation being performed, the
next four the state of each CPU’s cache line (memory ad-
dress followed by MESI state), and the final two columns
whether the corresponding memory contents are up to
date (“V”) or not (“I”).

Initially, the CPU cache lines in which the data would
reside are in the “invalid” state, and the data is valid in
memory. When CPU 0 loads the data at address 0, it
enters the “shared” state in CPU 0’s cache, and is still
valid in memory. CPU 3 also loads the data at address 0,
so that it is in the “shared” state in both CPUs’ caches,
and is still valid in memory. Next CPU 0 loads some
other cache line (at address 8), which forces the data at
address 0 out of its cache via an invalidation, replacing it
with the data at address 8. CPU 2 now does a load from
address 0, but this CPU realizes that it will soon need
to store to it, and so it uses a “read invalidate” message
in order to gain an exclusive copy, invalidating it from
CPU 3’s cache (though the copy in memory remains up to
date). Next CPU 2 does its anticipated store, changing the
state to “modified”. The copy of the data in memory is
now out of date. CPU 1 does an atomic increment, using
a “read invalidate” to snoop the data from CPU 2’s cache
and invalidate it, so that the copy in CPU 1’s cache is in
the “modified” state (and the copy in memory remains out
of date). Finally, CPU 1 reads the cache line at address 8,
which uses a “writeback” message to push address 0’s
data back out to memory.

Note that we end with data in some of the CPU’s
caches.

Quick Quiz C.6: What sequence of operations would
put the CPUs’ caches all back into the “invalid” state?

C.3 Stores Result in Unnecessary
Stalls

Although the cache structure shown in Figure C.1 pro-
vides good performance for repeated reads and writes
from a given CPU to a given item of data, its performance
for the first write to a given cache line is quite poor. To
see this, consider Figure C.4, which shows a timeline of
a write by CPU 0 to a cacheline held in CPU 1’s cache.
Since CPU 0 must wait for the cache line to arrive before
it can write to it, CPU 0 must stall for an extended period
of time.3

But there is no real reason to force CPU 0 to stall for
so long—after all, regardless of what data happens to be
in the cache line that CPU 1 sends it, CPU 0 is going to
unconditionally overwrite it.

3 The time required to transfer a cache line from one CPU’s cache to
another’s is typically a few orders of magnitude more than that required
to execute a simple register-to-register instruction.

368 APPENDIX C. WHY MEMORY BARRIERS?

Table C.1: Cache Coherence Example

CPU Cache Memory

Sequence # CPU # Operation 0 1 2 3 0 8

0 Initial State −/I −/I −/I −/I V V
1 0 Load 0/S −/I −/I −/I V V
2 3 Load 0/S −/I −/I 0/S V V
3 0 Invalidation 8/S −/I −/I 0/S V V
4 2 RMW 8/S −/I 0/E −/I V V
5 2 Store 8/S −/I 0/M −/I I V
6 1 Atomic Inc 8/S 0/M −/I −/I I V
7 1 Writeback 8/S 8/S −/I −/I V V

CPU 0 CPU 1

Write

Acknowledgement

Invalidate

S
ta

ll

Figure C.4: Writes See Unnecessary Stalls

C.3.1 Store Buffers

One way to prevent this unnecessary stalling of writes is
to add “store buffers” between each CPU and its cache,
as shown in Figure C.5. With the addition of these store
buffers, CPU 0 can simply record its write in its store
buffer and continue executing. When the cache line does
finally make its way from CPU 1 to CPU 0, the data will
be moved from the store buffer to the cache line.

Quick Quiz C.7: But if the main purpose of store
buffers is to hide acknowledgment latencies in multipro-
cessor cache-coherence protocols, why do uniprocessors
also have store buffers?

These store buffers are local to a given CPU or, on
systems with hardware multithreading, local to a given
core. Either way, a given CPU is permitted to access

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure C.5: Caches With Store Buffers

only the store buffer assigned to it. For example, in Fig-
ure C.5, CPU 0 cannot access CPU 1’s store buffer and
vice versa. This restriction simplifies the hardware by
separating concerns: The store buffer improves perfor-
mance for consecutive writes, while the responsibility for
communicating among CPUs (or cores, as the case may
be) is fully shouldered by the cache-coherence protocol.
However, even given this restriction, there are complica-
tions that must be addressed, which are covered in the
next two sections.

C.3.2 Store Forwarding
To see the first complication, a violation of self-
consistency, consider the following code with variables

C.3. STORES RESULT IN UNNECESSARY STALLS 369

“a” and “b” both initially zero, and with the cache line
containing variable “a” initially owned by CPU 1 and that
containing “b” initially owned by CPU 0:

1 a = 1;
2 b = a + 1;
3 assert(b == 2);

One would not expect the assertion to fail. However, if
one were foolish enough to use the very simple architec-
ture shown in Figure C.5, one would be surprised. Such
a system could potentially see the following sequence of
events:

1. CPU 0 starts executing the a = 1.

2. CPU 0 looks “a” up in the cache, and finds that it is
missing.

3. CPU 0 therefore sends a “read invalidate” message
in order to get exclusive ownership of the cache line
containing “a”.

4. CPU 0 records the store to “a” in its store buffer.

5. CPU 1 receives the “read invalidate” message, and
responds by transmitting the cache line and remov-
ing that cacheline from its cache.

6. CPU 0 starts executing the b = a + 1.

7. CPU 0 receives the cache line from CPU 1, which
still has a value of zero for “a”.

8. CPU 0 loads “a” from its cache, finding the value
zero.

9. CPU 0 applies the entry from its store buffer to the
newly arrived cache line, setting the value of “a” in
its cache to one.

10. CPU 0 adds one to the value zero loaded for “a”
above, and stores it into the cache line containing “b”
(which we will assume is already owned by CPU 0).

11. CPU 0 executes assert(b == 2), which fails.

The problem is that we have two copies of “a”, one in
the cache and the other in the store buffer.

This example breaks a very important guarantee,
namely that each CPU will always see its own opera-
tions as if they happened in program order. Breaking
this guarantee is violently counter-intuitive to software
types, so much so that the hardware guys took pity and
implemented “store forwarding”, where each CPU refers

to (or “snoops”) its store buffer as well as its cache when
performing loads, as shown in Figure C.6. In other words,
a given CPU’s stores are directly forwarded to its subse-
quent loads, without having to pass through the cache.

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure C.6: Caches With Store Forwarding

With store forwarding in place, item 8 in the above
sequence would have found the correct value of 1 for “a”
in the store buffer, so that the final value of “b” would
have been 2, as one would hope.

C.3.3 Store Buffers and Memory Barriers
To see the second complication, a violation of global
memory ordering, consider the following code sequences
with variables “a” and “b” initially zero:

1 void foo(void)
2 {
3 a = 1;
4 b = 1;
5 }
6
7 void bar(void)
8 {
9 while (b == 0) continue;

10 assert(a == 1);
11 }

Suppose CPU 0 executes foo() and CPU 1 executes
bar(). Suppose further that the cache line containing “a”
resides only in CPU 1’s cache, and that the cache line
containing “b” is owned by CPU 0. Then the sequence of
operations might be as follows:

370 APPENDIX C. WHY MEMORY BARRIERS?

1. CPU 0 executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2. CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

4. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

5. CPU 1 receives the cache line containing “b” and
installs it in its cache.

6. CPU 1 can now finish executing while (b ==
0)continue, and since it finds that the value of
“b” is 1, it proceeds to the next statement.

7. CPU 1 executes the assert(a == 1), and, since
CPU 1 is working with the old value of “a”, this
assertion fails.

8. CPU 1 receives the “read invalidate” message, and
transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache. But it
is too late.

9. CPU 0 receives the cache line containing “a” and
applies the buffered store just in time to fall victim
to CPU 1’s failed assertion.

Quick Quiz C.8: In step 1 above, why does CPU 0
need to issue a “read invalidate” rather than a simple
“invalidate”?

The hardware designers cannot help directly here, since
the CPUs have no idea which variables are related, let
alone how they might be related. Therefore, the hardware
designers provide memory-barrier instructions to allow
the software to tell the CPU about such relations. The
program fragment must be updated to contain the memory
barrier:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

The memory barrier smp_mb() will cause the CPU to
flush its store buffer before applying each subsequent store
to its variable’s cache line. The CPU could either simply
stall until the store buffer was empty before proceeding,
or it could use the store buffer to hold subsequent stores
until all of the prior entries in the store buffer had been
applied.

With this latter approach the sequence of operations
might be as follows:

1. CPU 0 executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2. CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 0 executes smp_mb(), and marks all current
store-buffer entries (namely, the a = 1).

4. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state), but
there is a marked entry in the store buffer. Therefore,
rather than store the new value of “b” in the cache
line, it instead places it in the store buffer (but in an
unmarked entry).

5. CPU 0 receives the “read” message, and transmits
the cache line containing the original value of “b” to
CPU 1. It also marks its own copy of this cache line
as “shared”.

6. CPU 1 receives the cache line containing “b” and
installs it in its cache.

7. CPU 1 can now load the value of “b”, but since it
finds that the value of “b” is still 0, it repeats the

C.4. STORE SEQUENCES RESULT IN UNNECESSARY STALLS 371

while statement. The new value of “b” is safely
hidden in CPU 0’s store buffer.

8. CPU 1 receives the “read invalidate” message, and
transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache.

9. CPU 0 receives the cache line containing “a” and
applies the buffered store, placing this line into the
“modified” state.

10. Since the store to “a” was the only entry in the store
buffer that was marked by the smp_mb(), CPU 0 can
also store the new value of “b”—except for the fact
that the cache line containing “b” is now in “shared”
state.

11. CPU 0 therefore sends an “invalidate” message to
CPU 1.

12. CPU 1 receives the “invalidate” message, invalidates
the cache line containing “b” from its cache, and
sends an “acknowledgement” message to CPU 0.

13. CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message to CPU 0.

14. CPU 0 receives the “acknowledgement” message,
and puts the cache line containing “b” into the “ex-
clusive” state. CPU 0 now stores the new value of
“b” into the cache line.

15. CPU 0 receives the “read” message, and transmits
the cache line containing the new value of “b” to
CPU 1. It also marks its own copy of this cache line
as “shared”.

16. CPU 1 receives the cache line containing “b” and
installs it in its cache.

17. CPU 1 can now load the value of “b”, and since it
finds that the value of “b” is 1, it exits the while
loop and proceeds to the next statement.

18. CPU 1 executes the assert(a == 1), but the cache
line containing “a” is no longer in its cache. Once
it gets this cache from CPU 0, it will be working
with the up-to-date value of “a”, and the assertion
therefore passes.

As you can see, this process involves no small amount
of bookkeeping. Even something intuitively simple, like
“load the value of a” can involve lots of complex steps in
silicon.

C.4 Store Sequences Result in Un-
necessary Stalls

Unfortunately, each store buffer must be relatively small,
which means that a CPU executing a modest sequence
of stores can fill its store buffer (for example, if all of
them result in cache misses). At that point, the CPU must
once again wait for invalidations to complete in order
to drain its store buffer before it can continue executing.
This same situation can arise immediately after a memory
barrier, when all subsequent store instructions must wait
for invalidations to complete, regardless of whether or not
these stores result in cache misses.

This situation can be improved by making invalidate
acknowledge messages arrive more quickly. One way of
accomplishing this is to use per-CPU queues of invalidate
messages, or “invalidate queues”.

C.4.1 Invalidate Queues

One reason that invalidate acknowledge messages can
take so long is that they must ensure that the correspond-
ing cache line is actually invalidated, and this invalidation
can be delayed if the cache is busy, for example, if the
CPU is intensively loading and storing data, all of which
resides in the cache. In addition, if a large number of
invalidate messages arrive in a short time period, a given
CPU might fall behind in processing them, thus possibly
stalling all the other CPUs.

However, the CPU need not actually invalidate the
cache line before sending the acknowledgement. It could
instead queue the invalidate message with the understand-
ing that the message will be processed before the CPU
sends any further messages regarding that cache line.

C.4.2 Invalidate Queues and Invalidate
Acknowledge

Figure C.7 shows a system with invalidate queues. A
CPU with an invalidate queue may acknowledge an in-
validate message as soon as it is placed in the queue,
instead of having to wait until the corresponding line is
actually invalidated. Of course, the CPU must refer to its
invalidate queue when preparing to transmit invalidation
messages—if an entry for the corresponding cache line
is in the invalidate queue, the CPU cannot immediately
transmit the invalidate message; it must instead wait until
the invalidate-queue entry has been processed.

372 APPENDIX C. WHY MEMORY BARRIERS?

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Invalidate
Queue

Memory

Interconnect

Invalidate
Queue

Figure C.7: Caches With Invalidate Queues

Placing an entry into the invalidate queue is essentially
a promise by the CPU to process that entry before trans-
mitting any MESI protocol messages regarding that cache
line. As long as the corresponding data structures are not
highly contended, the CPU will rarely be inconvenienced
by such a promise.

However, the fact that invalidate messages can be
buffered in the invalidate queue provides additional op-
portunity for memory-misordering, as discussed in the
next section.

C.4.3 Invalidate Queues and Memory Bar-
riers

Let us suppose that CPUs queue invalidation requests, but
respond to them immediately. This approach minimizes
the cache-invalidation latency seen by CPUs doing stores,
but can defeat memory barriers, as seen in the following
example.

Suppose the values of “a” and “b” are initially zero, that
“a” is replicated read-only (MESI “shared” state), and that
“b” is owned by CPU 0 (MESI “exclusive” or “modified”
state). Then suppose that CPU 0 executes foo() while
CPU 1 executes function bar() in the following code
fragment:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

Then the sequence of operations might be as follows:

1. CPU 0 executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1’s cache.

2. CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4. CPU 0 receives the response from CPU 1, and is
therefore free to proceed past the smp_mb() on line 4
above, moving the value of “a” from its store buffer
to its cache line.

5. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7. CPU 1 receives the cache line containing “b” and
installs it in its cache.

8. CPU 1 can now finish executing while (b ==
0)continue, and since it finds that the value of
“b” is 1, it proceeds to the next statement.

9. CPU 1 executes the assert(a == 1), and, since
the old value of “a” is still in CPU 1’s cache, this
assertion fails.

C.5. READ AND WRITE MEMORY BARRIERS 373

10. Despite the assertion failure, CPU 1 processes the
queued “invalidate” message, and (tardily) invali-
dates the cache line containing “a” from its own
cache.

Quick Quiz C.9: In step 1 of the first scenario in Sec-
tion C.4.3, why is an “invalidate” sent instead of a ”read
invalidate” message? Doesn’t CPU 0 need the values of
the other variables that share this cache line with “a”?

There is clearly not much point in accelerating invali-
dation responses if doing so causes memory barriers to
effectively be ignored. However, the memory-barrier in-
structions can interact with the invalidate queue, so that
when a given CPU executes a memory barrier, it marks
all the entries currently in its invalidate queue, and forces
any subsequent load to wait until all marked entries have
been applied to the CPU’s cache. Therefore, we can add
a memory barrier to function bar as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_mb();
12 assert(a == 1);
13 }

Quick Quiz C.10: Say what??? Why do we need a
memory barrier here, given that the CPU cannot possibly
execute the assert() until after the while loop com-
pletes?

With this change, the sequence of operations might be
as follows:

1. CPU 0 executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1’s cache.

2. CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4. CPU 0 receives the response from CPU 1, and is
therefore free to proceed past the smp_mb() on line 4
above, moving the value of “a” from its store buffer
to its cache line.

5. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7. CPU 1 receives the cache line containing “b” and
installs it in its cache.

8. CPU 1 can now finish executing while (b ==
0)continue, and since it finds that the value of
“b” is 1, it proceeds to the next statement, which is
now a memory barrier.

9. CPU 1 must now stall until it processes all pre-
existing messages in its invalidation queue.

10. CPU 1 now processes the queued “invalidate” mes-
sage, and invalidates the cache line containing “a”
from its own cache.

11. CPU 1 executes the assert(a == 1), and, since
the cache line containing “a” is no longer in CPU 1’s
cache, it transmits a “read” message.

12. CPU 0 responds to this “read” message with the
cache line containing the new value of “a”.

13. CPU 1 receives this cache line, which contains a
value of 1 for “a”, so that the assertion does not
trigger.

With much passing of MESI messages, the CPUs arrive
at the correct answer. This section illustrates why CPU
designers must be extremely careful with their cache-
coherence optimizations.

C.5 Read and Write Memory Bar-
riers

In the previous section, memory barriers were used to
mark entries in both the store buffer and the invalidate
queue. But in our code fragment, foo() had no reason to

374 APPENDIX C. WHY MEMORY BARRIERS?

do anything with the invalidate queue, and bar() simi-
larly had no reason to do anything with the store buffer.

Many CPU architectures therefore provide weaker
memory-barrier instructions that do only one or the other
of these two. Roughly speaking, a “read memory barrier”
marks only the invalidate queue and a “write memory
barrier” marks only the store buffer, while a full-fledged
memory barrier does both.

The effect of this is that a read memory barrier orders
only loads on the CPU that executes it, so that all loads
preceding the read memory barrier will appear to have
completed before any load following the read memory
barrier. Similarly, a write memory barrier orders only
stores, again on the CPU that executes it, and again so
that all stores preceding the write memory barrier will
appear to have completed before any store following the
write memory barrier. A full-fledged memory barrier
orders both loads and stores, but again only on the CPU
executing the memory barrier.

If we update foo and bar to use read and write memory
barriers, they appear as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_wmb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_rmb();
12 assert(a == 1);
13 }

Some computers have even more flavors of memory
barriers, but understanding these three variants will pro-
vide a good introduction to memory barriers in general.

C.6 Example Memory-Barrier Se-
quences

This section presents some seductive but subtly broken
uses of memory barriers. Although many of them will
work most of the time, and some will work all the time
on some specific CPUs, these uses must be avoided if the
goal is to produce code that works reliably on all CPUs.
To help us better see the subtle breakage, we first need to
focus on an ordering-hostile architecture.

C.6.1 Ordering-Hostile Architecture
A number of ordering-hostile computer systems have been
produced over the decades, but the nature of the hostility
has always been extremely subtle, and understanding it
has required detailed knowledge of the specific hardware.
Rather than picking on a specific hardware vendor, and as
a presumably attractive alternative to dragging the reader
through detailed technical specifications, let us instead de-
sign a mythical but maximally memory-ordering-hostile
computer architecture.4

This hardware must obey the following ordering con-
straints [McK05a, McK05b]:

1. Each CPU will always perceive its own memory
accesses as occurring in program order.

2. CPUs will reorder a given operation with a store
only if the two operations are referencing different
locations.

3. All of a given CPU’s loads preceding a read memory
barrier (smp_rmb()) will be perceived by all CPUs
to precede any loads following that read memory
barrier.

4. All of a given CPU’s stores preceding a write mem-
ory barrier (smp_wmb()) will be perceived by all
CPUs to precede any stores following that write
memory barrier.

5. All of a given CPU’s accesses (loads and stores)
preceding a full memory barrier (smp_mb()) will
be perceived by all CPUs to precede any accesses
following that memory barrier.

Quick Quiz C.11: Does the guarantee that each CPU
sees its own memory accesses in order also guarantee that
each user-level thread will see its own memory accesses
in order? Why or why not?

Imagine a large non-uniform cache architecture
(NUCA) system that, in order to provide fair allocation of
interconnect bandwidth to CPUs in a given node, provided
per-CPU queues in each node’s interconnect interface, as
shown in Figure C.8. Although a given CPU’s accesses
are ordered as specified by memory barriers executed by
that CPU, however, the relative order of a given pair of

4 Readers preferring a detailed look at real hardware architec-
tures are encouraged to consult CPU vendors’ manuals [SW95, Adv02,
Int02b, IBM94, LHF05, SPA94, Int04b, Int04a, Int04c], Gharachor-
loo’s dissertation [Gha95], Peter Sewell’s work [Sew], or the excellent
hardware-oriented primer by Sorin, Hill, and Wood [SHW11].

C.6. EXAMPLE MEMORY-BARRIER SEQUENCES 375

CPUs’ accesses could be severely reordered, as we will
see.5

CPU 0

Queue
Message

CPU 1

Queue
Message

CPU 0

Cache

CPU 1

Node 0

CPU 2

Queue
Message

CPU 3

Queue
Message

CPU 3CPU 2

Cache

Node 1

Interconnect

Memory

Figure C.8: Example Ordering-Hostile Architecture

C.6.2 Example 1
Listing C.1 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Each of “a”, “b”, and “c” are
initially zero.

Listing C.1: Memory Barrier Example 1

CPU 0 CPU 1 CPU 2

a = 1;
smp_wmb(); while (b == 0);
b = 1; c = 1; z = c;

smp_rmb();
x = a;
assert(z == 0 || x == 1);

Suppose CPU 0 recently experienced many cache
misses, so that its message queue is full, but that CPU 1
has been running exclusively within the cache, so that its
message queue is empty. Then CPU 0’s assignment to
“a” and “b” will appear in Node 0’s cache immediately
(and thus be visible to CPU 1), but will be blocked behind
CPU 0’s prior traffic. In contrast, CPU 1’s assignment
to “c” will sail through CPU 1’s previously empty queue.
Therefore, CPU 2 might well see CPU 1’s assignment to
“c” before it sees CPU 0’s assignment to “a”, causing the
assertion to fire, despite the memory barriers.

5 Any real hardware architect or designer will no doubt be objecting
strenuously, as they just might be just a bit upset about the prospect of
working out which queue should handle a message involving a cache
line that both CPUs accessed, to say nothing of the many races that this
example poses. All I can say is “Give me a better example”.

Therefore, portable code cannot rely on this assertion
not firing, as both the compiler and the CPU can reorder
the code so as to trip the assertion.

Quick Quiz C.12: Could this code be fixed by in-
serting a memory barrier between CPU 1’s “while” and
assignment to “c”? Why or why not?

C.6.3 Example 2

Listing C.2 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Both “a” and “b” are initially
zero.

Listing C.2: Memory Barrier Example 2

CPU 0 CPU 1 CPU 2

a = 1; while (a == 0);
smp_mb(); y = b;
b = 1; smp_rmb();

x = a;
assert(y == 0 || x == 1);

Again, suppose CPU 0 recently experienced many
cache misses, so that its message queue is full, but that
CPU 1 has been running exclusively within the cache, so
that its message queue is empty. Then CPU 0’s assign-
ment to “a” will appear in Node 0’s cache immediately
(and thus be visible to CPU 1), but will be blocked behind
CPU 0’s prior traffic. In contrast, CPU 1’s assignment
to “b” will sail through CPU 1’s previously empty queue.
Therefore, CPU 2 might well see CPU 1’s assignment to
“b” before it sees CPU 0’s assignment to “a”, causing the
assertion to fire, despite the memory barriers.

In theory, portable code should not rely on this example
code fragment, however, as before, in practice it actually
does work on most mainstream computer systems.

C.6.4 Example 3

Listing C.3 shows three code fragments, executed con-
currently by CPUs 0, 1, and 2. All variables are initially
zero.

Note that neither CPU 1 nor CPU 2 can proceed to
line 5 until they see CPU 0’s assignment to “b” on line 3.
Once CPU 1 and 2 have executed their memory barriers on
line 4, they are both guaranteed to see all assignments by
CPU 0 preceding its memory barrier on line 2. Similarly,
CPU 0’s memory barrier on line 8 pairs with those of
CPUs 1 and 2 on line 4, so that CPU 0 will not execute
the assignment to “e” on line 9 until after its assignment

376 APPENDIX C. WHY MEMORY BARRIERS?

Listing C.3: Memory Barrier Example 3

CPU 0 CPU 1 CPU 2

1 a = 1;
2 smp_wmb();
3 b = 1; while (b == 0); while (b == 0);
4 smp_mb(); smp_mb();
5 c = 1; d = 1;
6 while (c == 0);
7 while (d == 0);
8 smp_mb();
9 e = 1; assert(e == 0 || a == 1);

to “a” is visible to both of the other CPUs. Therefore,
CPU 2’s assertion on line 9 is guaranteed not to fire.

Quick Quiz C.13: Suppose that lines 3-5 for CPUs 1
and 2 in Listing C.3 are in an interrupt handler, and that
the CPU 2’s line 9 runs at process level. In other words,
the code in all three columns of the table runs on the same
CPU, but the first two columns run in an interrupt handler,
and the third column runs at process level, so that the
code in third column can be interrupted by the code in
the first two columns. What changes, if any, are required
to enable the code to work correctly, in other words, to
prevent the assertion from firing?

Quick Quiz C.14: If CPU 2 executed an
assert(e==0||c==1) in the example in Listing C.3,
would this assert ever trigger?

The Linux kernel’s synchronize_rcu() primitive
uses an algorithm similar to that shown in this example.

C.7 Are Memory Barriers For-
ever?

There have been a number of recent systems that are sig-
nificantly less aggressive about out-of-order execution
in general and re-ordering memory references in particu-
lar. Will this trend continue to the point where memory
barriers are a thing of the past?

The argument in favor would cite proposed massively
multi-threaded hardware architectures, so that each thread
would wait until memory was ready, with tens, hundreds,
or even thousands of other threads making progress in
the meantime. In such an architecture, there would be no
need for memory barriers, because a given thread would
simply wait for all outstanding operations to complete
before proceeding to the next instruction. Because there
would be potentially thousands of other threads, the CPU
would be completely utilized, so no CPU time would be
wasted.

The argument against would cite the extremely lim-

ited number of applications capable of scaling up to a
thousand threads, as well as increasingly severe realtime
requirements, which are in the tens of microseconds for
some applications. The realtime-response requirements
are difficult enough to meet as is, and would be even more
difficult to meet given the extremely low single-threaded
throughput implied by the massive multi-threaded scenar-
ios.

Another argument in favor would cite increasingly so-
phisticated latency-hiding hardware implementation tech-
niques that might well allow the CPU to provide the illu-
sion of fully sequentially consistent execution while still
providing almost all of the performance advantages of
out-of-order execution. A counter-argument would cite
the increasingly severe power-efficiency requirements pre-
sented both by battery-operated devices and by environ-
mental responsibility.

Who is right? We have no clue, so are preparing to live
with either scenario.

C.8 Advice to Hardware Designers
There are any number of things that hardware designers
can do to make the lives of software people difficult. Here
is a list of a few such things that we have encountered
in the past, presented here in the hope that it might help
prevent future such problems:

1. I/O devices that ignore cache coherence.

This charming misfeature can result in DMAs from
memory missing recent changes to the output buffer,
or, just as bad, cause input buffers to be overwritten
by the contents of CPU caches just after the DMA
completes. To make your system work in face of
such misbehavior, you must carefully flush the CPU
caches of any location in any DMA buffer before
presenting that buffer to the I/O device. Similarly,
you need to flush the CPU caches of any location in
any DMA buffer after DMA to that buffer completes.

C.8. ADVICE TO HARDWARE DESIGNERS 377

And even then, you need to be very careful to avoid
pointer bugs, as even a misplaced read to an input
buffer can result in corrupting the data input!

2. External busses that fail to transmit cache-coherence
data.

This is an even more painful variant of the above
problem, but causes groups of devices—and even
memory itself—to fail to respect cache coherence. It
is my painful duty to inform you that as embedded
systems move to multicore architectures, we will
no doubt see a fair number of such problems arise.
Hopefully these problems will clear up by the year
2015.

3. Device interrupts that ignore cache coherence.

This might sound innocent enough—after all, in-
terrupts aren’t memory references, are they? But
imagine a CPU with a split cache, one bank of which
is extremely busy, therefore holding onto the last
cacheline of the input buffer. If the corresponding
I/O-complete interrupt reaches this CPU, then that
CPU’s memory reference to the last cache line of
the buffer could return old data, again resulting in
data corruption, but in a form that will be invisible
in a later crash dump. By the time the system gets
around to dumping the offending input buffer, the
DMA will most likely have completed.

4. Inter-processor interrupts (IPIs) that ignore cache
coherence.

This can be problematic if the IPI reaches its destina-
tion before all of the cache lines in the corresponding
message buffer have been committed to memory.

5. Context switches that get ahead of cache coherence.

If memory accesses can complete too wildly out of
order, then context switches can be quite harrowing.
If the task flits from one CPU to another before all
the memory accesses visible to the source CPU make
it to the destination CPU, then the task could easily
see the corresponding variables revert to prior values,
which can fatally confuse most algorithms.

6. Overly kind simulators and emulators.

It is difficult to write simulators or emulators that
force memory re-ordering, so software that runs just
fine in these environments can get a nasty surprise
when it first runs on the real hardware. Unfortunately,
it is still the rule that the hardware is more devious

than are the simulators and emulators, but we hope
that this situation changes.

Again, we encourage hardware designers to avoid these
practices!

378 APPENDIX C. WHY MEMORY BARRIERS?

De gustibus non est disputandum.

Latin maximAppendix D

Style Guide

This appendix is a collection of style guides which is in-
tended as a reference to improve consistency in perfbook.
It also contains several suggestions and their experimental
examples.

Section D.1 describes basic punctuation and spelling
rules. Section D.2 explains rules related to unit symbols.
Section D.3 summarizes LATEX-specific conventions.

D.1 Paul’s Conventions
Following is the list of Paul’s conventions assembled from
his answers to Akira’s questions regarding perfbook’s
punctuation policy.

• (On punctuations and quotations) Despite being
American myself, for this sort of book, the UK ap-
proach is better because it removes ambiguities like
the following:

Type “ls -a,” look for the file “.,” and
file a bug if you don’t see it.

The following is much more clear:

Type “ls -a”, look for the file “.”, and
file a bug if you don’t see it.

• American English spelling: “color” rather than
“colour”.

• Oxford comma: “a, b, and c” rather than “a, b and c”.
This is arbitrary. Cases where the Oxford comma
results in ambiguity should be reworded, for exam-
ple, by introducing numbering: “a, b, and c and d”
should be “(1) a, (2) b, and (3) c and d”.

• Italic for emphasis. Use sparingly.

• \co{} for identifiers, \url{} for URLs, \path{}
for filenames.

• Dates should use an unambiguous format. Never
“mm/dd/yy” or “dd/mm/yy”, but rather “July 26,
2016” or “26 July 2016” or “26-Jul-2016” or
“2016/07/26”. I tend to use yyyy.mm.ddA for file-
names, for example.

• North American rules on periods and abbreviations.
For example neither of the following can reasonably
be interpreted as two sentences:

– Say hello, to Mr. Jones.

– If it looks like she sprained her ankle, call Dr.
Smith and then tell her to keep the ankle iced
and elevated.

An ambiguous example:

If I take the cow, the pig, the horse, etc.
George will be upset.

can be written with more words:

If I take the cow, the pig, the horse, or
much of anything else, George will be
upset.

or:

If I take the cow, the pig, the horse, etc.,
George will be upset.

• I don’t like ampersand (“&”) in headings, but will
sometimes use it if doing so prevents a line break in
that heading.

• When mentioning words, I use quotations. When
introducing a new word, I use \emph{}.

379

380 APPENDIX D. STYLE GUIDE

D.2 NIST Style Guide

D.2.1 Unit Symbol
D.2.1.1 SI Unit Symbol

NIST style guide1 states the following rules (rephrased
for perfbook).

• When SI unit symbols such as “ns”, “MHz”, and “K”
(kelvin) are used behind numerical values, narrow
spaces should be placed between the values and the
symbols.

A narrow space can be coded in LATEX by the se-
quence of “\,”. For example,

“2.4 GHz”, rather then “2.4GHz”.

• Even when the value is used in adjectival sense, a
narrow space should be placed. For example,

“a 10 ms interval”, rather than “a 10-ms
interval” nor “a 10ms interval”.

The symbol of micro (µ:10−6) can be typeset easily by
the help of “gensymb” LATEX package. A macro “\micro”
can be used in both text and math modes. To typeset the
symbol of “microsecond”, you can do so by “\micro s”.
For example,

10 µs

Note that math mode “\mu” is italic by default and
should not be used as a prefix. An improper example:

10 µs (math mode “\mu”)

D.2.1.2 Non-SI Unit Symbol

Although NIST style guide does not cover non-SI unit
symbols such as “KB”, “MB”, and “GB”, the same rule
should be followed.

Example:

“A 240 GB hard drive”, rather than “a 240-GB
hard drive” nor “a 240GB hard drive”.

Strictly speaking, NIST guide requires us to use the
binary prefixes “Ki”, “Mi”, or “Gi” to represent powers
of 210. However, we accept the JEDEC conventions to

1 https://www.nist.gov/pml/nist-guide-si-chapter-
7-rules-and-style-conventions-expressing-values-
quantities

use “K”, “M”, and “G” as binary prefixes in describing
memory capacity.2

An acceptable example:

“8 GB of main memory”, meaning “8 GiB of
main memory”.

Also, it is acceptable to use just “K”, “M”, or “G” as
abbreviations appended to a numerical value, e.g., “4K en-
tries”. In such cases, no space before an abbreviation is
required. For example,

“8K entries”, rather than “8 K entries”.

If you put a space in between, the symbol looks like
a unit symbol and is confusing. Note that “K” and “k”
represent 210 and 103, respectively. “M” can represent
either 220 or 106, and “G” can represent either 230 or 109.
These ambiguities should not be confusing in discussing
approximate order.

D.2.1.3 Degree Symbol

The angular-degree symbol (°) does not require any space
in front of it. NIST style guide clearly states so.

The symbol of degree can also be typeset easily by the
help of gensymb package. A macro “\degree” can be
used in both text and math modes.

Example:

45°, rather than 45 °.

D.2.1.4 Percent Symbol

NIST style guide treats the percent symbol (%) as the
same as SI unit symbols.

50 % possibility, rather than 50% possibility.

D.2.1.5 Font Style

Quote from NIST check list:3

Variables and quantity symbols are in italic
type. Unit symbols are in roman type. Num-
bers should generally be written in roman type.
These rules apply irrespective of the typeface
used in the surrounding text.

2 https://www.jedec.org/standards-documents/
dictionary/terms/mega-m-prefix-units-semiconductor-
storage-capacity

3 #6 in https://physics.nist.gov/cuu/Units/
checklist.html

https://www.nist.gov/pml/nist-guide-si-chapter-7-rules-and-style-conventions-expressing-values-quantities
https://www.nist.gov/pml/nist-guide-si-chapter-7-rules-and-style-conventions-expressing-values-quantities
https://www.nist.gov/pml/nist-guide-si-chapter-7-rules-and-style-conventions-expressing-values-quantities
https://www.jedec.org/standards-documents/dictionary/terms/mega-m-prefix-units-semiconductor-storage-capacity
https://www.jedec.org/standards-documents/dictionary/terms/mega-m-prefix-units-semiconductor-storage-capacity
https://www.jedec.org/standards-documents/dictionary/terms/mega-m-prefix-units-semiconductor-storage-capacity
https://physics.nist.gov/cuu/Units/checklist.html
https://physics.nist.gov/cuu/Units/checklist.html

D.3. LATEX CONVENTIONS 381

For example,

e (elementary charge)

On the other hand, mathematical constants such as
the base of natural logarithms should be roman.4 For
example,

ex

D.2.2 NIST Guide Yet To Be Followed
There are a few cases where NIST style guide is not
followed. Other English conventions are followed in such
cases.

D.2.2.1 Digit Grouping

Quote from NIST check list:5

The digits of numerical values having more
than four digits on either side of the decimal
marker are separated into groups of three using
a thin, fixed space counting from both the left
and right of the decimal marker. Commas are
not used to separate digits into groups of three.

NIST Example: 15 739.012 53 ms
Our convention: 15,739.01253 ms

In LATEX coding, it is cumbersome to place thin spa-
ces as are recommended in NIST guide. The \num{}
command provided by the “siunitx” package would be
of help for us to follow this rule. It would also help us
overcome different conventions. We can select a specific
digit-grouping style as a default in preamble, or spec-
ify an option to each \num{} command as is shown in
Table D.1.

Table D.1: Digit-Grouping Style

Style Outputs of \num{}

NIST/SI (English) 12 345 12.345 1 234 567.89
SI (French) 12 345 12,345 1 234 567,89
English 12,345 12.345 1,234,567.89
French 12 345 12,345 1 234 567,89
Other Europe 12.345 12,345 1.234.567,89

4 https://physics.nist.gov/cuu/pdf/typefaces.pdf
5 #16 in http://physics.nist.gov/cuu/Units/

checklist.html.

As are evident in Table D.1, periods and commas used
as other than decimal markers are confusing and should
be avoided, especially in documents expecting global
audiences.

By marking up constant decimal values by \num{}
commands, the LATEX source would be exempted from
any particular conventions.

Because of its open-source policy, this approach should
give more “portability” to perfbook.

D.3 LATEX Conventions
Good looking LATEX documents require further considera-
tions on proper use of font styles, line break exceptions,
etc. This section summarizes guidelines specific to LATEX.

D.3.1 Monospace Font
Monospace font (or typewriter font) is heavily used in
this textbook. First policy regarding monospace font in
perfbook is to avoid directly using “\texttt” or “\tt”
macro. It is highly recommended to use a macro or an
environment indicating the reason why you want the font.

This section explains the use cases of such macros and
environments.

D.3.1.1 Code Snippet

Because the “verbatim” environment is a primitive way
to include listings, we are transitioning to a new scheme
which uses the “fancyvrb” package for code snippets.

The goal of the new scheme is to extract LATEX
sources of code snippets directly from code samples under
CodeSamples directory. It also makes it possible to em-
bed line labels in the code samples, which can be referred
from the text. This reduces the burden of keeping line
numbers in the text consistent with those in code snippets.

Code-snippet extraction is handled by a couple of perl
scripts and recipes in Makefile. We use the fancyvrb
package’s escaping feature to embed line labels in com-
ments.

We used to use the “verbbox” environment provided
by the “verbatimbox” package. Section D.3.1.2 de-
scribes how verbbox can automatically generate line
numbers, but these line numbers cannot be referenced
from the text.

Let’s start by looking at how code snippets are coded
in the new scheme. There are three customized environ-
ments of “Verbatim”. “VerbatimL” is for floating snip-

https://physics.nist.gov/cuu/pdf/typefaces.pdf
http://physics.nist.gov/cuu/Units/checklist.html
http://physics.nist.gov/cuu/Units/checklist.html

382 APPENDIX D. STYLE GUIDE

Listing D.1: LATEX Source of Sample Code Snippet (Current)
1 \begin{listing}[tb]
2 \begin{linelabel}[ln:base1]
3 \begin{VerbatimL}[commandchars=\$\[\]]
4 /*
5 * Sample Code Snippet
6 */
7 #include <stdio.h>
8 int main(void)
9 {

10 printf("Hello world!\n"); $lnlbl[printf]
11 return 0; $lnlbl[return]
12 }
13 \end{VerbatimL}
14 \end{linelabel}
15 \caption{Sample Code Snippet}
16 \label{lst:app:styleguide:Sample Code Snippet}
17 \end{listing}

Listing D.2: Sample Code Snippet
1 /*
2 * Sample Code Snippet
3 */
4 #include <stdio.h>
5 int main(void)
6 {
7 printf("Hello world!\n");
8 return 0;
9 }

pets within the “listing” environment. “VerbatimN” is
for inline snippets with line count enabled. “VerbatimU”
is for inline snippets without line count. They are defined
in the preamble as shown below:

\DefineVerbatimEnvironment{VerbatimL}{Verbatim}%
{fontsize=\scriptsize,numbers=left,numbersep=5pt,%

xleftmargin=9pt,obeytabs=true,tabsize=2}
\AfterEndEnvironment{VerbatimL}{\vspace*{-9pt}}
\DefineVerbatimEnvironment{VerbatimN}{Verbatim}%

{fontsize=\scriptsize,numbers=left,numbersep=3pt,%
xleftmargin=5pt,xrightmargin=5pt,obeytabs=true,%
tabsize=2,frame=single}

\DefineVerbatimEnvironment{VerbatimU}{Verbatim}%
{fontsize=\scriptsize,numbers=none,xleftmargin=5pt,%

xrightmargin=5pt,obeytabs=true,tabsize=2,%
samepage=true,frame=single}

The LATEX source of a sample code snippet is shown in
Listing D.1 and is typeset as shown in Listing D.2.

Labels to lines are specified in “$lnlbl[]” command.
The characters specified by “commandchars” option to
VarbatimL environment are used by the fancyvrb pack-
age to substitute “\lnlbl{}” for “$lnlbl[]”. Those
characters should be selected so that they don’t appear
elsewhere in the code snippet.

Labels “printf” and “return” in Listing D.2 can be
referred to as shown below:

Listing D.3: Source of Code Sample with “snippet” meta com-
mand

1 //\begin{snippet}[labelbase=ln:base1,commandchars=\$\[\]]
2 /*
3 * Sample Code Snippet
4 */
5 #include <stdio.h>
6 int main(void)
7 {
8 printf("Hello world!\n"); //\lnlbl{printf}
9 return 0; //\lnlbl{return}

10 }
11 //\end{snippet}

\begin{lineref}[ln:base1]
Lines~\lnref{printf} and~\lnref{return} can be referred
to from text.
\end{lineref}

Above code results in the paragraph below:

Lines 7 and 8 can be referred to from text.

Macros “\lnlbl{}” and “\lnref{}” are defined in
the preamble as follows:

\newcommand{\lnlblbase}{}
\newcommand{\lnlbl}[1]{%

\phantomsection\label{\lnlblbase:#1}}
\newcommand{\lnrefbase}{}
\newcommand{\lnref}[1]{\ref{\lnrefbase:#1}}

Environments “linelabel” and “lineref” are de-
fined as shown below:

\newenvironment{linelabel}[1][]{%
\renewcommand{\lnlblbase}{#1}%
\ignorespaces}{\ignorespacesafterend}

\newenvironment{lineref}[1][]{%
\renewcommand{\lnrefbase}{#1}%
\ignorespaces}{\ignorespacesafterend}

The main part of LATEX source shown on Lines 2-14
in Listing D.1 can be extracted from a code sample of
Listing D.3 by a perl script utilities/fcvextract.
pl. All the relevant rules of extraction are described as
recipes in the top level Makefile and a script to generate
dependencies (utilities/gen_snippet_d.pl).

As you can see, Listing D.3 has meta commands in
comments of C (C++ style). Those meta commands
are interpreted by utilities/fcvextract.pl, which
distinguishes the type of comment style by the suffix of
code sample’s file name.

Meta commands which can be used in code samples
are shown below:

D.3. LATEX CONVENTIONS 383

\begin{snippet}[option]
\end{snippet}
\lnlbl{<label string>}

Options to the \begin{snippet} meta command are
as the following:

labelbase=<label base string>
commandchars=\X\Y\Z

The string given to “labelbase” will be passed to
“\begin{linelabel}[<label base string>]”
command as shown on line 2 of Listing D.1.
“commandchars” option is given to the VerbatimL
environment as is. Other types of options, if any, are
also passed to the VerbatimL environment. The “lnlbl”
commands are converted along the way to reflect the
escape-character choice.6

There can be multiple pairs of \begin{snippet}
and \end{snippet} as long as they have unique
“labelbase” strings.

Our naming scheme of “labelbase” for unique name
space is as follows:

ln:<Chapter/Subdirectory>:<File Name>:<Function Name>

Litmus tests, which are handled by “herdtools7”
commands such as “litmus7” and “herd7”, were prob-
lematic for this scheme. Those commands have particular
rules of where comments can be placed and restriction
on characters in comments. They also forbid a couple
of tokens to appear in comments. (Tokens in comments
might sound strange, but they do have such restriction.)

For example, the first token in a litmus test must be one
of “C”, “PPC”, “X86”, “LISA”, etc., which indicates the
flavour of the test. This means no comment is allowed at
the beginning of a litmus test.

Similarly, several tokens such as “exists”, “filter”,
and “locations” indicate the end of litmus test’s body.
Once one of them appears in a litmus test, comments
should be ocaml style (“(* ... *)”). Those tokens keep
the same meaning even when they appear in comments!

The pair of characters “{” and “}” also have special
meaning in the C flavour tests. They are used to seperate
portions in a litmus test.

First pair of “{” and “}” encloses initialization part.
Comments in this part should also be in the ocaml form.

You can’t use “{” and “}” in comments in litmus tests,
either.

6 Characters forming comments are also gobbled up.

Examples of disallowed comments in a litmus test are
shown below:

1 // Comment at first
2 C C-sample
3 // Comment with { and } characters
4 {
5 x=2; // C style comment in initialization
6 }
7

8 P0(int *x}
9 {

10 int r1;
11

12 r1 = READ_ONCE(*x); // Comment with "exists"
13 }
14

15 [...]
16

17 exists (0:r1=0) // C++ style comment after test body

To avoid parse errors, meta commands in litmus tests
(C flavour) are embedded in the following way.

1 C C-SB+o-o+o-o
2 //\begin[snippet][labelbase=ln:base,commandchars=\%\@\$]
3

4 {
5 1:r2=0 (*\lnlbl[initr2]*)
6 }
7

8 P0(int *x0, int *x1) //\lnlbl[P0:b]
9 {

10 int r2;
11

12 WRITE_ONCE(*x0, 2);
13 r2 = READ_ONCE(*x1);
14 } //\lnlbl[P0:e]
15

16 P1(int *x0, int *x1)
17 {
18 int r2;
19

20 WRITE_ONCE(*x1, 2);
21 r2 = READ_ONCE(*x0);
22 }
23

24 //\end[snippet]
25 exists (1:r2=0 /\ 0:r2=0) (* \lnlbl[exists_] *)

Example above is converted to the following interme-
diate code by a script utilities/reorder_ltms.pl.7

The intermediate code can be handled by the common
script utilities/fcvextract.pl.

1 // Do not edit!
2 // Generated by utillities/reorder_ltms.pl
3 //\begin{snippet}[labelbase=ln:base,commandchars=\%\@\$]
4 C C-SB+o-o+o-o
5

6 {
7 1:r2=0 //\lnlbl{initr2}
8 }
9

10 P0(int *x0, int *x1) //\lnlbl{P0:b}

7 Currently, only C flavour litmus tests are supported.

384 APPENDIX D. STYLE GUIDE

Listing D.4: LATEX Source of Sample Code Snippet (Obsolete)
1 \begin{listing}[tb]
2 { \scriptsize
3 \begin{verbbox}[\LstLineNo]
4 /*
5 * Sample Code Snippet
6 */
7 #include <stdio.h>
8 int main(void)
9 {

10 printf("Hello world!\n");
11 return 0;
12 }
13 \end{verbbox}
14 }
15 \centering
16 \theverbbox
17 \caption{Sample Code Snippet (Obsolete)}
18 \label{lst:app:styleguide:Sample Code Snippet (Obsolete)}
19 \end{listing}

Listing D.5: Sample Code Snippet (Obsolete)
1 /*
2 * Sample Code Snippet
3 */
4 #include <stdio.h>
5 int main(void)
6 {
7 printf("Hello world!\n");
8 return 0;
9 }

11 {
12 int r2;
13

14 WRITE_ONCE(*x0, 2);
15 r2 = READ_ONCE(*x1);
16 } //\lnlbl{P0:e}
17

18 P1(int *x0, int *x1)
19 {
20 int r2;
21

22 WRITE_ONCE(*x1, 2);
23 r2 = READ_ONCE(*x0);
24 }
25

26 exists (1:r2=0 /\ 0:r2=0) \lnlbl{exists_}
27 //\end{snippet}

Note that each litmus test’s source file can con-
tain at most one pair of \begin[snippet] and
\end[snippet] because of the restriction of comments.

D.3.1.2 Code Snippet (Obsolete)

Sample LATEX source of a code snippet coded using the
“verbatimbox” package is shown in Listing D.4 and is
typeset as shown in Listing D.5.

The auto-numbering feature of verbbox is enabled
by the “\LstLineNo” macro specified in the option to
verbbox (line 3 in Listing D.4). The macro is defined in
the preamble of perfbook.tex as follows:

\newcommand{\LstLineNo}
{\makebox[5ex][r]{\arabic{VerbboxLineNo}\hspace{2ex}}}

The “verbatim” environment is used for listings with
too many lines to fit in a column. It is also used to avoid
overwhelming LATEX with a lot of floating objects. They
are being converted to the scheme using the VerbatimN
environment.

D.3.1.3 Identifier

We use “\co{}” macro for inline identifiers. (“co” stands
for “code”.)

By putting them into \co{}, underscore characters in
their names are free of escaping in LATEX source. It is
convenient to search them in source files. Also, \co{}
macro has a capability to permit line breaks at particular
sequences of letters. Current definition permits a line
break at an underscore (_), two consecutive underscores
(__), a white space, or an operator ->.

D.3.1.4 Identifier inside Table and Heading

Although \co{} command is convenient for inlining
within text, it is fragile because of its capability of line
break. When it is used inside a “tabular” environment
or its derivative such as “tabularx”, it confuses column
width estimation of those environments. Furthermore,
\co{} can not be safely used in section headings nor
description headings.

As a workaround, we use “\tco{}” command inside
tables and headings. It has no capability of line break
at particular sequences, but still frees us from escaping
underscores.

When used in text, \tco{} permits line breaks at white
spaces.

D.3.1.5 Other Use Cases of Monospace Font

For URLs, we use “\url{}” command provided by the
“hyperref” package. It will generate hyper references to
the URLs.

For path names, we use “\path{}” command. It won’t
generate hyper references.

Both \url{} and \path{} permit line breaks at “/”,
“-”, and “.”.8

For short monospace statements not to be line broken,
we use the “\nbco{}” (non-breakable co) macro.

8 Overfill can be a problem if the URL or the path name contains
long runs of unbreakable characters.

D.3. LATEX CONVENTIONS 385

D.3.1.6 Limitations

There are a few cases where macros introduced in this
section do not work as expected. Table D.2 lists such
limitations.

Table D.2: Limitation of Monospace Macro

Macro Need Escape Should Avoid

\co, \nbco \, %, {, }
\tco # %, {, }, \

While \co{} requires some characters to be escaped,
it can contain any character.

On the other hand, \tco{} can not handle “%”, “{”,
“}”, nor “\” properly. If they are escaped by a “\”, they
appear in the end result with the escape character. The
“\verb” macro can be used in running text if you need
to use monospace font for a string which contains many
characters to escape.9

D.3.2 Non Breakable Spaces
In LATEX conventions, proper use of non-breakable white
spaces is highly recommended. They can prevent wid-
owing and orphaning of single digit numbers or short
variable names, which would cause the text to be confus-
ing at first glance.

The thin space mentioned earlier to be placed in front
of a unit symbol is non breakable.

Other cases to use a non-breakable space (“~” in LATEX
source, often referred to as “nbsp”) are the following
(inexhaustive).

• Reference to a Chapter or a Section:

Please refer to Section D.2.

• Calling out CPU number or Thread name:

After they load the pointer, CPUs 1 and 2
will see the stored value.

• Short variable name:

The results will be stored in variables a
and b.

9 \verb macro is not almighty though. For example, you can’t
use it within a footnote. If you do so, you will see a fatal LATEX er-
ror. The “fancyvrb” package provides a workaround by the name of
\VerbatimFootnotes macro. This footnote contains \verb macro.

D.3.3 Hyphenation and Dashes
D.3.3.1 Hyphenation in Compound Word

In plain LATEX, compound words such as “high-frequency”
can be hyphenated only at the hyphen. This sometimes
results in poor typesetting. For example:

High-frequency radio wave, high-frequency ra-
dio wave, high-frequency radio wave, high-
frequency radio wave, high-frequency radio
wave, high-frequency radio wave.

By using a shortcut “\-/” provided by the “extdash”
package, hyphenation in elements of compound words is
enabled in perfbook.10

Example with “\-/”:

High-frequency radio wave, high-frequency ra-
dio wave, high-frequency radio wave, high-fre-
quency radio wave, high-frequency radio wave,
high-frequency radio wave.

D.3.3.2 Non Breakable Hyphen

We want hyphenated compound terms such as “x-coordi-
nate”, “y-coordinate”, etc. not to be broken at the hyphen
following a single letter.

To make a hyphen unbreakable, we can use a short cut
“\=/” also provided by the “extdash” package.

Example without a shortcut:

x-, y-, and z-coordinates; x-, y-, and z-
coordinates; x-, y-, and z-coordinates; x-, y-,
and z-coordinates; x-, y-, and z-coordinates; x-,
y-, and z-coordinates;

Example with “\-/”:

x-, y-, and z-coordinates; x-, y-, and z-coordi-
nates; x-, y-, and z-coordinates; x-, y-, and z-
coordinates; x-, y-, and z-coordinates; x-, y-,
and z-coordinates;

Example with “\=/”:

10 In exchange for enabling the shortcut, we can’t use plain LATEX’s
shortcut “\-” to specify hyphenation points. Use pfhyphex.tex to
add such exceptions.

386 APPENDIX D. STYLE GUIDE

x-, y-, and z-coordinates; x-, y-, and z-coor-
dinates; x-, y-, and z-coordinates; x-, y-, and
z-coordinates; x-, y-, and z-coordinates; x-, y-,
and z-coordinates;

Note that “\=/” enables hyphenation in elements of
compound words as the same as “\-/” does.

D.3.3.3 Em Dash

Em dashes are used to indicate parenthetic expression. In
perfbook, em dashes are placed without spaces around it.
In LATEX source, an em dash is represented by “---”.

Example (quote from Section C.1):

This disparity in speed—more than two or-
ders of magnitude—has resulted in the multi-
megabyte caches found on modern CPUs.

D.3.3.4 En Dash

In LATEX convention, en dashes (–) are used for a range
of (mostly) numbers. However, this is not followed in
perfbook at all. Because of the heavy use of dashes (-)
for such cases in plain-text communication, to make the
LATEX sources compatible with them, plain dashes are kept
unmodified in the sources.

As a compromise, for those who are accustomed to
en dashes representing ranges, there is a script to substi-
tute en dashes for plain dashes.

If you have the git repository of perfbook, by using
a script utilities/dohyphen2endash.sh, you can do
the substitutions. The script works only when you are in a
clean git repository. Otherwise it will just abort to prevent
you from losing local changes.

Example with a simple dash:

Lines 4-12 in Listing D.4 are the contents of
the verbbox environment. The box is output by
the \theverbbox macro on line 16.

Example with an en dash:

Lines 4–12 in Listing D.4 are the contents of
the verbbox environment. The box is output by
the \theverbbox macro on line 16.

D.3.3.5 Numerical Minus Sign

Numerical minus signs should be coded as math mode
minus signs, namely “$-$”.11 For example,

−30, rather than -30.

D.3.4 Punctuation
D.3.4.1 Ellipsis

In monospace fonts, ellipses can be expressed by series
of periods. For example:

Great ... So how do I fix it?

However, in proportional fonts, the series of periods is
printed with tight spaces as follows:

Great ... So how do I fix it?

Standard LATEX defines the \dots macro for this pur-
pose. However, it has a kludge in the evenness of spaces.
The “ellipsis” package redefines the \dots macro to fix
the issue.12 By using \dots, the above example is typeset
as the following:

Great . . . So how do I fix it?

Note that the “xspace” option specified to the “ellipsis”
package adjusts the spaces after ellipses depending on
what follows them.

For example:

• He said, “I . . . really don’t remember . . .”

• Sequence A: (one, two, three, . . .)

• Sequence B: (4, 5, . . . , n)

As you can see, extra space is placed before the comma.
\dots macro can also be used in math mode:

• Sequence C: (1,2,3,5,8, . . .)

• Sequence D: (10,12, . . . ,20)

The \ldots macro behaves the same as the \dots
macro.

11 This rule assumes that math mode uses the same upright glyph as
text mode. Our default font choice meets the assumption.

12 To be exact, it is the \textellipsis macro that is redefined. The
behavior of \dots macro in math mode is not affected. The “amsmath”
package has another definition of \dots. It is not used in perfbook at
the moment.

D.3. LATEX CONVENTIONS 387

D.3.5 Floating Object Format
D.3.5.1 Ruled Line in Table

They say that tables drawn by using ruled lines of plain
LATEX look ugly.13 Vertical lines should be avoided and
horizontal lines should be used sparingly, especially in
tables of simple structure.

Table D.3 (corresponding to a table from a now-deleted
section) is drawn by using the features of “booktabs” and
“xcolor” packages. Note that ruled lines of booktabs can
not be mixed with vertical lines in a table.14

Table D.3: Refrigeration Power Consumption

Situation T (K) CP

Power per watt
waste heat (W)

Dry Ice 195 1.990 0.5
Liquid N2 77 0.356 2.8
Liquid H2 20 0.073 13.7
Liquid He 4 0.0138 72.3
IBM Q 0.015 0.000051 19,500.0

D.3.5.2 Position of Caption

In LATEX conventions, captions of tables are usually placed
above them. The reason is the flow of your eye movement
when you look at them. Most tables have a row of heading
at the top. You naturally look at the top of a table at first.
Captions at the bottom of tables disturb this flow. The
same can be said of code snippets, which are read from
top to bottom.

For code snippets, the “ruled” style chosen for listing
environment places the caption at the top. See Listing D.2
for an example.

As for tables, the position of caption is tweaked by
\floatstyle{} and \restylefloat{} macros in pre-
amble.

Vertical skips below captions are reduced by setting
a smaller value to the \abovecaptionskip variable,
which would also affect captions to figures.

In the tables which use horizontal rules of “booktabs”
package, the vertical skips between captions and tables
are further reduced by setting a negative value to the

13 https://www.inf.ethz.ch/personal/markusp/
teaching/guides/guide-tables.pdf

14 There is another package named “arydshln” which provides dashed
lines to be used in tables. A couple of experimental examples are
presented in Section D.3.6.2.

\abovetopsep variable, which controls the behavior of
\toprule.

D.3.6 Improvement Candidates
There are a few areas yet to be attempted in perfbook
which would further improve its appearance. This section
lists such candidates.

D.3.6.1 Grouping Related Figures/Listings

To prevent a pair of closely related figures or listings from
being placed in different pages, it is desirable to group
them into a single floating object. The “subfig” package
provides the features to do so.15

Two floating objects can be placed side by side by
using \parbox or minipage. For example, Figures 14.10
and 14.11 can be grouped together by using a pair of
minipages as shown in Figures D.1 and D.2.

By using subfig package, Listings 15.4 and 15.5 can
be grouped together as shown in Listing D.6 with sub-
captions (with a minor change of blank line).

Note that they can not be grouped in the same way as
Figures D.1 and D.2 because the “ruled” style prevents
their captions from being properly typeset.

The sub-caption can be cited by combining a \ref{}
macro and a \subref{} macro, for example, “List-
ing D.6 (a)”.

It can also be cited by a \ref{} macro, for example,
“Listing D.6b”. Note the difference in the resulting for-
mat. For the citing by a \ref{} to work, you need to
place the \label{} macro of the combined floating ob-
ject ahead of the definition of subfloats. Otherwise, the
resulting caption number would be off by one from the
actual number.

D.3.6.2 Table Layout Experiment

This section presents some experimental tables using
booktabs, xcolors, and arydshln packages. The corre-
sponding tables in the text have been converted using
one of the format shown here. The source of this section
can be regarded as a reference to be consulted when new
tables are added in the text.

In Table D.4 (corresponding to Table 3.1), the “S” col-
umn specifiers provided by the “siunitx” package are used
to align numbers.

15 One problem of grouping figures might be the complexity in LATEX
source.

https://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-tables.pdf
https://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-tables.pdf

388 APPENDIX D. STYLE GUIDE

Figure D.1: Timer Wheel at 1 kHz Figure D.2: Timer Wheel at 100 kHz

Listing D.6: Message-Passing Litmus Test (by subfig)
(a) Not Enforcing Order

1 C C-MP+o-wmb-o+o-o.litmus
2
3 {
4 }
5
6 P0(int* x0, int* x1) {
7
8 WRITE_ONCE(*x0, 2);
9 smp_wmb();

10 WRITE_ONCE(*x1, 2);
11
12 }
13
14 P1(int* x0, int* x1) {
15
16 int r2;
17 int r3;
18
19 r2 = READ_ONCE(*x1);
20 r3 = READ_ONCE(*x0);
21
22 }
23
24
25 exists (1:r2=2 /\ 1:r3=0)

(b) Enforcing Order
1 C C-MP+o-wmb-o+o-rmb-o.litmus
2
3 {
4 }
5
6 P0(int* x0, int* x1) {
7
8 WRITE_ONCE(*x0, 2);
9 smp_wmb();

10 WRITE_ONCE(*x1, 2);
11
12 }
13
14 P1(int* x0, int* x1) {
15
16 int r2;
17 int r3;
18
19 r2 = READ_ONCE(*x1);
20 smp_rmb();
21 r3 = READ_ONCE(*x0);
22
23 }
24
25 exists (1:r2=2 /\ 1:r3=0)

Table D.5 (corresponding to Table 13.1) is an exam-
ple of table with a complex header. In Table D.5, the
gap in the mid-rule corresponds to the distinction which
had been represented by double vertical rules before the
conversion. The legends in the frame box appended here
explain the abbreviations used in the matrix. Two types
of memory barrier are denoted by subscripts here. The
legends and subscripts are not present in Table 13.1 since
they are redundant there.

Table D.6 (corresponding to Table C.1) is a sequence
diagram drawn as a table.

Table D.7 is a tweaked version of Table 9.4. Here,
the “Category” column in the original is removed and
the categories are indicated in rows of bold-face font just

below the mid-rules. This change makes it easier for
\rowcolors{} command of “xcolor” package to work
properly.

Table D.8 is another version which keeps original col-
umns and colors rows only where a category has multi-
ple rows. This is done by combining \rowcolors{} of
“xcolor” and \cellcolor{} commands of the “colortbl”
package (\cellcolor{} overrides \rowcolors{}).

In Table 9.4, the latter layout without partial row color-
ing has been chosen for simplicity.

Table D.9 (corresponding to Table 15.1) is also a se-
quence diagram drawn as a tabular object.

Table D.10 shows another version of Table D.3 with
dashed horizontal and vertical rules of the arydshln pack-

D.3. LATEX CONVENTIONS 389

Table D.4: Performance of Synchronization Mechanisms
of 4-CPU 1.8 GHz AMD Opteron 844 System

Operation Cost (ns)
Ratio

(cost/clock)

Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 5,000 8,330
Global Comms 195,000,000 325,000,000

Table D.5: Reference Counting and Synchronization
Mechanisms

Release Synchronization

Acquisition
Synchronization Locking

Reference
Counting RCU

Locking − CAMR CA
Reference
Counting A AMR A

RCU CA MACA CA

Key: A: Atomic counting
C: Check combined with the atomic acquisition

operation
MR: Memory barriers required only on release
MA: Memory barriers required on acquire

age.

Table D.10: Refrigeration Power Consumption

Situation T (K) CP

Power per watt
waste heat (W)

Dry Ice 195 1.990 0.5

Liquid N2 77 0.356 2.8

Liquid H2 20 0.073 13.7

Liquid He 4 0.0138 72.3

IBM Q 0.015 0.000051 19,500.0

In this case, the vertical dashed rules seems unnec-
essary. The one without the vertical rules is shown in
Table D.11.

Table D.11: Refrigeration Power Consumption

Situation T (K) CP

Power per watt
waste heat (W)

Dry Ice 195 1.990 0.5

Liquid N2 77 0.356 2.8

Liquid H2 20 0.073 13.7

Liquid He 4 0.0138 72.3

IBM Q 0.015 0.000051 19,500.0

D.3.6.3 Miscellaneous Candidates

Other improvement candidates are listed in the source of
this section as comments.

390 APPENDIX D. STYLE GUIDE

Table D.6: Cache Coherence Example

CPU Cache Memory

Sequence # CPU # Operation 0 1 2 3 0 8

0 Initial State −/I −/I −/I −/I V V
1 0 Load 0/S −/I −/I −/I V V
2 3 Load 0/S −/I −/I 0/S V V
3 0 Invalidation 8/S −/I −/I 0/S V V
4 2 RMW 8/S −/I 0/E −/I V V
5 2 Store 8/S −/I 0/M −/I I V
6 1 Atomic Inc 8/S 0/M −/I −/I I V
7 1 Writeback 8/S 8/S −/I −/I V V

Table D.7: RCU Publish-Subscribe and Version Maintenance APIs

Primitives Availability Overhead

List traversal
list_for_each_entry_rcu() 2.5.59 Simple instructions (memory barrier on Alpha)

List update
list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcu() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal
hlist_for_each_entry_rcu() 2.6.8 Simple instructions (memory barrier on Alpha)

Hlist update
hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal
rcu_dereference() 2.6.9 Simple instructions (memory barrier on Alpha)

Pointer update
rcu_assign_pointer() 2.6.10 Memory barrier

D.3. LATEX CONVENTIONS 391

Table D.8: RCU Publish-Subscribe and Version Maintenance APIs

Category Primitives Availability Overhead

List traversal list_for_each_entry_rcu() 2.5.59 Simple instructions (mem-
ory barrier on Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcu() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal hlist_for_each_entry_rcu() 2.6.8 Simple instructions (mem-
ory barrier on Alpha)

Hlist update hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference() 2.6.9 Simple instructions (mem-
ory barrier on Alpha)

Pointer update rcu_assign_pointer() 2.6.10 Memory barrier

Table D.9: Memory Misordering: Store-Buffering Sequence of Events

CPU 0 CPU 1

Instruction Store Buffer Cache Instruction Store Buffer Cache

1 (Initial state) x1==0 (Initial state) x0==0
2 x0 = 2; x0==2 x1==0 x1 = 2; x1==2 x0==0
3 r2 = x1; (0) x0==2 x1==0 r2 = x0; (0) x1==2 x0==0
4 (Read-invalidate) x0==2 x0==0 (Read-invalidate) x1==2 x1==0
5 (Finish store) x0==2 (Finish store) x1==2

392 APPENDIX D. STYLE GUIDE

The Answer to the Ultimate Question of Life, The
Universe, and Everything.

“The Hitchhikers Guide to the Galaxy”,
Douglas AdamsAppendix E

Answers to Quick Quizzes

E.1 How To Use This Book

Quick Quiz 1.1:
Where are the answers to the Quick Quizzes found?

Answer:
In Appendix E starting on page 393.

Hey, I thought I owed you an easy one! q

Quick Quiz 1.2:
Some of the Quick Quiz questions seem to be from the
viewpoint of the reader rather than the author. Is that
really the intent?

Answer:
Indeed it is! Many are questions that Paul E. McKenney
would probably have asked if he was a novice student
in a class covering this material. It is worth noting that
Paul was taught most of this material by parallel hardware
and software, not by professors. In Paul’s experience,
professors are much more likely to provide answers to
verbal questions than are parallel systems, Watson not-
withstanding. Of course, we could have a lengthy debate
over which of professors or parallel systems provide the
most useful answers to these sorts of questions, but for
the time being let’s just agree that usefulness of answers
varies widely across the population both of professors and
of parallel systems.

Other quizzes are quite similar to actual questions that
have been asked during conference presentations and lec-
tures covering the material in this book. A few others are
from the viewpoint of the author. q

Quick Quiz 1.3:
These Quick Quizzes are just not my cup of tea. What
can I do about it?

Answer:
Here are a few possible strategies:

1. Just ignore the Quick Quizzes and read the rest of the
book. You might miss out on the interesting material
in some of the Quick Quizzes, but the rest of the
book has lots of good material as well. This is an
eminently reasonable approach if your main goal is
to gain a general understanding of the material or if
you are skimming through to book to find a solution
to a specific problem.

2. If you find the Quick Quizzes distracting but im-
possible to ignore, you can always clone the LATEX
source for this book from the git archive. You can
then modify Makefile and qqz.sty to eliminate
the Quick Quizzes from the PDF output. Alterna-
tively, you could modify these two files so as to
pull the answers inline, immediately following the
questions.

3. Look at the answer immediately rather than investing
a large amount of time in coming up with your own
answer. This approach is reasonable when a given
Quick Quiz’s answer holds the key to a specific prob-
lem you are trying to solve. This approach is also
reasonable if you want a somewhat deeper under-
standing of the material, but when you do not expect
to be called upon to generate parallel solutions given
only a blank sheet of paper.

Note that as of mid-2016 the quick quizzes are hyper-
linked to the answers and vice versa. Click either the
“Quick Quiz” heading or the small black square to move
to the beginning of the answer. From the answer, click
on the heading or the small black square to move to the
beginning of the quiz, or, alternatively, click on the small

393

394 APPENDIX E. ANSWERS TO QUICK QUIZZES

white square at the end of the answer to move to the end
of the corresponding quiz. q

E.2 Introduction
Quick Quiz 2.1:
Come on now!!! Parallel programming has been known
to be exceedingly hard for many decades. You seem to be
hinting that it is not so hard. What sort of game are you
playing?

Answer:
If you really believe that parallel programming is exceed-
ingly hard, then you should have a ready answer to the
question “Why is parallel programming hard?” One could
list any number of reasons, ranging from deadlocks to race
conditions to testing coverage, but the real answer is that
it is not really all that hard. After all, if parallel program-
ming was really so horribly difficult, how could a large
number of open-source projects, ranging from Apache to
MySQL to the Linux kernel, have managed to master it?

A better question might be: ”Why is parallel program-
ming perceived to be so difficult?” To see the answer, let’s
go back to the year 1991. Paul McKenney was walking
across the parking lot to Sequent’s benchmarking center
carrying six dual-80486 Sequent Symmetry CPU boards,
when he suddenly realized that he was carrying several
times the price of the house he had just purchased.1 This
high cost of parallel systems meant that parallel program-
ming was restricted to a privileged few who worked for
an employer who either manufactured or could afford
to purchase machines costing upwards of $100,000—in
1991 dollars US.

In contrast, in 2006, Paul finds himself typing these
words on a dual-core x86 laptop. Unlike the dual-80486
CPU boards, this laptop also contains 2 GB of main mem-
ory, a 60 GB disk drive, a display, Ethernet, USB ports,
wireless, and Bluetooth. And the laptop is more than
an order of magnitude cheaper than even one of those
dual-80486 CPU boards, even before taking inflation into
account.

Parallel systems have truly arrived. They are no longer
the sole domain of a privileged few, but something avail-
able to almost everyone.

The earlier restricted availability of parallel hardware is
the real reason that parallel programming is considered so

1 Yes, this sudden realization did cause him to walk quite a bit more
carefully. Why do you ask?

difficult. After all, it is quite difficult to learn to program
even the simplest machine if you have no access to it.
Since the age of rare and expensive parallel machines is
for the most part behind us, the age during which parallel
programming is perceived to be mind-crushingly difficult
is coming to a close.2 q

Quick Quiz 2.2:
How could parallel programming ever be as easy as se-
quential programming?

Answer:
It depends on the programming environment. SQL [Int92]
is an underappreciated success story, as it permits pro-
grammers who know nothing about parallelism to keep
a large parallel system productively busy. We can expect
more variations on this theme as parallel computers con-
tinue to become cheaper and more readily available. For
example, one possible contender in the scientific and tech-
nical computing arena is MATLAB*P, which is an attempt
to automatically parallelize common matrix operations.

Finally, on Linux and UNIX systems, consider the
following shell command:

get_input | grep "interesting" | sort
This shell pipeline runs the get_input, grep, and

sort processes in parallel. There, that wasn’t so hard,
now was it?

In short, parallel programming is just as easy as se-
quential programming—at least in those environments
that hide the parallelism from the user! q

Quick Quiz 2.3:
Oh, really??? What about correctness, maintainability,
robustness, and so on?

Answer:
These are important goals, but they are just as important
for sequential programs as they are for parallel programs.
Therefore, important though they are, they do not belong
on a list specific to parallel programming. q

Quick Quiz 2.4:
And if correctness, maintainability, and robustness don’t
make the list, why do productivity and generality?

Answer:
Given that parallel programming is perceived to be much

2 Parallel programming is in some ways more difficult than sequen-
tial programming, for example, parallel validation is more difficult. But
no longer mind-crushingly difficult.

E.2. INTRODUCTION 395

harder than sequential programming, productivity is tan-
tamount and therefore must not be omitted. Further-
more, high-productivity parallel-programming environ-
ments such as SQL serve a special purpose, hence gener-
ality must also be added to the list. q

Quick Quiz 2.5:
Given that parallel programs are much harder to prove
correct than are sequential programs, again, shouldn’t
correctness really be on the list?

Answer:
From an engineering standpoint, the difficulty in prov-
ing correctness, either formally or informally, would be
important insofar as it impacts the primary goal of produc-
tivity. So, in cases where correctness proofs are important,
they are subsumed under the “productivity” rubric. q

Quick Quiz 2.6:
What about just having fun?

Answer:
Having fun is important as well, but, unless you are a
hobbyist, would not normally be a primary goal. On the
other hand, if you are a hobbyist, go wild! q

Quick Quiz 2.7:
Are there no cases where parallel programming is about
something other than performance?

Answer:
There certainly are cases where the problem to be solved
is inherently parallel, for example, Monte Carlo meth-
ods and some numerical computations. Even in these
cases, however, there will be some amount of extra work
managing the parallelism.

Parallelism is also sometimes used for reliability. For
but one example, triple-modulo redundancy has three sys-
tems run in parallel and vote on the result. In extreme
cases, the three systems will be independently imple-
mented using different algorithms and technologies. q

Quick Quiz 2.8:
Why all this prattling on about non-technical issues???
And not just any non-technical issue, but productivity of
all things? Who cares?

Answer:
If you are a pure hobbyist, perhaps you don’t need to care.
But even pure hobbyists will often care about how much
they can get done, and how quickly. After all, the most

popular hobbyist tools are usually those that are the best
suited for the job, and an important part of the definition
of “best suited” involves productivity. And if someone
is paying you to write parallel code, they will very likely
care deeply about your productivity. And if the person
paying you cares about something, you would be most
wise to pay at least some attention to it!

Besides, if you really didn’t care about productivity,
you would be doing it by hand rather than using a com-
puter! q

Quick Quiz 2.9:
Given how cheap parallel systems have become, how can
anyone afford to pay people to program them?

Answer:
There are a number of answers to this question:

1. Given a large computational cluster of parallel ma-
chines, the aggregate cost of the cluster can easily
justify substantial developer effort, because the de-
velopment cost can be spread over the large number
of machines.

2. Popular software that is run by tens of millions of
users can easily justify substantial developer effort,
as the cost of this development can be spread over
the tens of millions of users. Note that this includes
things like kernels and system libraries.

3. If the low-cost parallel machine is controlling the
operation of a valuable piece of equipment, then the
cost of this piece of equipment might easily justify
substantial developer effort.

4. If the software for the low-cost parallel machine
produces an extremely valuable result (e.g., mineral
exploration), then the valuable result might again
justify substantial developer cost.

5. Safety-critical systems protect lives, which can
clearly justify very large developer effort.

6. Hobbyists and researchers might seek knowledge,
experience, fun, or glory rather than gold.

So it is not the case that the decreasing cost of hardware
renders software worthless, but rather that it is no longer
possible to “hide” the cost of software development within
the cost of the hardware, at least not unless there are
extremely large quantities of hardware. q

396 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 2.10:
This is a ridiculously unachievable ideal! Why not focus
on something that is achievable in practice?

Answer:
This is eminently achievable. The cellphone is a computer
that can be used to make phone calls and to send and
receive text messages with little or no programming or
configuration on the part of the end user.

This might seem to be a trivial example at first glance,
but if you consider it carefully you will see that it is both
simple and profound. When we are willing to sacrifice
generality, we can achieve truly astounding increases in
productivity. Those who indulge in excessive generality
will therefore fail to set the productivity bar high enough
to succeed near the top of the software stack. This fact
of life even has its own acronym: YAGNI, or “You Ain’t
Gonna Need It.” q

Quick Quiz 2.11:
Wait a minute! Doesn’t this approach simply shift the de-
velopment effort from you to whoever wrote the existing
parallel software you are using?

Answer:
Exactly! And that is the whole point of using existing
software. One team’s work can be used by many other
teams, resulting in a large decrease in overall effort com-
pared to all teams needlessly reinventing the wheel. q

Quick Quiz 2.12:
What other bottlenecks might prevent additional CPUs
from providing additional performance?

Answer:
There are any number of potential bottlenecks:

1. Main memory. If a single thread consumes all avail-
able memory, additional threads will simply page
themselves silly.

2. Cache. If a single thread’s cache footprint com-
pletely fills any shared CPU cache(s), then adding
more threads will simply thrash those affected
caches.

3. Memory bandwidth. If a single thread consumes all
available memory bandwidth, additional threads will
simply result in additional queuing on the system
interconnect.

4. I/O bandwidth. If a single thread is I/O bound,
adding more threads will simply result in them all
waiting in line for the affected I/O resource.

Specific hardware systems might have any number of
additional bottlenecks. The fact is that every resource
which is shared between multiple CPUs or threads is a
potential bottleneck. q

Quick Quiz 2.13:
Other than CPU cache capacity, what might require limit-
ing the number of concurrent threads?

Answer:
There are any number of potential limits on the number
of threads:

1. Main memory. Each thread consumes some mem-
ory (for its stack if nothing else), so that excessive
numbers of threads can exhaust memory, resulting
in excessive paging or memory-allocation failures.

2. I/O bandwidth. If each thread initiates a given
amount of mass-storage I/O or networking traffic,
excessive numbers of threads can result in excessive
I/O queuing delays, again degrading performance.
Some networking protocols may be subject to time-
outs or other failures if there are so many threads
that networking events cannot be responded to in a
timely fashion.

3. Synchronization overhead. For many synchroniza-
tion protocols, excessive numbers of threads can
result in excessive spinning, blocking, or rollbacks,
thus degrading performance.

Specific applications and platforms may have any num-
ber of additional limiting factors. q

Quick Quiz 2.14:
Just what is “explicit timing”???

Answer:
Where each thread is given access to some set of resources
during an agreed-to slot of time. For example, a paral-
lel program with eight threads might be organized into
eight-millisecond time intervals, so that the first thread
is given access during the first millisecond of each inter-
val, the second thread during the second millisecond, and
so on. This approach clearly requires carefully synchro-
nized clocks and careful control of execution times, and
therefore should be used with considerable caution.

E.3. HARDWARE AND ITS HABITS 397

In fact, outside of hard realtime environments, you
almost certainly want to use something else instead. Ex-
plicit timing is nevertheless worth a mention, as it is
always there when you need it. q

Quick Quiz 2.15:
Are there any other obstacles to parallel programming?

Answer:
There are a great many other potential obstacles to parallel
programming. Here are a few of them:

1. The only known algorithms for a given project might
be inherently sequential in nature. In this case, either
avoid parallel programming (there being no law say-
ing that your project has to run in parallel) or invent
a new parallel algorithm.

2. The project allows binary-only plugins that share
the same address space, such that no one developer
has access to all of the source code for the project.
Because many parallel bugs, including deadlocks,
are global in nature, such binary-only plugins pose
a severe challenge to current software development
methodologies. This might well change, but for the
time being, all developers of parallel code sharing a
given address space need to be able to see all of the
code running in that address space.

3. The project contains heavily used APIs that were
designed without regard to parallelism [AGH+11a,
CKZ+13]. Some of the more ornate features of the
System V message-queue API form a case in point.
Of course, if your project has been around for a
few decades, and its developers did not have access
to parallel hardware, it undoubtedly has at least its
share of such APIs.

4. The project was implemented without regard to paral-
lelism. Given that there are a great many techniques
that work extremely well in a sequential environ-
ment, but that fail miserably in parallel environments,
if your project ran only on sequential hardware for
most of its lifetime, then your project undoubtably
has at least its share of parallel-unfriendly code.

5. The project was implemented without regard to good
software-development practice. The cruel truth is
that shared-memory parallel environments are often
much less forgiving of sloppy development practices
than are sequential environments. You may be well-
served to clean up the existing design and code prior
to attempting parallelization.

6. The people who originally did the development on
your project have since moved on, and the people
remaining, while well able to maintain it or add small
features, are unable to make “big animal” changes.
In this case, unless you can work out a very simple
way to parallelize your project, you will probably be
best off leaving it sequential. That said, there are a
number of simple approaches that you might use to
parallelize your project, including running multiple
instances of it, using a parallel implementation of
some heavily used library function, or making use
of some other parallel project, such as a database.

One can argue that many of these obstacles are non-
technical in nature, but that does not make them any less
real. In short, parallelization of a large body of code
can be a large and complex effort. As with any large
and complex effort, it makes sense to do your homework
beforehand. q

E.3 Hardware and its Habits

Quick Quiz 3.1:
Why should parallel programmers bother learning low-
level properties of the hardware? Wouldn’t it be easier,
better, and more general to remain at a higher level of
abstraction?

Answer:
It might well be easier to ignore the detailed properties of
the hardware, but in most cases it would be quite foolish
to do so. If you accept that the only purpose of parallel-
ism is to increase performance, and if you further accept
that performance depends on detailed properties of the
hardware, then it logically follows that parallel program-
mers are going to need to know at least a few hardware
properties.

This is the case in most engineering disciplines. Would
you want to use a bridge designed by an engineer who
did not understand the properties of the concrete and steel
making up that bridge? If not, why would you expect
a parallel programmer to be able to develop competent
parallel software without at least some understanding of
the underlying hardware? q

Quick Quiz 3.2:
What types of machines would allow atomic operations
on multiple data elements?

398 APPENDIX E. ANSWERS TO QUICK QUIZZES

Answer:
One answer to this question is that it is often possible
to pack multiple elements of data into a single machine
word, which can then be manipulated atomically.

A more trendy answer would be machines supporting
transactional memory [Lom77]. As of early 2014, several
mainstream systems provide limited hardware transac-
tional memory implementations, which is covered in more
detail in Section 17.3. The jury is still out on the applica-
bility of software transactional memory [MMW07, PW07,
RHP+07, CBM+08, DFGG11, MS12]. Additional infor-
mation on software transactional memory may be found
in Section 17.2. q

Quick Quiz 3.3:
So have CPU designers also greatly reduced the overhead
of cache misses?

Answer:
Unfortunately, not so much. There has been some re-
duction given constant numbers of CPUs, but the finite
speed of light and the atomic nature of matter limits their
ability to reduce cache-miss overhead for larger systems.
Section 3.3 discusses some possible avenues for possible
future progress. q

Quick Quiz 3.4:
This is a simplified sequence of events? How could it
possibly be any more complex?

Answer:
This sequence ignored a number of possible complica-
tions, including:

1. Other CPUs might be concurrently attempting to per-
form CAS operations involving this same cacheline.

2. The cacheline might have been replicated read-only
in several CPUs’ caches, in which case, it would
need to be flushed from their caches.

3. CPU 7 might have been operating on the cache line
when the request for it arrived, in which case CPU 7
might need to hold off the request until its own oper-
ation completed.

4. CPU 7 might have ejected the cacheline from its
cache (for example, in order to make room for other
data), so that by the time that the request arrived, the
cacheline was on its way to memory.

5. A correctable error might have occurred in the cache-
line, which would then need to be corrected at some
point before the data was used.

Production-quality cache-coherence mechanisms are
extremely complicated due to these sorts of considera-
tions [HP95, CSG99, MHS12, SHW11]. q

Quick Quiz 3.5:
Why is it necessary to flush the cacheline from CPU 7’s
cache?

Answer:
If the cacheline was not flushed from CPU 7’s cache, then
CPUs 0 and 7 might have different values for the same
set of variables in the cacheline. This sort of incoher-
ence would greatly complicate parallel software, and so
hardware architects have been convinced to avoid it. q

Quick Quiz 3.6:
Surely the hardware designers could be persuaded to im-
prove this situation! Why have they been content with
such abysmal performance for these single-instruction
operations?

Answer:
The hardware designers have been working on this prob-
lem, and have consulted with no less a luminary than
the physicist Stephen Hawking. Hawking’s observation
was that the hardware designers have two basic prob-
lems [Gar07]:

1. the finite speed of light, and

2. the atomic nature of matter.

The first problem limits raw speed, and the second lim-
its miniaturization, which in turn limits frequency. And
even this sidesteps the power-consumption issue that is
currently holding production frequencies to well below
10 GHz.

Nevertheless, some progress is being made, as may be
seen by comparing Table E.1 with Table 3.1 on page 22.
Integration of hardware threads in a single core and multi-
ple cores on a die have improved latencies greatly, at least
within the confines of a single core or single die. There
has been some improvement in overall system latency, but
only by about a factor of two. Unfortunately, neither the
speed of light nor the atomic nature of matter has changed
much in the past few years [Har16].

E.3. HARDWARE AND ITS HABITS 399

Table E.1: Performance of Synchronization Mechanisms
on 16-CPU 2.8 GHz Intel X5550 (Nehalem) System

Operation Cost (ns)
Ratio

(cost/clock)

Clock period 0.4 1.0
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

Off-Core
Single cache miss 31.2 86.6
CAS cache miss 31.2 86.5

Off-Socket
Single cache miss 92.4 256.7
CAS cache miss 95.9 266.4
Comms Fabric 2,600 7,220
Global Comms 195,000,000 542,000,000

Section 3.3 looks at what else hardware designers might
be able to do to ease the plight of parallel programmers.
q

Quick Quiz 3.7:
These numbers are insanely large! How can I possibly get
my head around them?

Answer:
Get a roll of toilet paper. In the USA, each roll will
normally have somewhere around 350-500 sheets. Tear
off one sheet to represent a single clock cycle, setting it
aside. Now unroll the rest of the roll.

The resulting pile of toilet paper will likely represent a
single CAS cache miss.

For the more-expensive inter-system communications
latencies, use several rolls (or multiple cases) of toilet
paper to represent the communications latency.

Important safety tip: make sure to account for the needs
of those you live with when appropriating toilet paper! q

Quick Quiz 3.8:
But individual electrons don’t move anywhere near that
fast, even in conductors!!! The electron drift velocity in a
conductor under the low voltages found in semiconductors
is on the order of only one millimeter per second. What
gives???

Answer:
Electron drift velocity tracks the long-term movement of
individual electrons. It turns out that individual electrons
bounce around quite randomly, so that their instantaneous
speed is very high, but over the long term, they don’t
move very far. In this, electrons resemble long-distance
commuters, who might spend most of their time travel-
ing at full highway speed, but over the long term going
nowhere. These commuters’ speed might be 70 miles per
hour (113 kilometers per hour), but their long-term drift
velocity relative to the planet’s surface is zero.

Therefore, we should pay attention not to the electrons’
drift velocity, but to their instantaneous velocities. How-
ever, even their instantaneous velocities are nowhere near
a significant fraction of the speed of light. Nevertheless,
the measured velocity of electric waves in conductors is a
substantial fraction of the speed of light, so we still have
a mystery on our hands.

The other trick is that electrons interact with each other
at significant distances (from an atomic perspective, any-
way), courtesy of their negative charge. This interaction
is carried out by photons, which do move at the speed of
light. So even with electricity’s electrons, it is photons
doing most of the fast footwork.

Extending the commuter analogy, a driver might use a
smartphone to inform other drivers of an accident or con-
gestion, thus allowing a change in traffic flow to propagate
much faster than the instantaneous velocity of the indi-
vidual cars. Summarizing the analogy between electricity
and traffic flow:

1. The (very low) drift velocity of an electron is similar
to the long-term velocity of a commuter, both being
very nearly zero.

2. The (still rather low) instantaneous velocity of an
electron is similar to the instantaneous velocity of a
car in traffic. Both are much higher than the drift ve-
locity, but quite small compared to the rate at which
changes propagate.

3. The (much higher) propagation velocity of an elec-
tric wave is primarily due to photons transmitting
electromagnetic force among the electrons. Simi-
larly, traffic patterns can change quite quickly due
to communication among drivers. Not that this is
necessarily of much help to the drivers already stuck
in traffic, any more than it is to the electrons already
pooled in a given capacitor.

400 APPENDIX E. ANSWERS TO QUICK QUIZZES

Of course, to fully understand this topic, you should
read up on electrodynamics. q

Quick Quiz 3.9:
Given that distributed-systems communication is so hor-
ribly expensive, why does anyone bother with such sys-
tems?

Answer:
There are a number of reasons:

1. Shared-memory multiprocessor systems have strict
size limits. If you need more than a few thousand
CPUs, you have no choice but to use a distributed
system.

2. Extremely large shared-memory systems tend to
be quite expensive and to have even longer cache-
miss latencies than does the small four-CPU system
shown in Table 3.1.

3. The distributed-systems communications latencies
do not necessarily consume the CPU, which can
often allow computation to proceed in parallel with
message transfer.

4. Many important problems are “embarrassingly paral-
lel”, so that extremely large quantities of processing
may be enabled by a very small number of messages.
SETI@HOME [Uni08b] is but one example of such
an application. These sorts of applications can make
good use of networks of computers despite extremely
long communications latencies.

It is likely that continued work on parallel applications
will increase the number of embarrassingly parallel ap-
plications that can run well on machines and/or clusters
having long communications latencies. That said, greatly
reduced hardware latencies would be an extremely wel-
come development. q

Quick Quiz 3.10:
OK, if we are going to have to apply distributed-
programming techniques to shared-memory parallel pro-
grams, why not just always use these distributed tech-
niques and dispense with shared memory?

Answer:
Because it is often the case that only a small fraction
of the program is performance-critical. Shared-memory
parallelism allows us to focus distributed-programming

techniques on that small fraction, allowing simpler shared-
memory techniques to be used on the non-performance-
critical bulk of the program. q

E.4 Tools of the Trade
Quick Quiz 4.1:
You call these tools??? They look more like low-level
synchronization primitives to me!

Answer:
They look that way because they are in fact low-level
synchronization primitives. But as such, they are in fact
the fundamental tools for building low-level concurrent
software. q

Quick Quiz 4.2:
But this silly shell script isn’t a real parallel program!
Why bother with such trivia???

Answer:
Because you should never forget the simple stuff!

Please keep in mind that the title of this book is “Is
Parallel Programming Hard, And, If So, What Can You
Do About It?”. One of the most effective things you can
do about it is to avoid forgetting the simple stuff! After
all, if you choose to do parallel programming the hard
way, you have no one but yourself to blame. q

Quick Quiz 4.3:
Is there a simpler way to create a parallel shell script? If
so, how? If not, why not?

Answer:
One straightforward approach is the shell pipeline:

grep $pattern1 | sed -e ’s/a/b/’ | sort

For a sufficiently large input file, grep will pattern-
match in parallel with sed editing and with the input
processing of sort. See the file parallel.sh for a
demonstration of shell-script parallelism and pipelining.
q

Quick Quiz 4.4:
But if script-based parallel programming is so easy, why
bother with anything else?

Answer:
In fact, it is quite likely that a very large fraction of parallel

E.4. TOOLS OF THE TRADE 401

programs in use today are script-based. However, script-
based parallelism does have its limitations:

1. Creation of new processes is usually quite heavy-
weight, involving the expensive fork() and exec()
system calls.

2. Sharing of data, including pipelining, typically in-
volves expensive file I/O.

3. The reliable synchronization primitives available to
scripts also typically involve expensive file I/O.

4. Scripting languages are often too slow, but are often
quite useful when coordinating execution of long-
running programs written in lower-level program-
ming languages.

These limitations require that script-based parallelism
use coarse-grained parallelism, with each unit of work
having execution time of at least tens of milliseconds, and
preferably much longer.

Those requiring finer-grained parallelism are well ad-
vised to think hard about their problem to see if it can be
expressed in a coarse-grained form. If not, they should
consider using other parallel-programming environments,
such as those discussed in Section 4.2. q

Quick Quiz 4.5:
Why does this wait() primitive need to be so compli-
cated? Why not just make it work like the shell-script
wait does?

Answer:
Some parallel applications need to take special action
when specific children exit, and therefore need to wait for
each child individually. In addition, some parallel appli-
cations need to detect the reason that the child died. As
we saw in Listing 4.2, it is not hard to build a waitall()
function out of the wait() function, but it would be im-
possible to do the reverse. Once the information about a
specific child is lost, it is lost. q

Quick Quiz 4.6:
Isn’t there a lot more to fork() and wait() than dis-
cussed here?

Answer:
Indeed there is, and it is quite possible that this section
will be expanded in future versions to include messaging
features (such as UNIX pipes, TCP/IP, and shared file I/O)
and memory mapping (such as mmap() and shmget()).

In the meantime, there are any number of textbooks that
cover these primitives in great detail, and the truly moti-
vated can read manpages, existing parallel applications
using these primitives, as well as the source code of the
Linux-kernel implementations themselves.

It is important to note that the parent process in List-
ing 4.3 waits until after the child terminates to do its
printf(). Using printf()’s buffered I/O concurrently
to the same file from multiple processes is non-trivial,
and is best avoided. If you really need to do concur-
rent buffered I/O, consult the documentation for your
OS. For UNIX/Linux systems, Stewart Weiss’s lecture
notes provide a good introduction with informative exam-
ples [Wei13]. q

Quick Quiz 4.7:
If the mythread() function in Listing 4.4 can simply
return, why bother with pthread_exit()?

Answer:
In this simple example, there is no reason whatsoever.
However, imagine a more complex example, where
mythread() invokes other functions, possibly separately
compiled. In such a case, pthread_exit() allows these
other functions to end the thread’s execution without hav-
ing to pass some sort of error return all the way back up
to mythread(). q

Quick Quiz 4.8:
If the C language makes no guarantees in presence of a
data race, then why does the Linux kernel have so many
data races? Are you trying to tell me that the Linux kernel
is completely broken???

Answer:
Ah, but the Linux kernel is written in a carefully selected
superset of the C language that includes special GNU
extensions, such as asms, that permit safe execution even
in presence of data races. In addition, the Linux kernel
does not run on a number of platforms where data races
would be especially problematic. For an example, con-
sider embedded systems with 32-bit pointers and 16-bit
busses. On such a system, a data race involving a store to
and a load from a given pointer might well result in the
load returning the low-order 16 bits of the old value of
the pointer concatenated with the high-order 16 bits of
the new value of the pointer.

Nevertheless, even in the Linux kernel, data races can
be quite dangerous and should be avoided where feasi-
ble [Cor12]. q

402 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 4.9:
What if I want several threads to hold the same lock at the
same time?

Answer:
The first thing you should do is to ask yourself why you
would want to do such a thing. If the answer is “because
I have a lot of data that is read by many threads, and only
occasionally updated”, then POSIX reader-writer locks
might be what you are looking for. These are introduced
in Section 4.2.4.

Another way to get the effect of multiple threads hold-
ing the same lock is for one thread to acquire the lock, and
then use pthread_create() to create the other threads.
The question of why this would ever be a good idea is left
to the reader. q

Quick Quiz 4.10:
Why not simply make the argument to lock_reader()
on line 6 of Listing 4.5 be a pointer to a pthread_mutex_
t?

Answer:
Because we will need to pass lock_reader() to
pthread_create(). Although we could cast the func-
tion when passing it to pthread_create(), function
casts are quite a bit uglier and harder to get right than are
simple pointer casts. q

Quick Quiz 4.11:
What is the READ_ONCE() on lines 20 and 47 and the
WRITE_ONCE() on line 47 of Listing 4.5?

Answer:
These macros constrain the compiler so as to prevent it
from carrying out optimizations that would be problem-
atic for concurrently accessed shared variables. They
don’t constrain the CPU at all, other than by preventing
reordering of accesses to a given single variable. Note
that this single-variable constraint does apply to the code
shown in Listing 4.5 because only the variable x is ac-
cessed.

For more information on READ_ONCE() and WRITE_
ONCE(), please see Section 4.2.5. For more information
on ordering accesses to multiple variables by multiple
threads, please see Chapter 15. q

Quick Quiz 4.12:
Writing four lines of code for each acquisition and release
of a pthread_mutex_t sure seems painful! Isn’t there a
better way?

Answer:
Indeed! And for that reason, the pthread_mutex_
lock() and pthread_mutex_unlock() primitives are
normally wrapped in functions that do this error check-
ing. Later on, we will wrap them with the Linux kernel
spin_lock() and spin_unlock() APIs. q

Quick Quiz 4.13:
Is “x = 0” the only possible output from the code fragment
shown in Listing 4.6? If so, why? If not, what other output
could appear, and why?

Answer:
No. The reason that “x = 0” was output was that lock_
reader() acquired the lock first. Had lock_writer()
instead acquired the lock first, then the output would
have been “x = 3”. However, because the code fragment
started lock_reader() first and because this run was
performed on a multiprocessor, one would normally ex-
pect lock_reader() to acquire the lock first. However,
there are no guarantees, especially on a busy system. q

Quick Quiz 4.14:
Using different locks could cause quite a bit of confusion,
what with threads seeing each others’ intermediate states.
So should well-written parallel programs restrict them-
selves to using a single lock in order to avoid this kind of
confusion?

Answer:
Although it is sometimes possible to write a program us-
ing a single global lock that both performs and scales
well, such programs are exceptions to the rule. You will
normally need to use multiple locks to attain good perfor-
mance and scalability.

One possible exception to this rule is “transactional
memory”, which is currently a research topic. Transac-
tional-memory semantics can be loosely thought of as
those of a single global lock with optimizations permitted
and with the addition of rollback [Boe09]. q

Quick Quiz 4.15:
In the code shown in Listing 4.7, is lock_reader()
guaranteed to see all the values produced by lock_
writer()? Why or why not?

Answer:
No. On a busy system, lock_reader() might be pre-
empted for the entire duration of lock_writer()’s ex-
ecution, in which case it would not see any of lock_
writer()’s intermediate states for x. q

E.4. TOOLS OF THE TRADE 403

Quick Quiz 4.16:
Wait a minute here!!! Listing 4.6 didn’t initialize shared
variable x, so why does it need to be initialized in List-
ing 4.7?

Answer:
See line 4 of Listing 4.5. Because the code in Listing 4.6
ran first, it could rely on the compile-time initialization
of x. The code in Listing 4.7 ran next, so it had to re-
initialize x. q

Quick Quiz 4.17:
Instead of using READ_ONCE() everywhere, why not just
declare goflag as volatile on line 10 of Listing 4.8?

Answer:
A volatile declaration is in fact a reasonable alternative
in this particular case. However, use of READ_ONCE() has
the benefit of clearly flagging to the reader that goflag is
subject to concurrent reads and updates. However, READ_
ONCE() is especially useful in cases where most of the
accesses are protected by a lock (and thus not subject to
change), but where a few of the accesses are made outside
of the lock. Using a volatile declaration in this case would
make it harder for the reader to note the special accesses
outside of the lock, and would also make it harder for the
compiler to generate good code under the lock. q

Quick Quiz 4.18:
READ_ONCE() only affects the compiler, not the CPU.
Don’t we also need memory barriers to make sure that
the change in goflag’s value propagates to the CPU in a
timely fashion in Listing 4.8?

Answer:
No, memory barriers are not needed and won’t help here.
Memory barriers only enforce ordering among multiple
memory references: They absolutely do not guarantee
to expedite the propagation of data from one part of the
system to another.3 This leads to a quick rule of thumb:
You do not need memory barriers unless you are using
more than one variable to communicate between multiple
threads.

But what about nreadersrunning? Isn’t that a sec-
ond variable used for communication? Indeed it is, and
there really are the needed memory-barrier instructions
buried in __sync_fetch_and_add(), which make sure

3 There have been persistent rumors of hardware in which memory
barriers actually do expedite propagation of data, but no confirmed
sightings.

that the thread proclaims its presence before checking to
see if it should start. q

Quick Quiz 4.19:
Would it ever be necessary to use READ_ONCE() when
accessing a per-thread variable, for example, a variable
declared using GCC’s __thread storage class?

Answer:
It depends. If the per-thread variable was accessed only
from its thread, and never from a signal handler, then
no. Otherwise, it is quite possible that READ_ONCE()
is needed. We will see examples of both situations in
Section 5.4.4.

This leads to the question of how one thread can gain
access to another thread’s __thread variable, and the
answer is that the second thread must store a pointer to
its __thread pointer somewhere that the first thread has
access to. One common approach is to maintain a linked
list with one element per thread, and to store the address
of each thread’s __thread variable in the corresponding
element. q

Quick Quiz 4.20:
Isn’t comparing against single-CPU throughput a bit
harsh?

Answer:
Not at all. In fact, this comparison was, if anything, overly
lenient. A more balanced comparison would be against
single-CPU throughput with the locking primitives com-
mented out. q

Quick Quiz 4.21:
But 1,000 instructions is not a particularly small size for
a critical section. What do I do if I need a much smaller
critical section, for example, one containing only a few
tens of instructions?

Answer:
If the data being read never changes, then you do not need
to hold any locks while accessing it. If the data changes
sufficiently infrequently, you might be able to checkpoint
execution, terminate all threads, change the data, then
restart at the checkpoint.

Another approach is to keep a single exclusive lock per
thread, so that a thread read-acquires the larger aggregate
reader-writer lock by acquiring its own lock, and write-
acquires by acquiring all the per-thread locks [HW92].
This can work quite well for readers, but causes writers

404 APPENDIX E. ANSWERS TO QUICK QUIZZES

to incur increasingly large overheads as the number of
threads increases.

Some other ways of handling very small critical sec-
tions are described in Chapter 9. q

Quick Quiz 4.22:
In Figure 4.2, all of the traces other than the 100M trace
deviate gently from the ideal line. In contrast, the 100M
trace breaks sharply from the ideal line at 64 CPUs. In
addition, the spacing between the 100M trace and the
10M trace is much smaller than that between the 10M
trace and the 1M trace. Why does the 100M trace behave
so much differently than the other traces?

Answer:
Your first clue is that 64 CPUs is exactly half of the 128
CPUs on the machine. The difference is an artifact of
hardware threading. This system has 64 cores with two
hardware threads per core. As long as fewer than 64
threads are running, each can run in its own core. But
as soon as there are more than 64 threads, some of the
threads must share cores. Because the pair of threads
in any given core share some hardware resources, the
throughput of two threads sharing a core is not quite as
high as that of two threads each in their own core. So
the performance of the 100M trace is limited not by the
reader-writer lock, but rather by the sharing of hardware
resources between hardware threads in a single core.

This can also be seen in the 10M trace, which deviates
gently from the ideal line up to 64 threads, then breaks
sharply down, parallel to the 100M trace. Up to 64 threads,
the 10M trace is limited primarily by reader-writer lock
scalability, and beyond that, also by sharing of hardware
resources between hardware threads in a single core. q

Quick Quiz 4.23:
POWER5 is more than a decade old, and new hardware
should be faster. So why should anyone worry about
reader-writer locks being slow?

Answer:
In general, newer hardware is improving. However, it will
need to improve more than two orders of magnitude to
permit reader-writer lock to achieve ideal performance on
128 CPUs. Worse yet, the greater the number of CPUs,
the larger the required performance improvement. The
performance problems of reader-writer locking are there-
fore very likely to be with us for quite some time to come.
q

Quick Quiz 4.24:
Is it really necessary to have both sets of primitives?

Answer:
Strictly speaking, no. One could implement any member
of the second set using the corresponding member of the
first set. For example, one could implement __sync_
nand_and_fetch() in terms of __sync_fetch_and_
nand() as follows:

tmp = v;
ret = __sync_fetch_and_nand(p, tmp);
ret = ~ret & tmp;

It is similarly possible to implement __sync_fetch_
and_add(), __sync_fetch_and_sub(), and __sync_
fetch_and_xor() in terms of their post-value counter-
parts.

However, the alternative forms can be quite convenient,
both for the programmer and for the compiler/library
implementor. q

Quick Quiz 4.25:
Given that these atomic operations will often be able
to generate single atomic instructions that are directly
supported by the underlying instruction set, shouldn’t
they be the fastest possible way to get things done?

Answer:
Unfortunately, no. See Chapter 5 for some stark coun-
terexamples. q

Quick Quiz 4.26:
What happened to ACCESS_ONCE()?

Answer:
As of early 2018, the Linux kernel’s ACCESS_ONCE()
is being replaced by READ_ONCE() and WRITE_ONCE()
for reads and writes, respectively [Cor12, Cor14a, Rut17].
ACCESS_ONCE() was introduced as a helper in RCU code,
but was promoted to core API soon afterward [McK07b,
Tor08]. Linux kernel’s READ_ONCE() and WRITE_
ONCE() have evolved into complex forms that look quite
different than the original ACCESS_ONCE() implementa-
tion due to the need to support access-once semantics
for large structures, but with the possibility of load/store
tearing if the structure cannot be loaded and stored with a
single machine instruction. q

Quick Quiz 4.27:
What happened to the Linux-kernel equivalents to fork()
and wait()?

E.4. TOOLS OF THE TRADE 405

Answer:
They don’t really exist. All tasks executing within the
Linux kernel share memory, at least unless you want to
do a huge amount of memory-mapping work by hand. q

Quick Quiz 4.28:
What problems could occur if the variable counter were
incremented without the protection of mutex?

Answer:
On CPUs with load-store architectures, incrementing
counter might compile into something like the follow-
ing:

LOAD counter,r0
INC r0
STORE r0,counter

On such machines, two threads might simultaneously
load the value of counter, each increment it, and each
store the result. The new value of counter will then
only be one greater than before, despite two threads each
incrementing it. q

Quick Quiz 4.29:
What is wrong with loading Listing 4.14’s global_ptr
up to three times?

Answer:
Suppose that global_ptr is initially non-NULL, but that
some other thread sets global_ptr to NULL. Suppose
further that line 1 of the transformed code (Listing 4.15)
executes just before global_ptr is set to NULL and line 2
just after. Then line 1 will conclude that global_ptr is
non-NULL, line 2 will conclude that it is less than high_
address, so that line 3 passes do_low() a NULL pointer,
which do_low() just might not be prepared to deal with.
q

Quick Quiz 4.30:
Why does it matter whether do_something() and do_
something_else() in Listing 4.17 are inline functions?

Answer:
Because gp is not a static variable, if either do_
something() or do_something_else() were sepa-
rately compiled, the compiler would have to assume that
either or both of these two functions might change the
value of gp. This possibility would force the compiler
to reload gp on line 15, thus avoiding the NULL-pointer
dereference. q

Quick Quiz 4.31:
But aren’t full memory barriers very heavyweight? Isn’t
there a cheaper way to enforce the ordering needed in
Listing 4.26?

Answer:
As is often the case, the answer is “it depends”. How-
ever, if only two threads are accessing the status and
other_task_ready variables, then the smp_store_
release() and smp_load_acquire() functions dis-
cussed in Section 4.3.5 will suffice. q

Quick Quiz 4.32:
What needs to happen if a given interrupt or signal handler
might itself be interrupted?

Answer:
Then that interruptible handler must also use READ_
ONCE() and WRITE_ONCE() or stronger to access any
variable that might be accessed by the interrupting handler.
Only those handlers that cannot be themselves interrupted
or that access no variables shared with an interrupting han-
dler may safely use plain accesses, and even then only if
those variables cannot be concurrently accessed by some
other CPU or thread. q

Quick Quiz 4.33:
How could you work around the lack of a per-thread-
variable API on systems that do not provide it?

Answer:
One approach would be to create an array indexed by
smp_thread_id(), and another would be to use a hash
table to map from smp_thread_id() to an array index—
which is in fact what this set of APIs does in pthread
environments.

Another approach would be for the parent to allocate
a structure containing fields for each desired per-thread
variable, then pass this to the child during thread cre-
ation. However, this approach can impose large software-
engineering costs in large systems. To see this, imagine if
all global variables in a large system had to be declared
in a single file, regardless of whether or not they were C
static variables! q

Quick Quiz 4.34:
Wouldn’t the shell normally use vfork() rather than
fork()?

Answer:
It might well do that, however, checking is left as an
exercise for the reader. But in the meantime, I hope that

406 APPENDIX E. ANSWERS TO QUICK QUIZZES

we can agree that vfork() is a variant of fork(), so that
we can use fork() as a generic term covering both. q

E.5 Counting
Quick Quiz 5.1:
Why on earth should efficient and scalable counting be
hard? After all, computers have special hardware for the
sole purpose of doing counting, addition, subtraction, and
lots more besides, don’t they???

Answer:
Because the straightforward counting algorithms, for ex-
ample, atomic operations on a shared counter, either are
slow and scale badly, or are inaccurate, as will be seen in
Section 5.1. q

Quick Quiz 5.2:
Network-packet counting problem. Suppose that you
need to collect statistics on the number of networking
packets (or total number of bytes) transmitted and/or re-
ceived. Packets might be transmitted or received by any
CPU on the system. Suppose further that this large ma-
chine is capable of handling a million packets per second,
and that there is a systems-monitoring package that reads
out the count every five seconds. How would you imple-
ment this statistical counter?

Answer:
Hint: The act of updating the counter must be blazingly
fast, but because the counter is read out only about once
in five million updates, the act of reading out the counter
can be quite slow. In addition, the value read out normally
need not be all that accurate—after all, since the counter
is updated a thousand times per millisecond, we should
be able to work with a value that is within a few thousand
counts of the “true value”, whatever “true value” might
mean in this context. However, the value read out should
maintain roughly the same absolute error over time. For
example, a 1 % error might be just fine when the count
is on the order of a million or so, but might be abso-
lutely unacceptable once the count reaches a trillion. See
Section 5.2. q

Quick Quiz 5.3:
Approximate structure-allocation limit problem.
Suppose that you need to maintain a count of the num-
ber of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit (say,

10,000). Suppose further that these structures are short-
lived, that the limit is rarely exceeded, and that a “sloppy”
approximate limit is acceptable.

Answer:
Hint: The act of updating the counter must again be blaz-
ingly fast, but the counter is read out each time that the
counter is increased. However, the value read out need not
be accurate except that it must distinguish approximately
between values below the limit and values greater than or
equal to the limit. See Section 5.3. q

Quick Quiz 5.4:
Exact structure-allocation limit problem. Suppose
that you need to maintain a count of the number of struc-
tures allocated in order to fail any allocations once the
number of structures in use exceeds an exact limit (again,
say 10,000). Suppose further that these structures are
short-lived, and that the limit is rarely exceeded, that
there is almost always at least one structure in use, and
suppose further still that it is necessary to know exactly
when this counter reaches zero, for example, in order to
free up some memory that is not required unless there is
at least one structure in use.

Answer:
Hint: The act of updating the counter must once again
be blazingly fast, but the counter is read out each time
that the counter is increased. However, the value read
out need not be accurate except that it absolutely must
distinguish perfectly between values between the limit
and zero on the one hand, and values that either are less
than or equal to zero or are greater than or equal to the
limit on the other hand. See Section 5.4. q

Quick Quiz 5.5:
Removable I/O device access-count problem. Sup-
pose that you need to maintain a reference count on a
heavily used removable mass-storage device, so that you
can tell the user when it is safe to remove the device.
This device follows the usual removal procedure where
the user indicates a desire to remove the device, and the
system tells the user when it is safe to do so.

Answer:
Hint: Yet again, the act of updating the counter must be
blazingly fast and scalable in order to avoid slowing down
I/O operations, but because the counter is read out only
when the user wishes to remove the device, the counter
read-out operation can be extremely slow. Furthermore,
there is no need to be able to read out the counter at all

E.5. COUNTING 407

unless the user has already indicated a desire to remove
the device. In addition, the value read out need not be
accurate except that it absolutely must distinguish per-
fectly between non-zero and zero values, and even then
only when the device is in the process of being removed.
However, once it has read out a zero value, it must act
to keep the value at zero until it has taken some action
to prevent subsequent threads from gaining access to the
device being removed. See Section 5.5. q

Quick Quiz 5.6:
But can’t a smart compiler prove line 5 of Listing 5.1 is
equivalent to the ++ operator and produce an x86 add-to-
memory instruction? And won’t the CPU cache cause
this to be atomic?

Answer:
Although the ++ operator could be atomic, there is no
requirement that it be so. And indeed, GCC often chooses
to load the value to a register, increment the register, then
store the value to memory, which is decidedly non-atomic.

Furthermore, note the volatile casts in READ_ONCE()
and WRITE_ONCE(), which tell the compiler that the lo-
cation might well be an MMIO device register. Because
MMIO registers are not cached, it would be unwise for the
compiler to assume that the increment operation would in
fact be way atomic. q

Quick Quiz 5.7:
The 8-figure accuracy on the number of failures indicates
that you really did test this. Why would it be necessary
to test such a trivial program, especially when the bug is
easily seen by inspection?

Answer:
Not only are there very few trivial parallel programs, and
most days I am not so sure that there are many trivial
sequential programs, either.

No matter how small or simple the program, if you
haven’t tested it, it does not work. And even if you have
tested it, Murphy’s Law says that there will be at least a
few bugs still lurking.

Furthermore, while proofs of correctness certainly do
have their place, they never will replace testing, includ-
ing the counttorture.h test setup used here. After all,
proofs are only as good as the assumptions that they are
based on. Furthermore, proofs can have bugs just as easily
as programs can! q

Quick Quiz 5.8:
Why doesn’t the dashed line on the x axis meet the diago-
nal line at x = 1?

Answer:
Because of the overhead of the atomic operation. The
dashed line on the x axis represents the overhead of a
single non-atomic increment. After all, an ideal algo-
rithm would not only scale linearly, it would also incur no
performance penalty compared to single-threaded code.

This level of idealism may seem severe, but if it is good
enough for Linus Torvalds, it is good enough for you. q

Quick Quiz 5.9:
But atomic increment is still pretty fast. And incrementing
a single variable in a tight loop sounds pretty unrealistic
to me, after all, most of the program’s execution should
be devoted to actually doing work, not accounting for the
work it has done! Why should I care about making this
go faster?

Answer:
In many cases, atomic increment will in fact be fast
enough for you. In those cases, you should by all means
use atomic increment. That said, there are many real-
world situations where more elaborate counting algo-
rithms are required. The canonical example of such a
situation is counting packets and bytes in highly opti-
mized networking stacks, where it is all too easy to find
much of the execution time going into these sorts of ac-
counting tasks, especially on large multiprocessors.

In addition, as noted at the beginning of this chapter,
counting provides an excellent view of the issues encoun-
tered in shared-memory parallel programs. q

Quick Quiz 5.10:
But why can’t CPU designers simply ship the addition op-
eration to the data, avoiding the need to circulate the cache
line containing the global variable being incremented?

Answer:
It might well be possible to do this in some cases. How-
ever, there are a few complications:

1. If the value of the variable is required, then the thread
will be forced to wait for the operation to be shipped
to the data, and then for the result to be shipped back.

408 APPENDIX E. ANSWERS TO QUICK QUIZZES

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory MemorySystem Interconnect

Figure E.1: Data Flow For Global Combining-Tree
Atomic Increment

2. If the atomic increment must be ordered with respect
to prior and/or subsequent operations, then the thread
will be forced to wait for the operation to be shipped
to the data, and for an indication that the operation
completed to be shipped back.

3. Shipping operations among CPUs will likely require
more lines in the system interconnect, which will
consume more die area and more electrical power.

But what if neither of the first two conditions holds? Then
you should think carefully about the algorithms discussed
in Section 5.2, which achieve near-ideal performance on
commodity hardware.

If either or both of the first two conditions hold, there
is some hope for improved hardware. One could imagine
the hardware implementing a combining tree, so that the
increment requests from multiple CPUs are combined by
the hardware into a single addition when the combined
request reaches the hardware. The hardware could also
apply an order to the requests, thus returning to each CPU
the return value corresponding to its particular atomic
increment. This results in instruction latency that varies
as O(log N), where N is the number of CPUs, as shown
in Figure E.1. And CPUs with this sort of hardware
optimization are starting to appear as of 2011.

This is a great improvement over the O(N) perfor-
mance of current hardware shown in Figure 5.2, and it
is possible that hardware latencies might decrease fur-
ther if innovations such as three-dimensional fabrication
prove practical. Nevertheless, we will see that in some
important special cases, software can do much better. q

Quick Quiz 5.11:
But doesn’t the fact that C’s “integers” are limited in size
complicate things?

Answer:
No, because modulo addition is still commutative and
associative. At least as long as you use unsigned integers.
Recall that in the C standard, overflow of signed integers
results in undefined behavior, never mind the fact that
machines that do anything other than wrap on overflow
are quite rare these days. Unfortunately, compilers fre-
quently carry out optimizations that assume that signed
integers will not overflow, so if your code allows signed
integers to overflow, you can run into trouble even on
twos-complement hardware.

That said, one potential source of additional complex-
ity arises when attempting to gather (say) a 64-bit sum
from 32-bit per-thread counters. Dealing with this added
complexity is left as an exercise for the reader, for whom
some of the techniques introduced later in this chapter
could be quite helpful. q

Quick Quiz 5.12:
An array??? But doesn’t that limit the number of threads?

Answer:
It can, and in this toy implementation, it does. But it is not
that hard to come up with an alternative implementation
that permits an arbitrary number of threads, for example,
using GCC’s __thread facility, as shown in Section 5.2.4.
q

Quick Quiz 5.13:
What other nasty optimizations could GCC apply?

Answer:
According to the C standard, the effects of doing a normal
store to a variable that might be concurrently loaded by
some other thread are undefined. It turns out that the C
standard really has no other choice, given that C must
support (for example) eight-bit architectures which are
incapable of atomically loading a long. Recent versions
of the C standard have introduced atomics, which are in-
tended to fill this gap. However, an attempt to apply them
to the Linux kernel gave at best mixed results [Cor16], in
part due to the poor quality of code emitted for atomics.
In addition, the Linux kernel expects much more from its
memory model than C11 atomics provide, including con-
trol dependencies, full barriers/fences, and low-overhead
address and data dependencies [MWPF18b].

E.5. COUNTING 409

At some point, C11 atomics might close these gaps, but
until then, the Linux kernel uses a combination of volatile
accesses, inline assembly, compiler directives, and coding
standards to safely access shared variables. This approach
allows the Linux kernel to maintain excellent performance
and also to make good use of older compilers that do
not support C11 atomics, however, it also requires some
effort to port the Linux kernel to a new CPU architecture.
That said, significant effort would be required even if
C11 atomics could be used directly due to the need to
handle context switches, interrupts, exceptions, memory-
management units, power control for energy efficiency,
and much else besides. It is therefore reasonable to expect
that any Linux-kernel adoption of C11 atomics will be
incremental at best.

But if the code is doing loads and stores that the under-
lying hardware can implement with single instructions,
why not just use plain old C-language assignment state-
ments to access shared variables? The problem is that
the compiler is within its rights to assume that no other
thread is modifying the variable being accessed. Given a
plain old C-language load, the compiler would therefore
be within its rights to do the load byte at a time (“load
tearing”), repeat the load (popular if register pressure is
high), or fuse a pair of consecutive loads from the same
variable. Given a plain old C-language store, the compiler
would be within its rights to do the store byte at a time
(“store tearing”), invent a store (for example, using the
stored-to variable as a temporary just prior to the intended
store), or omit a store in favor of a later store to the same
variable. Although each of these actions would preserve
the correctness of a single-threaded algorithm, any of
them could easily destroy the correctness of a concurrent
algorithm. Given a major tenet of shared-memory concur-
rency is to support such conflicting accesses, it is quite
unwise to use normal C-language loads and stores when
accessing variables that might be concurrently updated by
other threads. Further, given that current C11 atomics are
not (yet?) a good match for the Linux kernel, something
else is required.

One approach is to prevent concurrent updates by us-
ing blocking synchronization primitives such as locking
(see Chapter 7). Alternatively, volatile accesses may
be used, such as those provided by READ_ONCE() and
WRITE_ONCE(),4 at least in cases where the hardware
is capable of accessing the value with a single memory-
reference instruction. However, volatile accesses do not

4 Simple definitions of READ_ONCE() and WRITE_ONCE() are
shown in Listing 4.9.

by themselves suffice for high-performance and reliable
synchronization mechanisms. The Linux kernel therefore
combines volatile accesses with the aforementioned inline
assembly, compiler directives, and coding standards. q

Quick Quiz 5.14:
How does the per-thread counter variable in Listing 5.3
get initialized?

Answer:
The C standard specifies that the initial value of global
variables is zero, unless they are explicitly initialized. So
the initial value of all the instances of counter will be
zero. Furthermore, in the common case where the user is
interested only in differences between consecutive reads
from statistical counters, the initial value is irrelevant. q

Quick Quiz 5.15:
How is the code in Listing 5.3 supposed to permit more
than one counter?

Answer:
Indeed, this toy example does not support more than one
counter. Modifying it so that it can provide multiple
counters is left as an exercise to the reader. q

Quick Quiz 5.16:
The read operation takes time to sum up the per-thread
values, and during that time, the counter could well be
changing. This means that the value returned by read_
count() in Listing 5.3 will not necessarily be exact. As-
sume that the counter is being incremented at rate r counts
per unit time, and that read_count()’s execution con-
sumes ∆ units of time. What is the expected error in the
return value?

Answer:
Let’s do worst-case analysis first, followed by a less con-
servative analysis.

In the worst case, the read operation completes immedi-
ately, but is then delayed for ∆ time units before returning,
in which case the worst-case error is simply r∆.

This worst-case behavior is rather unlikely, so let us
instead consider the case where the reads from each of
the N counters is spaced equally over the time period ∆.
There will be N + 1 intervals of duration ∆

N+1 between
the N reads. The error due to the delay after the read
from the last thread’s counter will be given by r∆

N (N+1) ,
the second-to-last thread’s counter by 2r∆

N (N+1) , the third-
to-last by 3r∆

N (N+1) , and so on. The total error is given by

410 APPENDIX E. ANSWERS TO QUICK QUIZZES

the sum of the errors due to the reads from each thread’s
counter, which is:

r∆
N (N + 1)

N∑
i=1

i (E.1)

Expressing the summation in closed form yields:

r∆
N (N + 1)

N (N + 1)
2

(E.2)

Cancelling yields the intuitively expected result:

r∆
2

(E.3)

It is important to remember that error continues accu-
mulating as the caller executes code making use of the
count returned by the read operation. For example, if the
caller spends time t executing some computation based
on the result of the returned count, the worst-case error
will have increased to r (∆ + t).

The expected error will have similarly increased to:

r
(
∆

2
+ t

)
(E.4)

Of course, it is sometimes unacceptable for the counter
to continue incrementing during the read operation. Sec-
tion 5.5 discusses a way to handle this situation.

Thus far, we have been considering a counter that is
only increased, never decreased. If the counter value is
being changed by r counts per unit time, but in either
direction, we should expect the error to reduce. However,
the worst case is unchanged because although the counter
could move in either direction, the worst case is when the
read operation completes immediately, but then is delayed
for ∆ time units, during which time all the changes in the
counter’s value move it in the same direction, again giving
us an absolute error of r∆.

There are a number of ways to compute the average
error, based on a variety of assumptions about the patterns
of increments and decrements. For simplicity, let’s as-
sume that the f fraction of the operations are decrements,
and that the error of interest is the deviation from the
counter’s long-term trend line. Under this assumption,
if f is less than or equal to 0.5, each decrement will be
cancelled by an increment, so that 2 f of the operations
will cancel each other, leaving 1 − 2 f of the operations
being uncancelled increments. On the other hand, if f is
greater than 0.5, 1 − f of the decrements are cancelled
by increments, so that the counter moves in the negative

direction by −1 + 2 (1 − f), which simplifies to 1−2 f , so
that the counter moves an average of 1− 2 f per operation
in either case. Therefore, that the long-term movement
of the counter is given by (1 − 2 f) r. Plugging this into
Equation E.3 yields:

(1 − 2 f) r∆
2

(E.5)

All that aside, in most uses of statistical counters, the
error in the value returned by read_count() is irrelevant.
This irrelevance is due to the fact that the time required for
read_count() to execute is normally extremely small
compared to the time interval between successive calls to
read_count(). q

Quick Quiz 5.17:
Why doesn’t inc_count() in Listing 5.4 need to use
atomic instructions? After all, we now have multiple
threads accessing the per-thread counters!

Answer:
Because one of the two threads only reads, and because
the variable is aligned and machine-sized, non-atomic
instructions suffice. That said, the READ_ONCE() macro
is used to prevent compiler optimizations that might oth-
erwise prevent the counter updates from becoming visible
to eventual().5

An older version of this algorithm did in fact use atomic
instructions, kudos to Ersoy Bayramoglu for pointing out
that they are in fact unnecessary. That said, atomic in-
structions would be needed in cases where the per-thread
counter variables were smaller than the global global_
count. However, note that on a 32-bit system, the per-
thread counter variables might need to be limited to 32
bits in order to sum them accurately, but with a 64-bit
global_count variable to avoid overflow. In this case,
it is necessary to zero the per-thread counter variables
periodically in order to avoid overflow. It is extremely
important to note that this zeroing cannot be delayed too
long or overflow of the smaller per-thread variables will
result. This approach therefore imposes real-time require-
ments on the underlying system, and in turn must be used
with extreme care.

In contrast, if all variables are the same size, overflow
of any variable is harmless because the eventual sum will
be modulo the word size. q

Quick Quiz 5.18:
Won’t the single global thread in the function

5 A simple definition of READ_ONCE() is shown in Listing 4.9.

E.5. COUNTING 411

eventual() of Listing 5.4 be just as severe a bottleneck
as a global lock would be?

Answer:
In this case, no. What will happen instead is that as the
number of threads increases, the estimate of the counter
value returned by read_count() will become more in-
accurate. q

Quick Quiz 5.19:
Won’t the estimate returned by read_count() in List-
ing 5.4 become increasingly inaccurate as the number of
threads rises?

Answer:
Yes. If this proves problematic, one fix is to provide mul-
tiple eventual() threads, each covering its own subset
of the other threads. In more extreme cases, a tree-like
hierarchy of eventual() threads might be required. q

Quick Quiz 5.20:
Given that in the eventually-consistent algorithm shown
in Listing 5.4 both reads and updates have extremely low
overhead and are extremely scalable, why would anyone
bother with the implementation described in Section 5.2.2,
given its costly read-side code?

Answer:
The thread executing eventual() consumes CPU time.
As more of these eventually-consistent counters are added,
the resulting eventual() threads will eventually con-
sume all available CPUs. This implementation therefore
suffers a different sort of scalability limitation, with the
scalability limit being in terms of the number of eventu-
ally consistent counters rather than in terms of the number
of threads or CPUs.

Of course, it is possible to make other tradeoffs. For
example, a single thread could be created to handle all
eventually-consistent counters, which would limit the
overhead to a single CPU, but would result in increas-
ing update-to-read latencies as the number of counters
increased. Alternatively, that single thread could track
the update rates of the counters, visiting the frequently-
updated counters more frequently. In addition, the num-
ber of threads handling the counters could be set to some
fraction of the total number of CPUs, and perhaps also
adjusted at runtime. Finally, each counter could specify
its latency, and deadline-scheduling techniques could be
used to provide the required latencies to each counter.

There are no doubt many other tradeoffs that could be
made. q

Quick Quiz 5.21:
Why do we need an explicit array to find the other threads’
counters? Why doesn’t GCC provide a per_thread()
interface, similar to the Linux kernel’s per_cpu() primi-
tive, to allow threads to more easily access each others’
per-thread variables?

Answer:
Why indeed?

To be fair, GCC faces some challenges that the Linux
kernel gets to ignore. When a user-level thread exits, its
per-thread variables all disappear, which complicates the
problem of per-thread-variable access, particularly before
the advent of user-level RCU (see Section 9.5). In con-
trast, in the Linux kernel, when a CPU goes offline, that
CPU’s per-CPU variables remain mapped and accessible.

Similarly, when a new user-level thread is created, its
per-thread variables suddenly come into existence. In
contrast, in the Linux kernel, all per-CPU variables are
mapped and initialized at boot time, regardless of whether
the corresponding CPU exists yet, or indeed, whether the
corresponding CPU will ever exist.

A key limitation that the Linux kernel imposes is a
compile-time maximum bound on the number of CPUs,
namely, CONFIG_NR_CPUS, along with a typically tighter
boot-time bound of nr_cpu_ids. In contrast, in user
space, there is no hard-coded upper limit on the number
of threads.

Of course, both environments must handle dynamically
loaded code (dynamic libraries in user space, kernel mod-
ules in the Linux kernel), which increases the complexity
of per-thread variables.

These complications make it significantly harder for
user-space environments to provide access to other
threads’ per-thread variables. Nevertheless, such access is
highly useful, and it is hoped that it will someday appear.
q

Quick Quiz 5.22:
Doesn’t the check for NULL on line 19 of Listing 5.5 add
extra branch mispredictions? Why not have a variable set
permanently to zero, and point unused counter-pointers
to that variable rather than setting them to NULL?

Answer:
This is a reasonable strategy. Checking for the perfor-
mance difference is left as an exercise for the reader.
However, please keep in mind that the fastpath is not
read_count(), but rather inc_count(). q

412 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 5.23:
Why on earth do we need something as heavyweight as
a lock guarding the summation in the function read_
count() in Listing 5.5?

Answer:
Remember, when a thread exits, its per-thread variables
disappear. Therefore, if we attempt to access a given
thread’s per-thread variables after that thread exits, we
will get a segmentation fault. The lock coordinates sum-
mation and thread exit, preventing this scenario.

Of course, we could instead read-acquire a reader-
writer lock, but Chapter 9 will introduce even lighter-
weight mechanisms for implementing the required coor-
dination.

Another approach would be to use an array instead of
a per-thread variable, which, as Alexey Roytman notes,
would eliminate the tests against NULL. However, array
accesses are often slower than accesses to per-thread vari-
ables, and use of an array would imply a fixed upper
bound on the number of threads. Also, note that neither
tests nor locks are needed on the inc_count() fastpath.
q

Quick Quiz 5.24:
Why on earth do we need to acquire the lock in count_
register_thread() in Listing 5.5? It is a single prop-
erly aligned machine-word store to a location that no other
thread is modifying, so it should be atomic anyway, right?

Answer:
This lock could in fact be omitted, but better safe than
sorry, especially given that this function is executed only
at thread startup, and is therefore not on any critical path.
Now, if we were testing on machines with thousands of
CPUs, we might need to omit the lock, but on machines
with “only” a hundred or so CPUs, there is no need to get
fancy. q

Quick Quiz 5.25:
Fine, but the Linux kernel doesn’t have to acquire a lock
when reading out the aggregate value of per-CPU counters.
So why should user-space code need to do this???

Answer:
Remember, the Linux kernel’s per-CPU variables are
always accessible, even if the corresponding CPU is
offline—even if the corresponding CPU never existed
and never will exist.

Listing E.1: Per-Thread Statistical Counters With Lockless
Summation

1 unsigned long __thread counter = 0;
2 unsigned long *counterp[NR_THREADS] = { NULL };
3 int finalthreadcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5

6 static __inline__ void inc_count(void)
7 {
8 WRITE_ONCE(counter, counter + 1);
9 }

10

11 static __inline__ unsigned long read_count(void)
12 /* need to tweak counttorture! */
13 {
14 int t;
15 unsigned long sum = 0;
16

17 for_each_thread(t)
18 if (READ_ONCE(counterp[t]) != NULL)
19 sum += READ_ONCE(*counterp[t]);
20 return sum;
21 }
22

23 void count_register_thread(unsigned long *p)
24 {
25 WRITE_ONCE(counterp[smp_thread_id()], &counter);
26 }
27

28 void count_unregister_thread(int nthreadsexpected)
29 {
30 spin_lock(&final_mutex);
31 finalthreadcount++;
32 spin_unlock(&final_mutex);
33 while (READ_ONCE(finalthreadcount) < nthreadsexpected)
34 poll(NULL, 0, 1);
35 }

One workaround is to ensure that each thread contin-
ues to exist until all threads are finished, as shown in
Listing E.1 (count_tstat.c). Analysis of this code is
left as an exercise to the reader, however, please note
that it requires tweaks in the counttorture.h counter-
evaluation scheme. (Hint: See #ifndef KEEP_GCC_
THREAD_LOCAL.) Chapter 9 will introduce synchroniza-
tion mechanisms that handle this situation in a much more
graceful manner. q

Quick Quiz 5.26:
What fundamental difference is there between counting
packets and counting the total number of bytes in the
packets, given that the packets vary in size?

Answer:
When counting packets, the counter is only incremented
by the value one. On the other hand, when counting bytes,
the counter might be incremented by largish numbers.

Why does this matter? Because in the increment-by-
one case, the value returned will be exact in the sense that
the counter must necessarily have taken on that value at
some point in time, even if it is impossible to say precisely

E.5. COUNTING 413

when that point occurred. In contrast, when counting
bytes, two different threads might return values that are
inconsistent with any global ordering of operations.

To see this, suppose that thread 0 adds the value three to
its counter, thread 1 adds the value five to its counter, and
threads 2 and 3 sum the counters. If the system is “weakly
ordered” or if the compiler uses aggressive optimizations,
thread 2 might find the sum to be three and thread 3 might
find the sum to be five. The only possible global orders of
the sequence of values of the counter are 0,3,8 and 0,5,8,
and neither order is consistent with the results obtained.

If you missed this one, you are not alone. Michael Scott
used this question to stump Paul E. McKenney during
Paul’s Ph.D. defense. q

Quick Quiz 5.27:
Given that the reader must sum all the threads’ counters,
this could take a long time given large numbers of threads.
Is there any way that the increment operation can remain
fast and scalable while allowing readers to also enjoy
reasonable performance and scalability?

Answer:
One approach would be to maintain a global approxi-
mation to the value. Updaters would increment their
per-thread variable, but when it reached some predefined
limit, atomically add it to a global variable, then zero their
per-thread variable. This would permit a tradeoff between
average increment overhead and accuracy of the value
read out.

The reader is encouraged to think up and try out other
approaches, for example, using a combining tree. q

Quick Quiz 5.28:
Why does Listing 5.7 provide add_count() and sub_
count() instead of the inc_count() and dec_count()
interfaces show in Section 5.2?

Answer:
Because structures come in different sizes. Of course,
a limit counter corresponding to a specific size of struc-
ture might still be able to use inc_count() and dec_
count(). q

Quick Quiz 5.29:
What is with the strange form of the condition on line 3 of
Listing 5.7? Why not the following more intuitive form
of the fastpath?

3 if (counter + delta <= countermax) {
4 counter += delta;
5 return 1;
6 }

Answer:
Two words. “Integer overflow.”

Try the above formulation with counter equal to 10
and delta equal to ULONG_MAX. Then try it again with
the code shown in Listing 5.7.

A good understanding of integer overflow will be re-
quired for the rest of this example, so if you have never
dealt with integer overflow before, please try several ex-
amples to get the hang of it. Integer overflow can some-
times be more difficult to get right than parallel algo-
rithms! q

Quick Quiz 5.30:
Why does globalize_count() zero the per-thread vari-
ables, only to later call balance_count() to refill them
in Listing 5.7? Why not just leave the per-thread variables
non-zero?

Answer:
That is in fact what an earlier version of this code did.
But addition and subtraction are extremely cheap, and
handling all of the special cases that arise is quite complex.
Again, feel free to try it yourself, but beware of integer
overflow! q

Quick Quiz 5.31:
Given that globalreserve counted against us in add_
count(), why doesn’t it count for us in sub_count() in
Listing 5.7?

Answer:
The globalreserve variable tracks the sum of all
threads’ countermax variables. The sum of these
threads’ counter variables might be anywhere from zero
to globalreserve. We must therefore take a conserva-
tive approach, assuming that all threads’ counter vari-
ables are full in add_count() and that they are all empty
in sub_count().

But remember this question, as we will come back to it
later. q

Quick Quiz 5.32:
Suppose that one thread invokes add_count() shown

414 APPENDIX E. ANSWERS TO QUICK QUIZZES

in Listing 5.7, and then another thread invokes sub_
count(). Won’t sub_count() return failure even
though the value of the counter is non-zero?

Answer:
Indeed it will! In many cases, this will be a problem,
as discussed in Section 5.3.3, and in those cases the al-
gorithms from Section 5.4 will likely be preferable. q

Quick Quiz 5.33:
Why have both add_count() and sub_count() in List-
ing 5.7? Why not simply pass a negative number to add_
count()?

Answer:
Given that add_count() takes an unsigned long as its
argument, it is going to be a bit tough to pass it a negative
number. And unless you have some anti-matter memory,
there is little point in allowing negative numbers when
counting the number of structures in use! q

Quick Quiz 5.34:
Why set counter to countermax / 2 in line 15 of List-
ing 5.8? Wouldn’t it be simpler to just take countermax
counts?

Answer:
First, it really is reserving countermax counts (see
line 14), however, it adjusts so that only half of these
are actually in use by the thread at the moment. This
allows the thread to carry out at least countermax / 2
increments or decrements before having to refer back to
globalcount again.

Note that the accounting in globalcount remains ac-
curate, thanks to the adjustment in line 18. q

Quick Quiz 5.35:
In Figure 5.6, even though a quarter of the remaining
count up to the limit is assigned to thread 0, only an
eighth of the remaining count is consumed, as indicated
by the uppermost dotted line connecting the center and
the rightmost configurations. Why is that?

Answer:
The reason this happened is that thread 0’s counter was
set to half of its countermax. Thus, of the quarter as-
signed to thread 0, half of that quarter (one eighth) came
from globalcount, leaving the other half (again, one
eighth) to come from the remaining count.

There are two purposes for taking this approach: (1) To
allow thread 0 to use the fastpath for decrements as well

as increments, and (2) To reduce the inaccuracies if all
threads are monotonically incrementing up towards the
limit. To see this last point, step through the algorithm
and watch what it does. q

Quick Quiz 5.36:
Why is it necessary to atomically manipulate the thread’s
counter and countermax variables as a unit? Wouldn’t
it be good enough to atomically manipulate them individ-
ually?

Answer:
This might well be possible, but great care is re-
quired. Note that removing counter without first zeroing
countermax could result in the corresponding thread in-
creasing counter immediately after it was zeroed, com-
pletely negating the effect of zeroing the counter.

The opposite ordering, namely zeroing countermax
and then removing counter, can also result in a non-zero
counter. To see this, consider the following sequence of
events:

1. Thread A fetches its countermax, and finds that it
is non-zero.

2. Thread B zeroes Thread A’s countermax.

3. Thread B removes Thread A’s counter.

4. Thread A, having found that its countermax is non-
zero, proceeds to add to its counter, resulting in a
non-zero value for counter.

Again, it might well be possible to atomically manipu-
late countermax and counter as separate variables, but
it is clear that great care is required. It is also quite likely
that doing so will slow down the fastpath.

Exploring these possibilities are left as exercises for
the reader. q

Quick Quiz 5.37:
In what way does line 7 of Listing 5.11 violate the C
standard?

Answer:
It assumes eight bits per byte. This assumption does hold
for all current commodity microprocessors that can be
easily assembled into shared-memory multiprocessors,
but certainly does not hold for all computer systems that
have ever run C code. (What could you do instead in
order to comply with the C standard? What drawbacks
would it have?) q

E.5. COUNTING 415

Quick Quiz 5.38:
Given that there is only one counterandmax variable,
why bother passing in a pointer to it on line 18 of List-
ing 5.11?

Answer:
There is only one counterandmax variable per
thread. Later, we will see code that needs to pass
other threads’ counterandmax variables to split_
counterandmax(). q

Quick Quiz 5.39:
Why does merge_counterandmax() in Listing 5.11 re-
turn an int rather than storing directly into an atomic_t?

Answer:
Later, we will see that we need the int return to pass to
the atomic_cmpxchg() primitive. q

Quick Quiz 5.40:
Yecch! Why the ugly goto on line 11 of Listing 5.12?
Haven’t you heard of the break statement???

Answer:
Replacing the goto with a break would require keeping
a flag to determine whether or not line 15 should return,
which is not the sort of thing you want on a fastpath. If
you really hate the goto that much, your best bet would be
to pull the fastpath into a separate function that returned
success or failure, with “failure” indicating a need for
the slowpath. This is left as an exercise for goto-hating
readers. q

Quick Quiz 5.41:
Why would the atomic_cmpxchg() primitive at lines 13-
14 of Listing 5.12 ever fail? After all, we picked up its
old value on line 9 and have not changed it!

Answer:
Later, we will see how the flush_local_count()
function in Listing 5.14 might update this thread’s
counterandmax variable concurrently with the execu-
tion of the fastpath on lines 8-14 of Listing 5.12. q

Quick Quiz 5.42:
What stops a thread from simply refilling its
counterandmax variable immediately after flush_
local_count() on line 14 of Listing 5.14 empties it?

Answer:
This other thread cannot refill its counterandmax un-
til the caller of flush_local_count() releases the
gblcnt_mutex. By that time, the caller of flush_
local_count() will have finished making use of the
counts, so there will be no problem with this other thread
refilling—assuming that the value of globalcount is
large enough to permit a refill. q

Quick Quiz 5.43:
What prevents concurrent execution of the fastpath of
either add_count() or sub_count() from interfering
with the counterandmax variable while flush_local_
count() is accessing it on line 27 of Listing 5.14 empties
it?

Answer:
Nothing. Consider the following three cases:

1. If flush_local_count()’s atomic_xchg() exe-
cutes before the split_counterandmax() of ei-
ther fastpath, then the fastpath will see a zero
counter and countermax, and will thus transfer
to the slowpath (unless of course delta is zero).

2. If flush_local_count()’s atomic_xchg() ex-
ecutes after the split_counterandmax() of ei-
ther fastpath, but before that fastpath’s atomic_
cmpxchg(), then the atomic_cmpxchg() will fail,
causing the fastpath to restart, which reduces to
case 1 above.

3. If flush_local_count()’s atomic_xchg() exe-
cutes after the atomic_cmpxchg() of either fast-
path, then the fastpath will (most likely) complete
successfully before flush_local_count() zeroes
the thread’s counterandmax variable.

Either way, the race is resolved correctly. q

Quick Quiz 5.44:
Given that the atomic_set() primitive does a simple
store to the specified atomic_t, how can line 21 of
balance_count() in Listing 5.15 work correctly in face
of concurrent flush_local_count() updates to this
variable?

Answer:
The caller of both balance_count() and flush_
local_count() hold gblcnt_mutex, so only one may
be executing at a given time. q

416 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 5.45:
But signal handlers can be migrated to some other CPU
while running. Doesn’t this possibility require that atomic
instructions and memory barriers are required to reliably
communicate between a thread and a signal handler that
interrupts that thread?

Answer:
No. If the signal handler is migrated to another CPU, then
the interrupted thread is also migrated along with it. q

Quick Quiz 5.46:
In Figure 5.7, why is the REQ theft state colored red?

Answer:
To indicate that only the fastpath is permitted to change
the theft state, and that if the thread remains in this state
for too long, the thread running the slowpath will resend
the POSIX signal. q

Quick Quiz 5.47:
In Figure 5.7, what is the point of having separate REQ
and ACK theft states? Why not simplify the state ma-
chine by collapsing them into a single REQACK state?
Then whichever of the signal handler or the fastpath gets
there first could set the state to READY.

Answer:
Reasons why collapsing the REQ and ACK states would
be a very bad idea include:

1. The slowpath uses the REQ and ACK states to deter-
mine whether the signal should be retransmitted. If
the states were collapsed, the slowpath would have
no choice but to send redundant signals, which would
have the unhelpful effect of needlessly slowing down
the fastpath.

2. The following race would result:

(a) The slowpath sets a given thread’s state to
REQACK.

(b) That thread has just finished its fastpath, and
notes the REQACK state.

(c) The thread receives the signal, which also notes
the REQACK state, and, because there is no
fastpath in effect, sets the state to READY.

(d) The slowpath notes the READY state, steals
the count, and sets the state to IDLE, and com-
pletes.

(e) The fastpath sets the state to READY, disabling
further fastpath execution for this thread.

The basic problem here is that the combined
REQACK state can be referenced by both the signal
handler and the fastpath. The clear separation main-
tained by the four-state setup ensures orderly state
transitions.

That said, you might well be able to make a three-state
setup work correctly. If you do succeed, compare care-
fully to the four-state setup. Is the three-state solution
really preferable, and why or why not? q

Quick Quiz 5.48:
In Listing 5.17 function flush_local_count_sig(),
why are there READ_ONCE() and WRITE_ONCE() wrap-
pers around the uses of the theft per-thread variable?

Answer:
The first one (on line 11) can be argued to be unnecessary.
The last two (lines 14 and 16) are important. If these
are removed, the compiler would be within its rights to
rewrite lines 14-16 as follows:

14 theft = THEFT_READY;
15 if (counting) {
16 theft = THEFT_ACK;
17 }

This would be fatal, as the slowpath might see the
transient value of THEFT_READY, and start stealing before
the corresponding thread was ready. q

Quick Quiz 5.49:
In Listing 5.17, why is it safe for line 28 to directly access
the other thread’s countermax variable?

Answer:
Because the other thread is not permitted to change the
value of its countermax variable unless it holds the
gblcnt_mutex lock. But the caller has acquired this
lock, so it is not possible for the other thread to hold it,
and therefore the other thread is not permitted to change
its countermax variable. We can therefore safely access
it—but not change it. q

Quick Quiz 5.50:
In Listing 5.17, why doesn’t line 33 check for the current
thread sending itself a signal?

E.5. COUNTING 417

Answer:
There is no need for an additional check. The
caller of flush_local_count() has already invoked
globalize_count(), so the check on line 28 will have
succeeded, skipping the later pthread_kill(). q

Quick Quiz 5.51:
The code in Listing 5.17, works with GCC and POSIX.
What would be required to make it also conform to the
ISO C standard?

Answer:
The theft variable must be of type sig_atomic_t to
guarantee that it can be safely shared between the signal
handler and the code interrupted by the signal. q

Quick Quiz 5.52:
In Listing 5.17, why does line 41 resend the signal?

Answer:
Because many operating systems over several decades
have had the property of losing the occasional signal.
Whether this is a feature or a bug is debatable, but irrel-
evant. The obvious symptom from the user’s viewpoint
will not be a kernel bug, but rather a user application
hanging.

Your user application hanging! q

Quick Quiz 5.53:
Not only are POSIX signals slow, sending one to each
thread simply does not scale. What would you do if you
had (say) 10,000 threads and needed the read side to be
fast?

Answer:
One approach is to use the techniques shown in Sec-
tion 5.2.3, summarizing an approximation to the over-
all counter value in a single variable. Another approach
would be to use multiple threads to carry out the reads,
with each such thread interacting with a specific subset of
the updating threads. q

Quick Quiz 5.54:
What if you want an exact limit counter to be exact only
for its lower limit, but to allow the upper limit to be
inexact?

Answer:
One simple solution is to overstate the upper limit by the
desired amount. The limiting case of such overstatement
results in the upper limit being set to the largest value that
the counter is capable of representing. q

Quick Quiz 5.55:
What else had you better have done when using a biased
counter?

Answer:
You had better have set the upper limit to be large enough
accommodate the bias, the expected maximum number
of accesses, and enough “slop” to allow the counter to
work efficiently even when the number of accesses is at
its maximum. q

Quick Quiz 5.56:
This is ridiculous! We are read-acquiring a reader-writer
lock to update the counter? What are you playing at???

Answer:
Strange, perhaps, but true! Almost enough to make you
think that the name “reader-writer lock” was poorly cho-
sen, isn’t it? q

Quick Quiz 5.57:
What other issues would need to be accounted for in a
real system?

Answer:
A huge number!

Here are a few to start with:

1. There could be any number of devices, so that the
global variables are inappropriate, as are the lack of
arguments to functions like do_io().

2. Polling loops can be problematic in real systems. In
many cases, it is far better to have the last completing
I/O wake up the device-removal thread.

3. The I/O might fail, and so do_io() will likely need
a return value.

4. If the device fails, the last I/O might never complete.
In such cases, there might need to be some sort of
timeout to allow error recovery.

5. Both add_count() and sub_count() can fail, but
their return values are not checked.

6. Reader-writer locks do not scale well. One way of
avoiding the high read-acquisition costs of reader-
writer locks is presented in Chapters 7 and 9.

7. The polling loops result in poor energy efficiency.
An event-driven design is preferable. q

418 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 5.58:
On the count_stat.c row of Table 5.1, we see that the
read-side scales linearly with the number of threads. How
is that possible given that the more threads there are, the
more per-thread counters must be summed up?

Answer:
The read-side code must scan the entire fixed-size ar-
ray, regardless of the number of threads, so there is no
difference in performance. In contrast, in the last two
algorithms, readers must do more work when there are
more threads. In addition, the last two algorithms inter-
pose an additional level of indirection because they map
from integer thread ID to the corresponding __thread
variable. q

Quick Quiz 5.59:
Even on the last row of Table 5.1, the read-side per-
formance of these statistical counter implementations is
pretty horrible. So why bother with them?

Answer:
“Use the right tool for the job.”

As can be seen from Figure 5.1, single-variable atomic
increment need not apply for any job involving heavy use
of parallel updates. In contrast, the algorithms shown in
Table 5.1 do an excellent job of handling update-heavy
situations. Of course, if you have a read-mostly situ-
ation, you should use something else, for example, an
eventually consistent design featuring a single atomically
incremented variable that can be read out using a single
load, similar to the approach used in Section 5.2.3. q

Quick Quiz 5.60:
Given the performance data shown in Table 5.2, we should
always prefer signals over atomic operations, right?

Answer:
That depends on the workload. Note that on a 64-core
system, you need more than one hundred non-atomic
operations (with roughly a 40-nanosecond performance
gain) to make up for even one signal (with almost a 5-
microsecond performance loss). Although there are no
shortage of workloads with far greater read intensity, you
will need to consider your particular workload.

In addition, although memory barriers have historically
been expensive compared to ordinary instructions, you
should check this on the specific hardware you will be
running. The properties of computer hardware do change
over time, and algorithms must change accordingly. q

Quick Quiz 5.61:
Can advanced techniques be applied to address the lock
contention for readers seen in Table 5.2?

Answer:
One approach is to give up some update-side perfor-
mance, as is done with scalable non-zero indicators
(SNZI) [ELLM07]. There are a number of other ways
one might go about this, and these are left as exercises for
the reader. Any number of approaches that apply hierar-
chy, which replace frequent global-lock acquisitions with
local lock acquisitions corresponding to lower levels of
the hierarchy, should work quite well. q

Quick Quiz 5.62:
The ++ operator works just fine for 1,000-digit numbers!
Haven’t you heard of operator overloading???

Answer:
In the C++ language, you might well be able to use ++
on a 1,000-digit number, assuming that you had access to
a class implementing such numbers. But as of 2010, the
C language does not permit operator overloading. q

Quick Quiz 5.63:
But if we are going to have to partition everything, why
bother with shared-memory multithreading? Why not
just partition the problem completely and run as multiple
processes, each in its own address space?

Answer:
Indeed, multiple processes with separate address spaces
can be an excellent way to exploit parallelism, as the
proponents of the fork-join methodology and the Erlang
language would be very quick to tell you. However, there
are also some advantages to shared-memory parallelism:

1. Only the most performance-critical portions of the
application must be partitioned, and such portions
are usually a small fraction of the application.

2. Although cache misses are quite slow compared
to individual register-to-register instructions, they
are typically considerably faster than inter-process-
communication primitives, which in turn are consid-
erably faster than things like TCP/IP networking.

3. Shared-memory multiprocessors are readily avail-
able and quite inexpensive, so, in stark contrast to
the 1990s, there is little cost penalty for use of shared-
memory parallelism.

As always, use the right tool for the job! q

E.6. PARTITIONING AND SYNCHRONIZATION DESIGN 419

P1

P2

P3P4

P5

Figure E.2: Dining Philosophers Problem, Fully Parti-
tioned

E.6 Partitioning and Synchroniza-
tion Design

Quick Quiz 6.1:
Is there a better solution to the Dining Philosophers Prob-
lem?

Answer:
One such improved solution is shown in Figure E.2,

where the philosophers are simply provided with an ad-
ditional five forks. All five philosophers may now eat
simultaneously, and there is never any need for philoso-
phers to wait on one another. In addition, this approach
offers greatly improved disease control.

This solution might seem like cheating to some, but
such “cheating” is key to finding good solutions to many
concurrency problems. q

Quick Quiz 6.2:
And in just what sense can this “horizontal parallelism”
be said to be “horizontal”?

Answer:
Inman was working with protocol stacks, which are nor-
mally depicted vertically, with the application on top and
the hardware interconnect on the bottom. Data flows up
and down this stack. “Horizontal parallelism” processes
packets from different network connections in parallel,
while “vertical parallelism” handles different protocol-
processing steps for a given packet in parallel.

“Vertical parallelism” is also called “pipelining”. q

Quick Quiz 6.3:
In this compound double-ended queue implementation,
what should be done if the queue has become non-empty
while releasing and reacquiring the lock?

Answer:
In this case, simply dequeue an item from the non-empty
queue, release both locks, and return. q

Quick Quiz 6.4:
Is the hashed double-ended queue a good solution? Why
or why not?

Answer:
The best way to answer this is to run lockhdeq.c on
a number of different multiprocessor systems, and you
are encouraged to do so in the strongest possible terms.
One reason for concern is that each operation on this
implementation must acquire not one but two locks.

The first well-designed performance study will be
cited.6 Do not forget to compare to a sequential imple-
mentation! q

Quick Quiz 6.5:
Move all the elements to the queue that became empty?
In what possible universe is this brain-dead solution in
any way optimal???

Answer:
It is optimal in the case where data flow switches direction
only rarely. It would of course be an extremely poor
choice if the double-ended queue was being emptied from
both ends concurrently. This of course raises another
question, namely, in what possible universe emptying
from both ends concurrently would be a reasonable thing
to do. Work-stealing queues are one possible answer to
this question. q

Quick Quiz 6.6:
Why can’t the compound parallel double-ended queue
implementation be symmetric?

Answer:
The need to avoid deadlock by imposing a lock hierar-
chy forces the asymmetry, just as it does in the fork-
numbering solution to the Dining Philosophers Problem
(see Section 6.1.1). q

6 The studies by Dalessandro et al. [DCW+11] and Dice et
al. [DLM+10] are good starting points.

420 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 6.7:
Why is it necessary to retry the right-dequeue operation
on line 28 of Listing 6.3?

Answer:
This retry is necessary because some other thread might
have enqueued an element between the time that this
thread dropped d->rlock on line 25 and the time that it
reacquired this same lock on line 27. q

Quick Quiz 6.8:
Surely the left-hand lock must sometimes be available!!!
So why is it necessary that line 25 of Listing 6.3 uncondi-
tionally release the right-hand lock?

Answer:
It would be possible to use spin_trylock() to attempt
to acquire the left-hand lock when it was available. How-
ever, the failure case would still need to drop the right-
hand lock and then re-acquire the two locks in order.
Making this transformation (and determining whether or
not it is worthwhile) is left as an exercise for the reader.
q

Quick Quiz 6.9:
But in the case where data is flowing in only one direction,
the algorithm shown in Listing 6.3 will have both ends
attempting to acquire the same lock whenever the con-
suming end empties its underlying double-ended queue.
Doesn’t that mean that sometimes this algorithm fails to
provide concurrent access to both ends of the queue even
when the queue contains an arbitrarily large number of
elements?

Answer:
Indeed it does!

But the same is true of other algorithms claiming
this property. For example, in solutions using software
transactional memory mechanisms based on hashed ar-
rays of locks, the leftmost and rightmost elements’ ad-
dresses will sometimes happen to hash to the same lock.
These hash collisions will also prevent concurrent ac-
cess. For another example, solutions using hardware
transactional memory mechanisms with software fall-
backs [YHLR13, Mer11, JSG12] often use locking within
those software fallbacks, and thus suffer (albeit hopefully
rarely) from whatever concurrency limitations that these
locking solutions suffer from.

Therefore, as of last 2017, all practical solutions to the
concurrent double-ended queue problem fail to provide

full concurrency in at least some circumstances, including
the compound double-ended queue. q

Quick Quiz 6.10:
Why are there not one but two solutions to the double-
ended queue problem?

Answer:
There are actually at least three. The third, by Dominik
Dingel, makes interesting use of reader-writer locking,
and may be found in lockrwdeq.c. q

Quick Quiz 6.11:
The tandem double-ended queue runs about twice as fast
as the hashed double-ended queue, even when I increase
the size of the hash table to an insanely large number.
Why is that?

Answer:
The hashed double-ended queue’s locking design only
permits one thread at a time at each end, and further
requires two lock acquisitions for each operation. The
tandem double-ended queue also permits one thread at a
time at each end, and in the common case requires only
one lock acquisition per operation. Therefore, the tandem
double-ended queue should be expected to outperform
the hashed double-ended queue.

Can you created a double-ended queue that allows mul-
tiple concurrent operations at each end? If so, how? If
not, why not? q

Quick Quiz 6.12:
Is there a significantly better way of handling concurrency
for double-ended queues?

Answer:
One approach is to transform the problem to be solved so
that multiple double-ended queues can be used in paral-
lel, allowing the simpler single-lock double-ended queue
to be used, and perhaps also replace each double-ended
queue with a pair of conventional single-ended queues.
Without such “horizontal scaling”, the speedup is lim-
ited to 2.0. In contrast, horizontal-scaling designs can
achieve very large speedups, and are especially attractive
if there are multiple threads working either end of the
queue, because in this multiple-thread case the dequeue
simply cannot provide strong ordering guarantees. After
all, the fact that a given thread removed an item first in no
way implies that it will process that item first [HKLP12].
And if there are no guarantees, we may as well obtain the

E.6. PARTITIONING AND SYNCHRONIZATION DESIGN 421

performance benefits that come with refusing to provide
these guarantees.

Regardless of whether or not the problem can be trans-
formed to use multiple queues, it is worth asking whether
work can be batched so that each enqueue and dequeue op-
eration corresponds to larger units of work. This batching
approach decreases contention on the queue data struc-
tures, which increases both performance and scalability,
as will be seen in Section 6.3. After all, if you must incur
high synchronization overheads, be sure you are getting
your money’s worth.

Other researchers are working on other ways to take ad-
vantage of limited ordering guarantees in queues [KLP12].
q

Quick Quiz 6.13:
Don’t all these problems with critical sections mean that
we should just always use non-blocking synchroniza-
tion [Her90], which don’t have critical sections?

Answer:
Although non-blocking synchronization can be very use-
ful in some situations, it is no panacea. Also, non-
blocking synchronization really does have critical sec-
tions, as noted by Josh Triplett. For example, in a non-
blocking algorithm based on compare-and-swap opera-
tions, the code starting at the initial load and continuing
to the compare-and-swap is in many ways analogous to a
lock-based critical section. q

Quick Quiz 6.14:
What are some ways of preventing a structure from being
freed while its lock is being acquired?

Answer:
Here are a few possible solutions to this existence guar-
antee problem:

1. Provide a statically allocated lock that is held while
the per-structure lock is being acquired, which is an
example of hierarchical locking (see Section 6.4.2).
Of course, using a single global lock for this pur-
pose can result in unacceptably high levels of lock
contention, dramatically reducing performance and
scalability.

2. Provide an array of statically allocated locks, hash-
ing the structure’s address to select the lock to be
acquired, as described in Chapter 7. Given a hash
function of sufficiently high quality, this avoids the
scalability limitations of the single global lock, but in

read-mostly situations, the lock-acquisition overhead
can result in unacceptably degraded performance.

3. Use a garbage collector, in software environments
providing them, so that a structure cannot be deallo-
cated while being referenced. This works very well,
removing the existence-guarantee burden (and much
else besides) from the developer’s shoulders, but im-
poses the overhead of garbage collection on the pro-
gram. Although garbage-collection technology has
advanced considerably in the past few decades, its
overhead may be unacceptably high for some appli-
cations. In addition, some applications require that
the developer exercise more control over the layout
and placement of data structures than is permitted
by most garbage collected environments.

4. As a special case of a garbage collector, use a global
reference counter, or a global array of reference coun-
ters.

5. Use hazard pointers [Mic04], which can be thought
of as an inside-out reference count. Hazard-pointer-
based algorithms maintain a per-thread list of point-
ers, so that the appearance of a given pointer on any
of these lists acts as a reference to the corresponding
structure. Hazard pointers are an interesting research
direction, but have not yet seen much use in produc-
tion (written in 2008).

6. Use transactional memory (TM) [HM93, Lom77,
ST95], so that each reference and modification to
the data structure in question is performed atomi-
cally. Although TM has engendered much excite-
ment in recent years, and seems likely to be of some
use in production software, developers should ex-
ercise some caution [BLM05, BLM06, MMW07],
particularly in performance-critical code. In particu-
lar, existence guarantees require that the transaction
cover the full path from a global reference to the data
elements being updated.

7. Use RCU, which can be thought of as an extremely
lightweight approximation to a garbage collector.
Updaters are not permitted to free RCU-protected
data structures that RCU readers might still be refer-
encing. RCU is most heavily used for read-mostly
data structures, and is discussed at length in Chap-
ter 9.

For more on providing existence guarantees, see Chap-
ters 7 and 9. q

422 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 6.15:
How can a single-threaded 64-by-64 matrix multiple pos-
sibly have an efficiency of less than 1.0? Shouldn’t all
of the traces in Figure 6.17 have efficiency of exactly 1.0
when running on only one thread?

Answer:
The matmul.c program creates the specified number of
worker threads, so even the single-worker-thread case
incurs thread-creation overhead. Making the changes
required to optimize away thread-creation overhead in
the single-worker-thread case is left as an exercise to the
reader. q

Quick Quiz 6.16:
How are data-parallel techniques going to help with ma-
trix multiply? It is already data parallel!!!

Answer:
I am glad that you are paying attention! This example
serves to show that although data parallelism can be a
very good thing, it is not some magic wand that automati-
cally wards off any and all sources of inefficiency. Linear
scaling at full performance, even to “only” 64 threads,
requires care at all phases of design and implementation.

In particular, you need to pay careful attention to the
size of the partitions. For example, if you split a 64-by-64
matrix multiply across 64 threads, each thread gets only
64 floating-point multiplies. The cost of a floating-point
multiply is minuscule compared to the overhead of thread
creation.

Moral: If you have a parallel program with variable
input, always include a check for the input size being
too small to be worth parallelizing. And when it is not
helpful to parallelize, it is not helpful to incur the overhead
required to spawn a thread, now is it? q

Quick Quiz 6.17:
In what situation would hierarchical locking work well?

Answer:
If the comparison on line 31 of Listing 6.8 were replaced
by a much heavier-weight operation, then releasing bp->
bucket_lock might reduce lock contention enough to
outweigh the overhead of the extra acquisition and release
of cur->node_lock. q

Quick Quiz 6.18:
Doesn’t this resource-allocator design resemble that of
the approximate limit counters covered in Section 5.3?

Answer:
Indeed it does! We are used to thinking of allocating and
freeing memory, but the algorithms in Section 5.3 are
taking very similar actions to allocate and free “count”.
q

Quick Quiz 6.19:
In Figure 6.21, there is a pattern of performance rising
with increasing run length in groups of three samples, for
example, for run lengths 10, 11, and 12. Why?

Answer:
This is due to the per-CPU target value being three. A
run length of 12 must acquire the global-pool lock twice,
while a run length of 13 must acquire the global-pool lock
three times. q

Quick Quiz 6.20:
Allocation failures were observed in the two-thread tests
at run lengths of 19 and greater. Given the global-pool
size of 40 and the per-thread target pool size s of three,
number of threads n equal to two, and assuming that
the per-thread pools are initially empty with none of the
memory in use, what is the smallest allocation run length
m at which failures can occur? (Recall that each thread
repeatedly allocates m block of memory, and then frees
the m blocks of memory.) Alternatively, given n threads
each with pool size s, and where each thread repeatedly
first allocates m blocks of memory and then frees those
m blocks, how large must the global pool size be? Note:
Obtaining the correct answer will require you to examine
the smpalloc.c source code, and very likely single-step
it as well. You have been warned!

Answer:
This solution is adapted from one put forward by Alexey
Roytman. It is based on the following definitions:

g Number of blocks globally available.

i Number of blocks left in the initializing thread’s per-
thread pool. (This is one reason you needed to look
at the code!)

m Allocation/free run length.

n Number of threads, excluding the initialization thread.

p Per-thread maximum block consumption, including
both the blocks actually allocated and the blocks
remaining in the per-thread pool.

E.7. LOCKING 423

i

0

0

0

p-m

m

p-m

m

g-i-p(n-1)Global Pool

Per-Thread Pool

Per-Thread Allocation

n

Figure E.3: Allocator Cache Run-Length Analysis

The values g, m, and n are given. The value for p is m
rounded up to the next multiple of s, as follows:

p = s
⌊

m + s − 1
s

⌋
(E.6)

The value for i is as follows:

i =

{
g (mod 2s) = 0 : 2s
g (mod 2s) , 0 : g (mod 2s) (E.7)

The relationships between these quantities is shown
in Figure E.3. The global pool is shown on the top of
this figure, and the “extra” initializer thread’s per-thread
pool and per-thread allocations are the left-most pair of
boxes. The initializer thread has no blocks allocated,
but has i blocks stranded in its per-thread pool. The
rightmost two pairs of boxes are the per-thread pools and
per-thread allocations of threads holding the maximum
possible number of blocks, while the second-from-left
pair of boxes represents the thread currently trying to
allocate.

The total number of blocks is g, and adding up the
per-thread allocations and per-thread pools, we see that
the global pool contains g − i − p(n − 1) blocks. If the
allocating thread is to be successful, it needs at least m
blocks in the global pool, in other words:

g − i − p(n − 1) ≥ m (E.8)

The question has g = 40, s = 3, and n = 2. Equa-
tion E.7 gives i = 4, and Equation E.6 gives p = 18 for
m = 18 and p = 21 for m = 19. Plugging these into
Equation E.8 shows that m = 18 will not overflow, but
that m = 19 might well do so.

The presence of i could be considered to be a bug.
After all, why allocate memory only to have it stranded in
the initialization thread’s cache? One way of fixing this
would be to provide a memblock_flush() function that

flushed the current thread’s pool into the global pool. The
initialization thread could then invoke this function after
freeing all of the blocks. q

E.7 Locking

Quick Quiz 7.1:
Just how can serving as a whipping boy be considered to
be in any way honorable???

Answer:
The reason locking serves as a research-paper whipping
boy is because it is heavily used in practice. In contrast, if
no one used or cared about locking, most research papers
would not bother even mentioning it. q

Quick Quiz 7.2:
But the definition of deadlock only said that each thread
was holding at least one lock and waiting on another lock
that was held by some thread. How do you know that
there is a cycle?

Answer:
Suppose that there is no cycle in the graph. We would
then have a directed acyclic graph (DAG), which would
have at least one leaf node.

If this leaf node was a lock, then we would have a
thread that was waiting on a lock that wasn’t held by any
thread, which violates the definition. (And in this case the
thread would immediately acquire the lock.)

On the other hand, if this leaf node was a thread, then
we would have a thread that was not waiting on any lock,
again violating the definition. (And in this case, the thread
would either be running or be blocked on something that
is not a lock.)

Therefore, given this definition of deadlock, there must
be a cycle in the corresponding graph. q

Quick Quiz 7.3:
Are there any exceptions to this rule, so that there really
could be a deadlock cycle containing locks from both the
library and the caller, even given that the library code
never invokes any of the caller’s functions?

Answer:
Indeed there are! Here are a few of them:

424 APPENDIX E. ANSWERS TO QUICK QUIZZES

1. If one of the library function’s arguments is a pointer
to a lock that this library function acquires, and if the
library function holds one of its locks while acquir-
ing the caller’s lock, then we could have a deadlock
cycle involving both caller and library locks.

2. If one of the library functions returns a pointer to a
lock that is acquired by the caller, and if the caller
acquires one of its locks while holding the library’s
lock, we could again have a deadlock cycle involving
both caller and library locks.

3. If one of the library functions acquires a lock and
then returns while still holding it, and if the caller
acquires one of its locks, we have yet another way
to create a deadlock cycle involving both caller and
library locks.

4. If the caller has a signal handler that acquires locks,
then the deadlock cycle can involve both caller and li-
brary locks. In this case, however, the library’s locks
are innocent bystanders in the deadlock cycle. That
said, please note that acquiring a lock from within a
signal handler is a no-no in most environments—it
is not just a bad idea, it is unsupported. q

Quick Quiz 7.4:
But if qsort() releases all its locks before invoking the
comparison function, how can it protect against races with
other qsort() threads?

Answer:
By privatizing the data elements being compared (as dis-
cussed in Chapter 8) or through use of deferral mecha-
nisms such as reference counting (as discussed in Chap-
ter 9). q

Quick Quiz 7.5:
Name one common exception where it is perfectly rea-
sonable to pass a pointer to a lock into a function.

Answer:
Locking primitives, of course! q

Quick Quiz 7.6:
Doesn’t the fact that pthread_cond_wait() first re-
leases the mutex and then re-acquires it eliminate the
possibility of deadlock?

Answer:
Absolutely not!

Consider a program that acquires mutex_a, and then
mutex_b, in that order, and then passes mutex_a to
pthread_cond_wait. Now, pthread_cond_wait will
release mutex_a, but will re-acquire it before returning.
If some other thread acquires mutex_a in the meantime
and then blocks on mutex_b, the program will deadlock.
q

Quick Quiz 7.7:
Can the transformation from Listing 7.3 to Listing 7.4 be
applied universally?

Answer:
Absolutely not!

This transformation assumes that the layer_2_
processing() function is idempotent, given that it
might be executed multiple times on the same packet
when the layer_1() routing decision changes. There-
fore, in real life, this transformation can become arbitrar-
ily complex. q

Quick Quiz 7.8:
But the complexity in Listing 7.4 is well worthwhile given
that it avoids deadlock, right?

Answer:
Maybe.

If the routing decision in layer_1() changes often
enough, the code will always retry, never making forward
progress. This is termed “livelock” if no thread makes any
forward progress or “starvation” if some threads make
forward progress but others do not (see Section 7.1.2). q

Quick Quiz 7.9:
When using the “acquire needed locks first” approach
described in Section 7.1.1.6, how can livelock be avoided?

Answer:
Provide an additional global lock. If a given thread has
repeatedly tried and failed to acquire the needed locks,
then have that thread unconditionally acquire the new
global lock, and then unconditionally acquire any needed
locks. (Suggested by Doug Lea.) q

Quick Quiz 7.10:
Why is it illegal to acquire a Lock A that is acquired
outside of a signal handler without blocking signals while
holding a Lock B that is acquired within a signal handler?

E.7. LOCKING 425

Answer:
Because this would lead to deadlock. Given that Lock A is
held outside of a signal handler without blocking signals,
a signal might be handled while holding this lock. The
corresponding signal handler might then acquire Lock B,
so that Lock B is acquired while holding Lock A. There-
fore, if we also acquire Lock A while holding Lock B as
called out in the question, we will have a deadlock cycle.

Therefore, it is illegal to acquire a lock that is acquired
outside of a signal handler without blocking signals while
holding another lock that is acquired within a signal han-
dler. q

Quick Quiz 7.11:
How can you legally block signals within a signal handler?

Answer:
One of the simplest and fastest ways to do so is to use the
sa_mask field of the struct sigaction that you pass
to sigaction() when setting up the signal. q

Quick Quiz 7.12:
If acquiring locks in signal handlers is such a bad idea,
why even discuss ways of making it safe?

Answer:
Because these same rules apply to the interrupt handlers
used in operating-system kernels and in some embedded
applications.

In many application environments, acquiring locks in
signal handlers is frowned upon [Ope97]. However, that
does not stop clever developers from (usually unwisely)
fashioning home-brew locks out of atomic operations.
And atomic operations are in many cases perfectly legal
in signal handlers. q

Quick Quiz 7.13:
Given an object-oriented application that passes control
freely among a group of objects such that there is no
straightforward locking hierarchy,7 layered or otherwise,
how can this application be parallelized?

Answer:
There are a number of approaches:

7 Also known as “object-oriented spaghetti code.”

1. In the case of parametric search via simulation,
where a large number of simulations will be run in or-
der to converge on (for example) a good design for a
mechanical or electrical device, leave the simulation
single-threaded, but run many instances of the sim-
ulation in parallel. This retains the object-oriented
design, and gains parallelism at a higher level, and
likely also avoids synchronization overhead.

2. Partition the objects into groups such that there is no
need to operate on objects in more than one group at
a given time. Then associate a lock with each group.
This is an example of a single-lock-at-a-time design,
which discussed in Section 7.1.1.7.

3. Partition the objects into groups such that threads can
all operate on objects in the groups in some group-
wise ordering. Then associate a lock with each group,
and impose a locking hierarchy over the groups.

4. Impose an arbitrarily selected hierarchy on the locks,
and then use conditional locking if it is necessary
to acquire a lock out of order, as was discussed in
Section 7.1.1.5.

5. Before carrying out a given group of operations, pre-
dict which locks will be acquired, and attempt to
acquire them before actually carrying out any up-
dates. If the prediction turns out to be incorrect, drop
all the locks and retry with an updated prediction that
includes the benefit of experience. This approach
was discussed in Section 7.1.1.6.

6. Use transactional memory. This approach has a num-
ber of advantages and disadvantages which will be
discussed in Section 17.2.

7. Refactor the application to be more concurrency-
friendly. This would likely also have the side ef-
fect of making the application run faster even when
single-threaded, but might also make it more difficult
to modify the application.

8. Use techniques from later chapters in addition to
locking. q

Quick Quiz 7.14:
How can the livelock shown in Listing 7.5 be avoided?

Answer:
Listing 7.4 provides some good hints. In many cases,
livelocks are a hint that you should revisit your locking

426 APPENDIX E. ANSWERS TO QUICK QUIZZES

design. Or visit it in the first place if your locking design
“just grew”.

That said, one good-and-sufficient approach due to
Doug Lea is to use conditional locking as described in Sec-
tion 7.1.1.5, but combine this with acquiring all needed
locks first, before modifying shared data, as described in
Section 7.1.1.6. If a given critical section retries too many
times, unconditionally acquire a global lock, then uncon-
ditionally acquire all the needed locks. This avoids both
deadlock and livelock, and scales reasonably assuming
that the global lock need not be acquired too often. q

Quick Quiz 7.15:
What problems can you spot in the code in Listing 7.6?

Answer:
Here are a couple:

1. A one-second wait is way too long for most uses.
Wait intervals should begin with roughly the time
required to execute the critical section, which will
normally be in the microsecond or millisecond range.

2. The code does not check for overflow. On the other
hand, this bug is nullified by the previous bug: 32
bits worth of seconds is more than 50 years. q

Quick Quiz 7.16:
Wouldn’t it be better just to use a good parallel design so
that lock contention was low enough to avoid unfairness?

Answer:
It would be better in some sense, but there are situations
where it can be appropriate to use designs that sometimes
result in high lock contentions.

For example, imagine a system that is subject to a rare
error condition. It might well be best to have a simple
error-handling design that has poor performance and scal-
ability for the duration of the rare error condition, as
opposed to a complex and difficult-to-debug design that
is helpful only when one of those rare error conditions is
in effect.

That said, it is usually worth putting some effort into
attempting to produce a design that both simple as well
as efficient during error conditions, for example by parti-
tioning the problem. q

Quick Quiz 7.17:
How might the lock holder be interfered with?

Answer:
If the data protected by the lock is in the same cache line
as the lock itself, then attempts by other CPUs to acquire
the lock will result in expensive cache misses on the part
of the CPU holding the lock. This is a special case of
false sharing, which can also occur if a pair of variables
protected by different locks happen to share a cache line.
In contrast, if the lock is in a different cache line than the
data that it protects, the CPU holding the lock will usually
suffer a cache miss only on first access to a given variable.

Of course, the downside of placing the lock and data
into separate cache lines is that the code will incur two
cache misses rather than only one in the uncontended case.
q

Quick Quiz 7.18:
Does it ever make sense to have an exclusive lock acquisi-
tion immediately followed by a release of that same lock,
that is, an empty critical section?

Answer:
This usage is rare, but is occasionally used. The point
is that the semantics of exclusive locks have two com-
ponents: (1) the familiar data-protection semantic and
(2) a messaging semantic, where releasing a given lock
notifies a waiting acquisition of that same lock. An empty
critical section uses the messaging component without
the data-protection component.

The rest of this answer provides some example uses of
empty critical sections, however, these examples should
be considered “gray magic.”8 As such, empty critical
sections are almost never used in practice. Nevertheless,
pressing on into this gray area . . .

One historical use of empty critical sections appeared in
the networking stack of the 2.4 Linux kernel. This usage
pattern can be thought of as a way of approximating the
effects of read-copy update (RCU), which is discussed in
Section 9.5.

The empty-lock-critical-section idiom can also be used
to reduce lock contention in some situations. For ex-
ample, consider a multithreaded user-space application
where each thread processes unit of work maintained in
a per-thread list, where thread are prohibited from touch-
ing each others’ lists. There could also be updates that
require that all previously scheduled units of work have
completed before the update can progress. One way to
handle this is to schedule a unit of work on each thread, so

8 Thanks to Alexey Roytman for this decription.

E.7. LOCKING 427

that when all of these units of work complete, the update
may proceed.

In some applications, threads can come and go. For
example, each thread might correspond to one user of the
application, and thus be removed when that user logs out
or otherwise disconnects. In many applications, threads
cannot depart atomically: They must instead explicitly un-
ravel themselves from various portions of the application
using a specific sequence of actions. One specific ac-
tion will be refusing to accept further requests from other
threads, and another specific action will be disposing of
any remaining units of work on its list, for example, by
placing these units of work in a global work-item-disposal
list to be taken by one of the remaining threads. (Why not
just drain the thread’s work-item list by executing each
item? Because a given work item might generate more
work items, so that the list could not be drained in a timely
fashion.)

If the application is to perform and scale well, a good
locking design is required. One common solution is to
have a global lock (call it G) protecting the entire pro-
cess of departing (and perhaps other things as well), with
finer-grained locks protecting the individual unraveling
operations.

Now, a departing thread must clearly refuse to accept
further requests before disposing of the work on its list,
because otherwise additional work might arrive after the
disposal action, which would render that disposal action
ineffective. So simplified pseudocode for a departing
thread might be as follows:

1. Acquire lock G.

2. Acquire the lock guarding communications.

3. Refuse further communications from other threads.

4. Release the lock guarding communications.

5. Acquire the lock guarding the global work-item-
disposal list.

6. Move all pending work items to the global work-
item-disposal list.

7. Release the lock guarding the global work-item-
disposal list.

8. Release lock G.

Of course, a thread that needs to wait for all pre-existing
work items will need to take departing threads into ac-
count. To see this, suppose that this thread starts waiting
for all pre-existing work items just after a departing thread
has refused further communications from other threads.
How can this thread wait for the departing thread’s work
items to complete, keeping in mind that threads are not
allowed to access each others’ lists of work items?

One straightforward approach is for this thread to ac-
quire G and then the lock guarding the global work-item-
disposal list, then move the work items to its own list. The
thread then release both locks, places a work item on the
end of it own list, and then wait for all of the work items
that it placed on each thread’s list (including its own) to
complete.

This approach does work well in many cases, but if
special processing is required for each work item as it
is pulled in from the global work-item-disposal list, the
result could be excessive contention on G. One way to
avoid that contention is to acquire G and then immediately
release it. Then the process of waiting for all prior work
items look something like the following:

1. Set a global counter to one and initialize a condition
variable to zero.

2. Send a message to all threads to cause them to atom-
ically increment the global counter, and then to en-
queue a work item. The work item will atomically
decrement the global counter, and if the result is zero,
it will set a condition variable to one.

3. Acquire G, which will wait on any currently depart-
ing thread to finish departing. Because only one
thread may depart at a time, all the remaining threads
will have already received the message sent in the
preceding step.

4. Release G.

5. Acquire the lock guarding the global work-item-
disposal list.

6. Move all work items from the global work-item-
disposal list to this thread’s list, processing them as
needed along the way.

7. Release the lock guarding the global work-item-
disposal list.

428 APPENDIX E. ANSWERS TO QUICK QUIZZES

8. Enqueue an additional work item onto this thread’s
list. (As before, this work item will atomically decre-
ment the global counter, and if the result is zero, it
will set a condition variable to one.)

9. Wait for the condition variable to take on the value
one.

Once this procedure completes, all pre-existing work
items are guaranteed to have completed. The empty crit-
ical sections are using locking for messaging as well as
for protection of data. q

Quick Quiz 7.19:
Is there any other way for the VAX/VMS DLM to emulate
a reader-writer lock?

Answer:
There are in fact several. One way would be to use the null,
protected-read, and exclusive modes. Another way would
be to use the null, protected-read, and concurrent-write
modes. A third way would be to use the null, concurrent-
read, and exclusive modes. q

Quick Quiz 7.20:
The code in Listing 7.7 is ridiculously complicated! Why
not conditionally acquire a single global lock?

Answer:
Conditionally acquiring a single global lock does work
very well, but only for relatively small numbers of CPUs.
To see why it is problematic in systems with many hun-
dreds of CPUs, look at Figure 5.1 and extrapolate the
delay from eight to 1,000 CPUs. q

Quick Quiz 7.21:
Wait a minute! If we “win” the tournament on line 16
of Listing 7.7, we get to do all the work of do_force_
quiescent_state(). Exactly how is that a win, really?

Answer:
How indeed? This just shows that in concurrency, just as
in life, one should take care to learn exactly what winning
entails before playing the game. q

Quick Quiz 7.22:
Why not rely on the C language’s default initialization
of zero instead of using the explicit initializer shown on
line 2 of Listing 7.8?

Answer:
Because this default initialization does not apply to locks
allocated as auto variables within the scope of a function.
q

Quick Quiz 7.23:
Why bother with the inner loop on lines 7-8 of Listing 7.8?
Why not simply repeatedly do the atomic exchange oper-
ation on line 6?

Answer:
Suppose that the lock is held and that several threads
are attempting to acquire the lock. In this situation, if
these threads all loop on the atomic exchange operation,
they will ping-pong the cache line containing the lock
among themselves, imposing load on the interconnect. In
contrast, if these threads are spinning in the inner loop
on lines 7-8, they will each spin within their own caches,
putting negligible load on the interconnect. q

Quick Quiz 7.24:
Why not simply store zero into the lock word on line 14
of Listing 7.8?

Answer:
This can be a legitimate implementation, but only if this
store is preceded by a memory barrier and makes use
of WRITE_ONCE(). The memory barrier is not required
when the xchg() operation is used because this operation
implies a full memory barrier due to the fact that it returns
a value. q

Quick Quiz 7.25:
How can you tell if one counter is greater than another,
while accounting for counter wrap?

Answer:
In the C language, the following macro correctly handles
this:

#define ULONG_CMP_LT(a, b) \
(ULONG_MAX / 2 < (a) - (b))

Although it is tempting to simply subtract two signed
integers, this should be avoided because signed overflow
is undefined in the C language. For example, if the com-
piler knows that one of the values is positive and the other
negative, it is within its rights to simply assume that the
positive number is greater than the negative number, even
though subtracting the negative number from the positive
number might well result in overflow and thus a negative
number.

E.8. DATA OWNERSHIP 429

How could the compiler know the signs of the two
numbers? It might be able to deduce it based on prior
assignments and comparisons. In this case, if the per-
CPU counters were signed, the compiler could deduce
that they were always increasing in value, and then might
assume that they would never go negative. This assump-
tion could well lead the compiler to generate unfortunate
code [McK12c, Reg10]. q

Quick Quiz 7.26:
Which is better, the counter approach or the flag approach?

Answer:
The flag approach will normally suffer fewer cache misses,
but a better answer is to try both and see which works
best for your particular workload. q

Quick Quiz 7.27:
How can relying on implicit existence guarantees result
in a bug?

Answer:
Here are some bugs resulting from improper use of im-
plicit existence guarantees:

1. A program writes the address of a global variable
to a file, then a later instance of that same program
reads that address and attempts to dereference it.
This can fail due to address-space randomization, to
say nothing of recompilation of the program.

2. A module can record the address of one of its vari-
ables in a pointer located in some other module, then
attempt to dereference that pointer after the module
has been unloaded.

3. A function can record the address of one of its on-
stack variables into a global pointer, which some
other function might attempt to dereference after
that function has returned.

I am sure that you can come up with additional possibili-
ties. q

Quick Quiz 7.28:
What if the element we need to delete is not the first
element of the list on line 8 of Listing 7.9?

Answer:
This is a very simple hash table with no chaining, so the
only element in a given bucket is the first element. The

reader is invited to adapt this example to a hash table with
full chaining. q

Quick Quiz 7.29:
What race condition can occur in Listing 7.9?

Answer:
Consider the following sequence of events:

1. Thread 0 invokes delete(0), and reaches line 10
of the listing, acquiring the lock.

2. Thread 1 concurrently invokes delete(0), reaching
line 10, but spins on the lock because Thread 0 holds
it.

3. Thread 0 executes lines 11-14, removing the ele-
ment from the hashtable, releasing the lock, and then
freeing the element.

4. Thread 0 continues execution, and allocates memory,
getting the exact block of memory that it just freed.

5. Thread 0 then initializes this block of memory as
some other type of structure.

6. Thread 1’s spin_lock() operation fails due to the
fact that what it believes to be p->lock is no longer
a spinlock.

Because there is no existence guarantee, the identity of
the data element can change while a thread is attempting
to acquire that element’s lock on line 10! q

E.8 Data Ownership
Quick Quiz 8.1:
What form of data ownership is extremely difficult to
avoid when creating shared-memory parallel programs
(for example, using pthreads) in C or C++?

Answer:
Use of auto variables in functions. By default, these are
private to the thread executing the current function. q

Quick Quiz 8.2:
What synchronization remains in the example shown in
Section 8.1?

Answer:
The creation of the threads via the sh & operator and the
joining of thread via the sh wait command.

430 APPENDIX E. ANSWERS TO QUICK QUIZZES

Of course, if the processes explicitly share memory, for
example, using the shmget() or mmap() system calls,
explicit synchronization might well be needed when ac-
ccessing or updating the shared memory. The processes
might also synchronize using any of the following inter-
process communications mechanisms:

1. System V semaphores.

2. System V message queues.

3. UNIX-domain sockets.

4. Networking protocols, including TCP/IP, UDP, and
a whole host of others.

5. File locking.

6. Use of the open() system call with the O_CREAT
and O_EXCL flags.

7. Use of the rename() system call.

A complete list of possible synchronization mechanisms
is left as an exercise to the reader, who is warned that it
will be an extremely long list. A surprising number of
unassuming system calls can be pressed into service as
synchronization mechanisms. q

Quick Quiz 8.3:
Is there any shared data in the example shown in Sec-
tion 8.1?

Answer:
That is a philosophical question.

Those wishing the answer “no” might argue that pro-
cesses by definition do not share memory.

Those wishing to answer “yes” might list a large num-
ber of synchronization mechanisms that do not require
shared memory, note that the kernel will have some shared
state, and perhaps even argue that the assignment of pro-
cess IDs (PIDs) constitute shared data.

Such arguments are excellent intellectual exercise, and
are also a wonderful way of feeling intelligent, scoring
points against hapless classmates or colleagues, and (es-
pecially!) avoiding getting anything useful done. q

Quick Quiz 8.4:
Does it ever make sense to have partial data ownership
where each thread reads only its own instance of a per-
thread variable, but writes to other threads’ instances?

Answer:
Amazingly enough, yes. One example is a simple
message-passing system where threads post messages
to other threads’ mailboxes, and where each thread is
responsible for removing any message it sent once that
message has been acted on. Implementation of such an
algorithm is left as an exercise for the reader, as is the task
of identifying other algorithms with similar ownership
patterns. q

Quick Quiz 8.5:
What mechanisms other than POSIX signals may be used
for function shipping?

Answer:
There is a very large number of such mechanisms, includ-
ing:

1. System V message queues.

2. Shared-memory dequeue (see Section 6.1.2).

3. Shared-memory mailboxes.

4. UNIX-domain sockets.

5. TCP/IP or UDP, possibly augmented by any num-
ber of higher-level protocols, including RPC, HTTP,
XML, SOAP, and so on.

Compilation of a complete list is left as an exercise to
sufficiently single-minded readers, who are warned that
the list will be extremely long. q

Quick Quiz 8.6:
But none of the data in the eventual() function shown
on lines 15-32 of Listing 5.4 is actually owned by the
eventual() thread! In just what way is this data owner-
ship???

Answer:
The key phrase is “owns the rights to the data”. In this
case, the rights in question are the rights to access the per-
thread counter variable defined on line 1 of the figure.
This situation is similar to that described in Section 8.2.

However, there really is data that is owned by the
eventual() thread, namely the t and sum variables de-
fined on lines 17 and 18 of the figure.

For other examples of designated threads, look at the
kernel threads in the Linux kernel, for example, those
created by kthread_create() and kthread_run(). q

E.9. DEFERRED PROCESSING 431

Quick Quiz 8.7:
Is it possible to obtain greater accuracy while still main-
taining full privacy of the per-thread data?

Answer:
Yes. One approach is for read_count() to add the value
of its own per-thread variable. This maintains full owner-
ship and performance, but only a slight improvement in
accuracy, particularly on systems with very large numbers
of threads.

Another approach is for read_count() to use func-
tion shipping, for example, in the form of per-thread sig-
nals. This greatly improves accuracy, but at a significant
performance cost for read_count().

However, both of these methods have the advantage of
eliminating cache-line bouncing for the common case of
updating counters. q

E.9 Deferred Processing
Quick Quiz 9.1:
Why bother with a use-after-free check?

Answer:
To greatly increase the probability of finding bugs. A
small torture-test program (routetorture.h) that allo-
cates and frees only one type of structure can tolerate a
surprisingly large amount of use-after-free misbehavior.
See Figure 11.4 on page 188 and the related discussion
in Section 11.6.4 starting on page 190 for more on the
importance of increasing the probability of finding bugs.
q

Quick Quiz 9.2:
Why doesn’t route_del() in Listing 9.3 use reference
counts to protect the traversal to the element to be freed?

Answer:
Because the traversal is already protected by the lock, so
no additional protection is required. q

Quick Quiz 9.3:
Why the stairsteps in the “ideal” line in Figure 9.2?
Shouldn’t it be a straight line?

Answer:
The stair-steps are due to hyperthreading. On this partic-
ular system, the hardware threads in a given core have
consecutive CPU numbers. In addition, this particular

pointer-following low-cache-miss-rate workload seems
to allow a single hardware thread to consume most of the
relevant resources within its core. Workloads featuring
heavier computational loads should be expected to gain
greater benefit from each core’s second hardware thread.
q

Quick Quiz 9.4:
Why, in these modern times, does Figure 9.2 only go up
to 8 CPUs???

Answer:
Given the horrible scalability of reference counting, who
needs more than eight CPUs? Four CPUs would have
sufficed to make the point! However, people wanting
more CPUs are urged to refer to Chapter 10. q

Quick Quiz 9.5:
If concurrency has “most definitely reduced the usefulness
of reference counting”, why are there so many reference
counters in the Linux kernel?

Answer:
That sentence did say “reduced the usefulness”, not “elim-
inated the usefulness”, now didn’t it?

Please see Section 13.2, which discusses some of the
techniques that the Linux kernel uses to take advantage
of reference counting in a highly concurrent environment.
q

Quick Quiz 9.6:
Why does hp_store() in Listing 9.4 take a double indi-
rection to the data element? Why not void * instead of
void **?

Answer:
Because hp_store() must check for concurrent modifi-
cations. To do that job, it needs a pointer to a pointer to
the element, so that it can check for a modification to the
pointer to the element. q

Quick Quiz 9.7:
Why does hp_store()’s caller need to restart its traversal
from the beginning in case of failure? Isn’t that inefficient
for large data structures?

Answer:
It might be inefficient in some sense, but the fact is that
such restarting is absolutely required for correctness. To
see this, consider a hazard-pointer-protected linked list
containing elements A, B, and C that is subjected to the
following sequence of events:

432 APPENDIX E. ANSWERS TO QUICK QUIZZES

1. Thread 0 stores a hazard pointer to element B (having
presumably traversed to element B from element A).

2. Thread 1 removes element B from the list, which
sets the pointer from element B to element C to a
special HAZPTR_POISON value in order to mark the
deletion. Because Thread 0 has a hazard pointer to
element B, it cannot yet be freed.

3. Thread 1 removes element C from the list. Because
there are no hazard pointers referencing element C,
it is immediately freed.

4. Thread 0 attempts to acquire a hazard pointer to
now-removed element B’s successor, but sees the
HAZPTR_POISON value, and thus returns zero, forc-
ing the caller to restart its traversal from the begin-
ning of the list.

Which is a very good thing, because otherwise Thread 0
would have attempted to access the now-freed element C,
which might have resulted in arbitrarily horrible memory
corruption, especially if the memory for element C had
since been re-allocated for some other purpose.

All that aside, please understand that hazard pointers’s
restarting allows it to maintain a minimal memory foot-
print. Any object not currently referenced by some hazard
pointer may be immediately freed. In contrast, Section 9.5
will discuss a mechanism that avoids read-side retries (and
minimizes read-side overhead), but has a much larger
memory footprint. q

Quick Quiz 9.8:
Given that papers on hazard pointers use the bottom bits
of each pointer to mark deleted elements, what is up with
HAZPTR_POISON?

Answer:
The published implementations of hazard pointers used
non-blocking synchronization techniques for insertion
and deletion. These techniques require that readers
traversing the data structure “help” updaters complete
their updates, which in turn means that readers need to
look at the successor of a deleted element.

In contrast, we will be using locking to synchronize
updates, which does away with the need for readers to
help updaters complete their updates, which in turn allows
us to leave pointers’ bottom bits alone. This approach
allows read-side code to be simpler and faster. q

Quick Quiz 9.9:
But don’t these restrictions on hazard pointers also apply
to other forms of reference counting?

Answer:
These restrictions apply only to reference-counting mech-
anisms whose reference acquisition can fail. q

Quick Quiz 9.10:
The paper “Structured Deferral: Synchronization via
Procrastination” [McK13] shows that hazard pointers
have near-ideal performance. Whatever happened in Fig-
ure 9.3???

Answer:
First, Figure 9.3 has a linear y-axis, while most of the
graphs in the “Structured Deferral” paper have logscale
y-axes. Next, that paper uses lightly-loaded hash tables,
while Figure 9.3’s uses a 10-element simple linked list,
which means that hazard pointers face a larger memory-
barrier penalty in this workload than in that of the “Struc-
tured Deferral” paper. Finally, that paper used a larger
and older x86 system, while a newer but smaller system
was used to generate the data shown in Figure 9.3.

In addition, use of pairwise asymmetric barri-
ers [Mic08, Cor10b, Cor18] has been proposed to elim-
inate the read-side hazard-pointer memory barriers on
systems supporting this notion [Gol18], which might im-
prove the performance of hazard pointers beyond what is
shown in the figure.

As always, your mileage may vary. Given the differ-
ence in performance, it is clear that hazard pointers give
you the most ideal performance either for very large data
structures (where the memory-barrier overhead will at
least partially overlap cache-miss penalties) and for data
structures such as hash tables where a lookup operation
needs a minimal number of hazard pointers. q

Quick Quiz 9.11:
Why isn’t this sequence-lock discussion in Chapter 7, you
know, the one on locking?

Answer:
The sequence-lock mechanism is really a combina-
tion of two separate synchronization mechanisms, se-
quence counts and locking. In fact, the sequence-
count mechanism is available separately in the Linux
kernel via the write_seqcount_begin() and write_
seqcount_end() primitives.

However, the combined write_seqlock() and
write_sequnlock() primitives are used much more

E.9. DEFERRED PROCESSING 433

heavily in the Linux kernel. More importantly, many
more people will understand what you mean if you say
“sequence lock” than if you say “sequence count”.

So this section is entitled “Sequence Locks” so that
people will understand what it is about just from the title,
and it appears in the “Deferred Processing” because (1) of
the emphasis on the “sequence count” aspect of “sequence
locks” and (2) because a “sequence lock” is much more
than merely a lock. q

Quick Quiz 9.12:
Why not have read_seqbegin() in Listing 9.9 check
for the low-order bit being set, and retry internally, rather
than allowing a doomed read to start?

Answer:
That would be a legitimate implementation. However, if
the workload is read-mostly, it would likely increase the
overhead of the common-case successful read, which
could be counter-productive. However, given a suffi-
ciently large fraction of updates and sufficiently high-
overhead readers, having the check internal to read_
seqbegin() might be preferable. q

Quick Quiz 9.13:
Why is the smp_mb() on line 26 of Listing 9.9 needed?

Answer:
If it was omitted, both the compiler and the CPU would be
within their rights to move the critical section preceding
the call to read_seqretry() down below this function.
This would prevent the sequence lock from protecting the
critical section. The smp_mb() primitive prevents such
reordering. q

Quick Quiz 9.14:
Can’t weaker memory barriers be used in the code in
Listing 9.9?

Answer:
In older versions of the Linux kernel, no.

In very new versions of the Linux kernel, line 16 could
use smp_load_acquire() instead of READ_ONCE(),
which in turn would allow the smp_mb() on line 17 to
be dropped. Similarly, line 41 could use an smp_store_
release(), for example, as follows:

smp_store_release(&slp->seq, READ_ONCE(slp->seq) + 1);

This would allow the smp_mb() on line 40 to be
dropped. q

Quick Quiz 9.15:
What prevents sequence-locking updaters from starving
readers?

Answer:
Nothing. This is one of the weaknesses of sequence lock-
ing, and as a result, you should use sequence locking only
in read-mostly situations. Unless of course read-side star-
vation is acceptable in your situation, in which case, go
wild with the sequence-locking updates! q

Quick Quiz 9.16:
What if something else serializes writers, so that the lock
is not needed?

Answer:
In this case, the ->lock field could be omitted, as it is in
seqcount_t in the Linux kernel. q

Quick Quiz 9.17:
Why isn’t seq on line 2 of Listing 9.9 unsigned rather
than unsigned long? After all, if unsigned is good
enough for the Linux kernel, shouldn’t it be good enough
for everyone?

Answer:
Not at all. The Linux kernel has a number of special
attributes that allow it to ignore the following sequence
of events:

1. Thread 0 executes read_seqbegin(), picking up
->seq in line 16, noting that the value is even, and
thus returning to the caller.

2. Thread 0 starts executing its read-side critical section,
but is then preempted for a long time.

3. Other threads repeatedly invoke write_seqlock()
and write_sequnlock(), until the value of ->seq
overflows back to the value that Thread 0 fetched.

4. Thread 0 resumes execution, completing its read-
side critical section with inconsistent data.

5. Thread 0 invokes read_seqretry(), which incor-
rectly concludes that Thread 0 has seen a consistent
view of the data protected by the sequence lock.

434 APPENDIX E. ANSWERS TO QUICK QUIZZES

The Linux kernel uses sequence locking for things that
are updated rarely, with time-of-day information being a
case in point. This information is updated at most once
per millisecond, so that seven weeks would be required to
overflow the counter. If a kernel thread was preempted for
seven weeks, the Linux kernel’s soft-lockup code would
be emitting warnings every two minutes for that entire
time.

In contrast, with a 64-bit counter, more than five cen-
turies would be required to overflow, even given an update
every nanosecond. Therefore, this implementation uses a
type for ->seq that is 64 bits on 64-bit systems. q

Quick Quiz 9.18:
Can this bug be fixed? In other words, can you use se-
quence locks as the only synchronization mechanism pro-
tecting a linked list supporting concurrent addition, dele-
tion, and lookup?

Answer:
One trivial way of accomplishing this is to surround all
accesses, including the read-only accesses, with write_
seqlock() and write_sequnlock(). Of course, this
solution also prohibits all read-side parallelism, resulting
in massive lock contention, and furthermore could just as
easily be implemented using simple locking.

If you do come up with a solution that uses read_
seqbegin() and read_seqretry() to protect read-side
accesses, make sure that you correctly handle the follow-
ing sequence of events:

1. CPU 0 is traversing the linked list, and picks up a
pointer to list element A.

2. CPU 1 removes element A from the list and frees it.

3. CPU 2 allocates an unrelated data structure, and gets
the memory formerly occupied by element A. In this
unrelated data structure, the memory previously used
for element A’s ->next pointer is now occupied by
a floating-point number.

4. CPU 0 picks up what used to be element A’s ->
next pointer, gets random bits, and therefore gets a
segmentation fault.

One way to protect against this sort of problem requires
use of “type-safe memory”, which will be discussed in
Section 9.5.3.7. But in that case, you would be using some
other synchronization mechanism in addition to sequence
locks! q

Quick Quiz 9.19:
But doesn’t Section 9.4’s seqlock also permit readers and
updaters to get work done concurrently?

Answer:
Yes and no. Although seqlock readers can run concur-
rently with seqlock writers, whenever this happens, the
read_seqretry() primitive will force the reader to retry.
This means that any work done by a seqlock reader run-
ning concurrently with a seqlock updater will be discarded
and redone. So seqlock readers can run concurrently with
updaters, but they cannot actually get any work done in
this case.

In contrast, RCU readers can perform useful work even
in presence of concurrent RCU updaters. q

Quick Quiz 9.20:
What prevents the list_for_each_entry_rcu() from
getting a segfault if it happens to execute at exactly the
same time as the list_add_rcu()?

Answer:
On all systems running Linux, loads from and stores to
pointers are atomic, that is, if a store to a pointer oc-
curs at the same time as a load from that same pointer,
the load will return either the initial value or the value
stored, never some bitwise mashup of the two. In addition,
the list_for_each_entry_rcu() always proceeds for-
ward through the list, never looking back. Therefore, the
list_for_each_entry_rcu() will either see the ele-
ment being added by list_add_rcu() or it will not, but
either way, it will see a valid well-formed list. q

Quick Quiz 9.21:
How would you modify the deletion example to permit
more than two versions of the list to be active?

Answer:
One way of accomplishing this is as shown in Listing E.2.

Listing E.2: Concurrent RCU Deletion
1 spin_lock(&mylock);
2 p = search(head, key);
3 if (p == NULL)
4 spin_unlock(&mylock);
5 else {
6 list_del_rcu(&p->list);
7 spin_unlock(&mylock);
8 synchronize_rcu();
9 kfree(p);

10 }

Note that this means that multiple concurrent deletions
might be waiting in synchronize_rcu(). q

E.9. DEFERRED PROCESSING 435

Quick Quiz 9.22:
How many RCU versions of a given list can be active at
any given time?

Answer:
That depends on the synchronization design. If a sema-
phore protecting the update is held across the grace period,
then there can be at most two versions, the old and the
new.

However, suppose that only the search, the update, and
the list_replace_rcu() were protected by a lock, so
that the synchronize_rcu() was outside of that lock,
similar to the code shown in Listing E.2. Suppose further
that a large number of threads undertook an RCU replace-
ment at about the same time, and that readers are also
constantly traversing the data structure.

Then the following sequence of events could occur,
starting from the end state of Figure 9.14:

1. Thread A traverses the list, obtaining a reference to
the 5,2,3 element.

2. Thread B replaces the 5,2,3 element with a new 5,2,4
element, then waits for its synchronize_rcu()
call to return.

3. Thread C traverses the list, obtaining a reference to
the 5,2,4 element.

4. Thread D replaces the 5,2,4 element with a new 5,2,5
element, then waits for its synchronize_rcu()
call to return.

5. Thread E traverses the list, obtaining a reference to
the 5,2,5 element.

6. Thread F replaces the 5,2,5 element with a new 5,2,6
element, then waits for its synchronize_rcu()
call to return.

7. Thread G traverses the list, obtaining a reference to
the 5,2,6 element.

8. And the previous two steps repeat quickly, so that
all of them happen before any of the synchronize_
rcu() calls return.

Thus, there can be an arbitrary number of versions
active, limited only by memory and by how many updates
could be completed within a grace period. But please
note that data structures that are updated so frequently
probably are not good candidates for RCU. That said,
RCU can handle high update rates when necessary. q

Quick Quiz 9.23:
How can RCU updaters possibly delay RCU read-
ers, given that the rcu_read_lock() and rcu_read_
unlock() primitives neither spin nor block?

Answer:
The modifications undertaken by a given RCU updater
will cause the corresponding CPU to invalidate cache lines
containing the data, forcing the CPUs running concurrent
RCU readers to incur expensive cache misses. (Can you
design an algorithm that changes a data structure without
inflicting expensive cache misses on concurrent readers?
On subsequent readers?) q

Quick Quiz 9.24:
Why doesn’t RCU QSBR give exactly ideal results?

Answer:
The rcu_dereference() primitive does constrain the
compiler’s optimizations somewhat, which can result in
slightly slower code. This effect would normally be in-
significant, but each search is taking on average about
13 nanoseconds, which is short enough for small differ-
ences in code generation to make their presence felt. The
difference ranges from about 1.5 % to about 11.1 %, which
is quite small when you consider that the RCU QSBR
code can handle concurrent updates and the “ideal” code
cannot.

It is hoped that C11 memory_order_consume
loads [Smi15] might someday allow rcu_
dereference() provide the needed protection at
lower cost. q

Quick Quiz 9.25:
Given RCU QSBR’s read-side performance, why bother
with any other flavor of userspace RCU?

Answer:
Because RCU QSBR places constraints on the overall ap-
plication that might not be tolerable, for example, requir-
ing that each and every thread in the application regularly
pass through a quiescent state. Among other things, this
means that RCU QSBR is not helpful to library writers,
who might be better served by other flavors of userspace
RCU [MDJ13c]. q

Quick Quiz 9.26:
WTF? How the heck do you expect me to believe that
RCU has a 100-femtosecond overhead when the clock
period at 3 GHz is more than 300 picoseconds?

436 APPENDIX E. ANSWERS TO QUICK QUIZZES

Answer:
First, consider that the inner loop used to take this mea-
surement is as follows:

1 for (i = 0; i < CSCOUNT_SCALE; i++) {
2 rcu_read_lock();
3 rcu_read_unlock();
4 }

Next, consider the effective definitions of rcu_read_
lock() and rcu_read_unlock():

1 #define rcu_read_lock() do { } while (0)
2 #define rcu_read_unlock() do { } while (0)

Consider also that the compiler does simple optimiza-
tions, allowing it to replace the loop with:

1 i = CSCOUNT_SCALE;

So the “measurement” of 100 femtoseconds is simply
the fixed overhead of the timing measurements divided by
the number of passes through the inner loop containing the
calls to rcu_read_lock() and rcu_read_unlock().
And therefore, this measurement really is in error, in fact,
in error by an arbitrary number of orders of magnitude.
As you can see by the definition of rcu_read_lock()
and rcu_read_unlock() above, the actual overhead is
precisely zero.

It certainly is not every day that a timing measurement
of 100 femtoseconds turns out to be an overestimate! q

Quick Quiz 9.27:
Why does both the variability and overhead of rwlock
decrease as the critical-section overhead increases?

Answer:
Because the contention on the underlying rwlock_t de-
creases as the critical-section overhead increases. How-
ever, the rwlock overhead will not quite drop to that on a
single CPU because of cache-thrashing overhead. q

Quick Quiz 9.28:
Is there an exception to this deadlock immunity, and if so,
what sequence of events could lead to deadlock?

Answer:
One way to cause a deadlock cycle involving RCU read-
side primitives is via the following (illegal) sequence of
statements:

rcu_read_lock();
synchronize_rcu();
rcu_read_unlock();

The synchronize_rcu() cannot return until all pre-
existing RCU read-side critical sections complete, but is
enclosed in an RCU read-side critical section that cannot
complete until the synchronize_rcu() returns. The
result is a classic self-deadlock—you get the same effect
when attempting to write-acquire a reader-writer lock
while read-holding it.

Note that this self-deadlock scenario does not apply to
RCU QSBR, because the context switch performed by the
synchronize_rcu() would act as a quiescent state for
this CPU, allowing a grace period to complete. However,
this is if anything even worse, because data used by the
RCU read-side critical section might be freed as a result
of the grace period completing.

In short, do not invoke synchronous RCU update-side
primitives from within an RCU read-side critical section.
q

Quick Quiz 9.29:
Immunity to both deadlock and priority inversion???
Sounds too good to be true. Why should I believe that
this is even possible?

Answer:
It really does work. After all, if it didn’t work, the Linux
kernel would not run. q

Quick Quiz 9.30:
But wait! This is exactly the same code that might be used
when thinking of RCU as a replacement for reader-writer
locking! What gives?

Answer:
This is an effect of the Law of Toy Examples: beyond a
certain point, the code fragments look the same. The only
difference is in how we think about the code. However,
this difference can be extremely important. For but one ex-
ample of the importance, consider that if we think of RCU
as a restricted reference counting scheme, we would never
be fooled into thinking that the updates would exclude
the RCU read-side critical sections.

It nevertheless is often useful to think of RCU as a
replacement for reader-writer locking, for example, when
you are replacing reader-writer locking with RCU. q

E.9. DEFERRED PROCESSING 437

Quick Quiz 9.31:
Why the dip in refcnt overhead near 6 CPUs?

Answer:
Most likely NUMA effects. However, there is substantial
variance in the values measured for the refcnt line, as can
be seen by the error bars. In fact, standard deviations
range in excess of 10 % of measured values in some cases.
The dip in overhead therefore might well be a statistical
aberration. q

Quick Quiz 9.32:
What if the element we need to delete is not the first
element of the list on line 9 of Listing 9.21?

Answer:
As with Listing 7.9, this is a very simple hash table with
no chaining, so the only element in a given bucket is the
first element. The reader is again invited to adapt this
example to a hash table with full chaining. q

Quick Quiz 9.33:
Why is it OK to exit the RCU read-side critical section
on line 15 of Listing 9.21 before releasing the lock on
line 17?

Answer:
First, please note that the second check on line 14 is
necessary because some other CPU might have removed
this element while we were waiting to acquire the lock.
However, the fact that we were in an RCU read-side
critical section while acquiring the lock guarantees that
this element could not possibly have been re-allocated
and re-inserted into this hash table. Furthermore, once we
acquire the lock, the lock itself guarantees the element’s
existence, so we no longer need to be in an RCU read-side
critical section.

The question as to whether it is necessary to re-check
the element’s key is left as an exercise to the reader. q

Quick Quiz 9.34:
Why not exit the RCU read-side critical section on line 23
of Listing 9.21 before releasing the lock on line 22?

Answer:
Suppose we reverse the order of these two lines. Then this
code is vulnerable to the following sequence of events:

1. CPU 0 invokes delete(), and finds the element to
be deleted, executing through line 15. It has not yet
actually deleted the element, but is about to do so.

2. CPU 1 concurrently invokes delete(), attempting
to delete this same element. However, CPU 0 still
holds the lock, so CPU 1 waits for it at line 13.

3. CPU 0 executes lines 16 and 17, and blocks at line 18
waiting for CPU 1 to exit its RCU read-side critical
section.

4. CPU 1 now acquires the lock, but the test on line 14
fails because CPU 0 has already removed the el-
ement. CPU 1 now executes line 22 (which we
switched with line 23 for the purposes of this Quick
Quiz) and exits its RCU read-side critical section.

5. CPU 0 can now return from synchronize_rcu(),
and thus executes line 19, sending the element to the
freelist.

6. CPU 1 now attempts to release a lock for an element
that has been freed, and, worse yet, possibly reallo-
cated as some other type of data structure. This is a
fatal memory-corruption error.

q

Quick Quiz 9.35:
But what if there is an arbitrarily long series of RCU
read-side critical sections in multiple threads, so that
at any point in time there is at least one thread in the
system executing in an RCU read-side critical section?
Wouldn’t that prevent any data from a SLAB_DESTROY_
BY_RCU slab ever being returned to the system, possibly
resulting in OOM events?

Answer:
There could certainly be an arbitrarily long period of time
during which at least one thread is always in an RCU
read-side critical section. However, the key words in
the description in Section 9.5.3.7 are “in-use” and “pre-
existing”. Keep in mind that a given RCU read-side crit-
ical section is conceptually only permitted to gain refer-
ences to data elements that were in use at the beginning
of that critical section. Furthermore, remember that a
slab cannot be returned to the system until all of its data
elements have been freed, in fact, the RCU grace period
cannot start until after they have all been freed.

Therefore, the slab cache need only wait for those RCU
read-side critical sections that started before the freeing
of the last element of the slab. This in turn means that any
RCU grace period that begins after the freeing of the last
element will do—the slab may be returned to the system
after that grace period ends. q

438 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.3: Using RCU to Wait for Mythical Preemptible
NMIs to Finish

1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6

7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p;

10

11 rcu_read_lock();
12 p = rcu_dereference(buf);
13 if (p == NULL) {
14 rcu_read_unlock();
15 return;
16 }
17 if (pcvalue >= p->size) {
18 rcu_read_unlock();
19 return;
20 }
21 atomic_inc(&p->entry[pcvalue]);
22 rcu_read_unlock();
23 }
24

25 void nmi_stop(void)
26 {
27 struct profile_buffer *p = buf;
28

29 if (p == NULL)
30 return;
31 rcu_assign_pointer(buf, NULL);
32 synchronize_rcu();
33 kfree(p);
34 }

Quick Quiz 9.36:
Suppose that the nmi_profile() function was pre-
emptible. What would need to change to make this exam-
ple work correctly?

Answer:
One approach would be to use rcu_read_lock() and
rcu_read_unlock() in nmi_profile(), and to re-
place the synchronize_sched() with synchronize_
rcu(), perhaps as shown in Listing E.3. q

Quick Quiz 9.37:
Why do some of the cells in Table 9.3 have exclamation
marks (“!”)?

Answer:
The API members with exclamation marks (rcu_read_
lock(), rcu_read_unlock(), and call_rcu()) were
the only members of the Linux RCU API that Paul E.
McKenney was aware of back in the mid-90s. During this
timeframe, he was under the mistaken impression that he
knew all that there is to know about RCU. q

Quick Quiz 9.38:
How do you prevent a huge number of RCU read-side crit-
ical sections from indefinitely blocking a synchronize_
rcu() invocation?

Answer:
There is no need to do anything to prevent RCU
read-side critical sections from indefinitely block-
ing a synchronize_rcu() invocation, because the
synchronize_rcu() invocation need wait only for pre-
existing RCU read-side critical sections. So as long as
each RCU read-side critical section is of finite duration,
there should be no problem. q

Quick Quiz 9.39:
The synchronize_rcu() API waits for all pre-existing
interrupt handlers to complete, right?

Answer:
Absolutely not! And especially not when using pre-
emptible RCU! You instead want synchronize_irq().
Alternatively, you can place calls to rcu_read_lock()
and rcu_read_unlock() in the specific interrupt han-
dlers that you want synchronize_rcu() to wait for. q

Quick Quiz 9.40:
What happens if you mix and match? For example,
suppose you use rcu_read_lock() and rcu_read_
unlock() to delimit RCU read-side critical sections, but
then use call_rcu_bh() to post an RCU callback?

Answer:
If there happened to be no RCU read-side critical sections
delimited by rcu_read_lock_bh() and rcu_read_
unlock_bh() at the time call_rcu_bh() was invoked,
RCU would be within its rights to invoke the callback
immediately, possibly freeing a data structure still being
used by the RCU read-side critical section! This is not
merely a theoretical possibility: a long-running RCU read-
side critical section delimited by rcu_read_lock() and
rcu_read_unlock() is vulnerable to this failure mode.

However, the rcu_dereference() family of func-
tions apply to all flavors of RCU. (There was an attempt
to have per-flavor variants of rcu_dereference(), but
it was just too messy.) q

Quick Quiz 9.41:
Hardware interrupt handlers can be thought of as being un-
der the protection of an implicit rcu_read_lock_bh(),
right?

E.9. DEFERRED PROCESSING 439

Answer:
Absolutely not! And especially not when using pre-
emptible RCU! If you need to access “rcu_bh”-protected
data structures in an interrupt handler, you need to provide
explicit calls to rcu_read_lock_bh() and rcu_read_
unlock_bh(). q

Quick Quiz 9.42:
What happens if you mix and match RCU Classic and
RCU Sched?

Answer:
In a non-PREEMPT or a PREEMPT kernel, mixing these
two works “by accident” because in those kernel builds,
RCU Classic and RCU Sched map to the same imple-
mentation. However, this mixture is fatal in PREEMPT_RT
builds using the -rt patchset, due to the fact that Real-
time RCU’s read-side critical sections can be preempted,
which would permit synchronize_sched() to return
before the RCU read-side critical section reached its rcu_
read_unlock() call. This could in turn result in a data
structure being freed before the read-side critical section
was finished with it, which could in turn greatly increase
the actuarial risk experienced by your kernel.

In fact, the split between RCU Classic and RCU Sched
was inspired by the need for preemptible RCU read-side
critical sections. q

Quick Quiz 9.43:
In general, you cannot rely on synchronize_sched()
to wait for all pre-existing interrupt handlers, right?

Answer:
That is correct! Because -rt Linux uses threaded interrupt
handlers, there can be context switches in the middle of
an interrupt handler. Because synchronize_sched()
waits only until each CPU has passed through a context
switch, it can return before a given interrupt handler com-
pletes.

If you need to wait for a given interrupt handler to
complete, you should instead use synchronize_irq()
or place explicit RCU read-side critical sections in the
interrupt handlers that you wish to wait on. q

Quick Quiz 9.44:
Why should you be careful with call_srcu()?

Answer:
A single task could register SRCU callbacks very quickly.
Given that SRCU allows readers to block for arbitrary
periods of time, this could consume an arbitrarily large

quantity of memory. In contrast, given the synchronous
synchronize_srcu() interface, a given task must finish
waiting for a given grace period before it can start waiting
for the next one. q

Quick Quiz 9.45:
Under what conditions can synchronize_srcu() be
safely used within an SRCU read-side critical section?

Answer:
In principle, you can use synchronize_srcu() with a
given srcu_struct within an SRCU read-side critical
section that uses some other srcu_struct. In practice,
however, doing this is almost certainly a bad idea. In
particular, the code shown in Listing E.4 could still result
in deadlock. q

Listing E.4: Multistage SRCU Deadlocks
1 idx = srcu_read_lock(&ssa);
2 synchronize_srcu(&ssb);
3 srcu_read_unlock(&ssa, idx);
4
5 /* . . . */
6
7 idx = srcu_read_lock(&ssb);
8 synchronize_srcu(&ssa);
9 srcu_read_unlock(&ssb, idx);

Quick Quiz 9.46:
Why doesn’t list_del_rcu() poison both the next and
prev pointers?

Answer:
Poisoning the next pointer would interfere with concur-
rent RCU readers, who must use this pointer. However,
RCU readers are forbidden from using the prev pointer,
so it may safely be poisoned. q

Quick Quiz 9.47:
Normally, any pointer subject to rcu_dereference()
must always be updated using rcu_assign_pointer().
What is an exception to this rule?

Answer:
One such exception is when a multi-element linked data
structure is initialized as a unit while inaccessible to
other CPUs, and then a single rcu_assign_pointer()
is used to plant a global pointer to this data structure.
The initialization-time pointer assignments need not use
rcu_assign_pointer(), though any such assignments
that happen after the structure is globally visible must use
rcu_assign_pointer().

440 APPENDIX E. ANSWERS TO QUICK QUIZZES

However, unless this initialization code is on an im-
pressively hot code-path, it is probably wise to use rcu_
assign_pointer() anyway, even though it is in theory
unnecessary. It is all too easy for a “minor” change to
invalidate your cherished assumptions about the initializa-
tion happening privately. q

Quick Quiz 9.48:
Are there any downsides to the fact that these traversal
and update primitives can be used with any of the RCU
API family members?

Answer:
It can sometimes be difficult for automated code checkers
such as “sparse” (or indeed for human beings) to work out
which type of RCU read-side critical section a given RCU
traversal primitive corresponds to. For example, consider
the code shown in Listing E.5.

Listing E.5: Diverse RCU Read-Side Nesting
1 rcu_read_lock();
2 preempt_disable();
3 p = rcu_dereference(global_pointer);
4
5 /* . . . */
6
7 preempt_enable();
8 rcu_read_unlock();

Is the rcu_dereference() primitive in an RCU Clas-
sic or an RCU Sched critical section? What would you
have to do to figure this out? q

Quick Quiz 9.49:
Why not just drop the lock before waiting for the grace
period, or using something like call_rcu() instead of
waiting for a grace period?

Answer:
The authors wished to support linearizable tree opera-
tions, so that concurrent additions to, deletions from, and
searches of the tree would appear to execute in some glob-
ally agreed-upon order. In their search trees, this requires
holding locks across grace periods. (It is probably bet-
ter to drop linearizability as a requirement in most cases,
but linearizability is a surprisingly popular (and costly!)
requirement.) q

Quick Quiz 9.50:
The statistical-counter implementation shown in List-
ing 5.5 (count_end.c) used a global lock to guard the
summation in read_count(), which resulted in poor per-
formance and negative scalability. How could you use

RCU to provide read_count() with excellent perfor-
mance and good scalability. (Keep in mind that read_
count()’s scalability will necessarily be limited by its
need to scan all threads’ counters.)

Answer:
Hint: place the global variable finalcount and the ar-
ray counterp[] into a single RCU-protected struct. At
initialization time, this structure would be allocated and
set to all zero and NULL.

The inc_count() function would be unchanged.
The read_count() function would use rcu_read_

lock() instead of acquiring final_mutex, and would
need to use rcu_dereference() to acquire a reference
to the current structure.

The count_register_thread() function would set
the array element corresponding to the newly created
thread to reference that thread’s per-thread counter vari-
able.

The count_unregister_thread() function would
need to allocate a new structure, acquire final_mutex,
copy the old structure to the new one, add the outgo-
ing thread’s counter variable to the total, NULL the
pointer to this same counter variable, use rcu_assign_
pointer() to install the new structure in place of the old
one, release final_mutex, wait for a grace period, and
finally free the old structure.

Does this really work? Why or why not?
See Section 13.3.1 on page 241 for more details. q

Quick Quiz 9.51:
Section 5.5 showed a fanciful pair of code fragments that
dealt with counting I/O accesses to removable devices.
These code fragments suffered from high overhead on
the fastpath (starting an I/O) due to the need to acquire a
reader-writer lock. How would you use RCU to provide
excellent performance and scalability? (Keep in mind that
the performance of the common-case first code fragment
that does I/O accesses is much more important than that
of the device-removal code fragment.)

Answer:
Hint: replace the read-acquisitions of the reader-writer
lock with RCU read-side critical sections, then adjust the
device-removal code fragment to suit.

See Section 13.3.2 on Page 242 for one solution to this
problem. q

E.10. DATA STRUCTURES 441

E.10 Data Structures
Quick Quiz 10.1:
But there are many types of hash tables, of which the
chained hash tables described here are but one type. Why
the focus on chained hash tables?

Answer:
Chained hash tables are completely partitionable, and
thus well-suited to concurrent use. There are other
completely-partitionable hash tables, for example, split-
ordered list [SS06], but they are considerably more com-
plex. We therefore start with chained hash tables. q

Quick Quiz 10.2:
But isn’t the double comparison on lines 15-18 in List-
ing 10.3 inefficient in the case where the key fits into an
unsigned long?

Answer:
Indeed it is! However, hash tables quite frequently store
information with keys such as character strings that do
not necessarily fit into an unsigned long. Simplifying the
hash-table implementation for the case where keys always
fit into unsigned longs is left as an exercise for the reader.
q

Quick Quiz 10.3:
Instead of simply increasing the number of hash buck-
ets, wouldn’t it be better to cache-align the existing hash
buckets?

Answer:
The answer depends on a great many things. If the hash
table has a large number of elements per bucket, it would
clearly be better to increase the number of hash buckets.
On the other hand, if the hash table is lightly loaded, the
answer depends on the hardware, the effectiveness of the
hash function, and the workload. Interested readers are
encouraged to experiment. q

Quick Quiz 10.4:
Given the negative scalability of the Schrödinger’s Zoo ap-
plication across sockets, why not just run multiple copies
of the application, with each copy having a subset of the
animals and confined to run on a single socket?

Answer:
You can do just that! In fact, you can extend this idea
to large clustered systems, running one copy of the ap-
plication on each node of the cluster. This practice is

called “sharding”, and is heavily used in practice by large
web-based retailers [DHJ+07].

However, if you are going to shard on a per-socket
basis within a multisocket system, why not buy separate
smaller and cheaper single-socket systems, and then run
one shard of the database on each of those systems? q

Quick Quiz 10.5:
But if elements in a hash table can be deleted concurrently
with lookups, doesn’t that mean that a lookup could return
a reference to a data element that was deleted immediately
after it was looked up?

Answer:
Yes it can! This is why hashtab_lookup() must be
invoked within an RCU read-side critical section, and it
is why hashtab_add() and hashtab_del() must also
use RCU-aware list-manipulation primitives. Finally, this
is why the caller of hashtab_del() must wait for a
grace period (e.g., by calling synchronize_rcu()) be-
fore freeing the deleted element. q

Quick Quiz 10.6:
The dangers of extrapolating from eight CPUs to 60 CPUs
was made quite clear in Section 10.2.3. But why should
extrapolating up from 60 CPUs be any safer?

Answer:
It isn’t any safer, and a useful exercise would be to run
these programs on larger systems. That said, other testing
has shown that RCU read-side primitives offer consistent
performance and scalability up to at least 1024 CPUs. q

Quick Quiz 10.7:
The code in Listing 10.10 computes the hash twice! Why
this blatant inefficiency?

Answer:
The reason is that the old and new hash tables might
have completely different hash functions, so that a hash
computed for the old table might be completely irrelevant
to the new table. q

Quick Quiz 10.8:
How does the code in Listing 10.10 protect against the
resizing process progressing past the selected bucket?

Answer:
It does not provide any such protection. That is instead
the job of the update-side concurrency-control functions
described next. q

442 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 10.9:
The code in Listing 10.10 and 10.11 computes the hash
and executes the bucket-selection logic twice for updates!
Why this blatant inefficiency?

Answer:
This approach allows the hashtorture.h testing infra-
structure to be reused. That said, a production-quality
resizable hash table would likely be optimized to avoid
this double computation. Carrying out this optimization
is left as an exercise for the reader. q

Quick Quiz 10.10:
Suppose that one thread is inserting an element into the
new hash table during a resize operation. What prevents
this insertion from being lost due to a subsequent resize
operation completing before the insertion does?

Answer:
The second resize operation will not be able to move be-
yond the bucket into which the insertion is taking place
due to the insertion holding the lock on one of the hash
buckets in the new hash table (the second hash table of
three in this example). Furthermore, the insertion oper-
ation takes place within an RCU read-side critical sec-
tion. As we will see when we examine the hashtab_
resize() function, this means that the first resize opera-
tion will use synchronize_rcu() to wait for the inser-
tion’s read-side critical section to complete. q

Quick Quiz 10.11:
In the hashtab_lookup() function in Listing 10.12, the
code carefully finds the right bucket in the new hash table
if the element to be looked up has already been distributed
by a concurrent resize operation. This seems wasteful for
RCU-protected lookups. Why not just stick with the old
hash table in this case?

Answer:
Suppose that a resize operation begins and distributes
half of the old table’s buckets to the new table. Suppose
further that a thread adds a new element that goes into
one of the already-distributed buckets, and that this same
thread now looks up this newly added element. If lookups
unconditionally traversed only the old hash table, this
thread would get a lookup failure for the element that it
just added, which certainly sounds like a bug to me! q

Quick Quiz 10.12:
The hashtab_del() function in Listing 10.12 does not
always remove the element from the old hash table.

Doesn’t this mean that readers might access this newly
removed element after it has been freed?

Answer:
No. The hashtab_del() function omits removing the
element from the old hash table only if the resize oper-
ation has already progressed beyond the bucket contain-
ing the just-deleted element. But this means that new
hashtab_lookup() operations will use the new hash
table when looking up that element. Therefore, only
old hashtab_lookup() operations that started before
the hashtab_del() might encounter the newly removed
element. This means that hashtab_del() need only
wait for an RCU grace period to avoid inconveniencing
hashtab_lookup() operations. q

Quick Quiz 10.13:
In the hashtab_resize() function in Listing 10.12,
what guarantees that the update to ->ht_new on line 29
will be seen as happening before the update to ->
ht_resize_cur on line 36 from the perspective of
hashtab_lookup(), hashtab_add(), and hashtab_
del()?

Answer:
The synchronize_rcu() on line 30 of Listing 10.12
ensures that all pre-existing RCU readers have completed
between the time that we install the new hash-table ref-
erence on line 29 and the time that we update ->ht_
resize_cur on line 36. This means that any reader that
sees a non-negative value of ->ht_resize_cur cannot
have started before the assignment to ->ht_new, and thus
must be able to see the reference to the new hash table. q

Quick Quiz 10.14:
Couldn’t the hashtorture.h code be modified to ac-
commodate a version of hashtab_lock_mod() that sub-
sumes the ht_get_bucket() functionality?

Answer:
It probably could, and doing so would benefit all of the
per-bucket-locked hash tables presented in this chapter.
Making this modification is left as an exercise for the
reader. q

Quick Quiz 10.15:
How much do these specializations really save? Are they
really worth it?

Answer:
The answer to the first question is left as an exercise to

E.11. VALIDATION 443

the reader. Try specializing the resizable hash table and
see how much performance improvement results. The
second question cannot be answered in general, but must
instead be answered with respect to a specific use case.
Some use cases are extremely sensitive to performance
and scalability, while others are less so. q

E.11 Validation
Quick Quiz 11.1:
When in computing is the willingness to follow a frag-
mentary plan critically important?

Answer:
There are any number of situations, but perhaps the most
important situation is when no one has ever created any-
thing resembling the program to be developed. In this
case, the only way to create a credible plan is to imple-
ment the program, create the plan, and implement it a
second time. But whoever implements the program for
the first time has no choice but to follow a fragmentary
plan because any detailed plan created in ignorance can-
not survive first contact with the real world.

And perhaps this is one reason why evolution has fa-
vored insanely optimistic human beings who are happy to
follow fragmentary plans! q

Quick Quiz 11.2:
Suppose that you are writing a script that processes the
output of the time command, which looks as follows:

real 0m0.132s
user 0m0.040s
sys 0m0.008s

The script is required to check its input for errors, and to
give appropriate diagnostics if fed erroneous time output.
What test inputs should you provide to this program to test
it for use with time output generated by single-threaded
programs?

Answer:

1. Do you have a test case in which all the time is
consumed in user mode by a CPU-bound program?

2. Do you have a test case in which all the time is con-
sumed in system mode by a CPU-bound program?

3. Do you have a test case in which all three times are
zero?

4. Do you have a test case in which the “user” and “sys”
times sum to more than the “real” time? (This would
of course be completely legitimate in a multithreaded
program.)

5. Do you have a set of tests cases in which one of the
times uses more than one second?

6. Do you have a set of tests cases in which one of the
times uses more than ten second?

7. Do you have a set of test cases in which one of
the times has non-zero minutes? (For example,
“15m36.342s”.)

8. Do you have a set of test cases in which one of the
times has a seconds value of greater than 60?

9. Do you have a set of test cases in which one of the
times overflows 32 bits of milliseconds? 64 bits of
milliseconds?

10. Do you have a set of test cases in which one of the
times is negative?

11. Do you have a set of test cases in which one of the
times has a positive minutes value but a negative
seconds value?

12. Do you have a set of test cases in which one of the
times omits the “m” or the “s”?

13. Do you have a set of test cases in which one of the
times is non-numeric? (For example, “Go Fish”.)

14. Do you have a set of test cases in which one of the
lines is omitted? (For example, where there is a
“real” value and a “sys” value, but no “user” value.)

15. Do you have a set of test cases where one of the lines
is duplicated? Or duplicated, but with a different
time value for the duplicate?

16. Do you have a set of test cases where a given line
has more than one time value? (For example, “real
0m0.132s 0m0.008s”.)

17. Do you have a set of test cases containing random
characters?

18. In all test cases involving invalid input, did you gen-
erate all permutations?

19. For each test case, do you have an expected outcome
for that test?

444 APPENDIX E. ANSWERS TO QUICK QUIZZES

If you did not generate test data for a substantial num-
ber of the above cases, you will need to cultivate a more
destructive attitude in order to have a chance of generating
high-quality tests.

Of course, one way to economize on destructiveness
is to generate the tests with the to-be-tested source code
at hand, which is called white-box testing (as opposed
to black-box testing). However, this is no panacea: You
will find that it is all too easy to find your thinking limited
by what the program can handle, thus failing to generate
truly destructive inputs. q

Quick Quiz 11.3:
You are asking me to do all this validation BS before I
even start coding??? That sounds like a great way to never
get started!!!

Answer:
If it is your project, for example, a hobby, do what you
like. Any time you waste will be your own, and you have
no one else to answer to for it. And there is a good chance
that the time will not be completely wasted. For exam-
ple, if you are embarking on a first-of-a-kind project, the
requirements are in some sense unknowable anyway. In
this case, the best approach might be to quickly prototype
a number of rough solutions, try them out, and see what
works best.

On the other hand, if you are being paid to produce a
system that is broadly similar to existing systems, you
owe it to your users, your employer, and your future self
to validate early and often. q

Quick Quiz 11.4:
How can you implement WARN_ON_ONCE()?

Answer:
If you don’t mind having a WARN_ON_ONCE() that will
sometimes warn twice or three times, simply maintain a
static variable that is initialized to zero. If the condition
triggers, check the static variable, and if it is non-zero,
return. Otherwise, set it to one, print the message, and
return.

If you really need the message to never appear more
than once, perhaps because it is huge, you can use an
atomic exchange operation in place of “set it to one”
above. Print the message only if the atomic exchange
operation returns zero. q

Quick Quiz 11.5:
Why would anyone bother copying existing code in pen

on paper??? Doesn’t that just increase the probability of
transcription errors?

Answer:
If you are worried about transcription errors, please allow
me to be the first to introduce you to a really cool tool
named diff. In addition, carrying out the copying can be
quite valuable:

1. If you are copying a lot of code, you are probably
failing to take advantage of an opportunity for ab-
straction. The act of copying code can provide great
motivation for abstraction.

2. Copying the code gives you an opportunity to think
about whether the code really works in its new set-
ting. Is there some non-obvious constraint, such as
the need to disable interrupts or to hold some lock?

3. Copying the code also gives you time to consider
whether there is some better way to get the job done.

So, yes, copy the code! q

Quick Quiz 11.6:
This procedure is ridiculously over-engineered! How can
you expect to get a reasonable amount of software written
doing it this way???

Answer:
Indeed, repeatedly copying code by hand is laborious and
slow. However, when combined with heavy-duty stress
testing and proofs of correctness, this approach is also
extremely effective for complex parallel code where ulti-
mate performance and reliability are required and where
debugging is difficult. The Linux-kernel RCU implemen-
tation is a case in point.

On the other hand, if you are writing a simple single-
threaded shell script to manipulate some data, then you
would be best-served by a different methodology. For ex-
ample, you might enter each command one at a time into
an interactive shell with a test data set to make sure that it
did what you wanted, then copy-and-paste the successful
commands into your script. Finally, test the script as a
whole.

If you have a friend or colleague who is willing to help
out, pair programming can work very well, as can any
number of formal design- and code-review processes.

And if you are writing code as a hobby, then do what-
ever you like.

In short, different types of software need different de-
velopment methodologies. q

E.11. VALIDATION 445

Quick Quiz 11.7:
Suppose that you had a very large number of systems at
your disposal. For example, at current cloud prices, you
can purchase a huge amount of CPU time at a reasonably
low cost. Why not use this approach to get close enough
to certainty for all practical purposes?

Answer:
This approach might well be a valuable addition to your
validation arsenal. But it does have a few limitations:

1. Some bugs have extremely low probabilities of oc-
currence, but nevertheless need to be fixed. For
example, suppose that the Linux kernel’s RCU im-
plementation had a bug that is triggered only once
per century of machine time on average. A century
of CPU time is hugely expensive even on the cheap-
est cloud platforms, but we could expect this bug
to result in more than 2,000 failures per day on the
more than 100 million Linux instances in the world
as of 2011.

2. The bug might well have zero probability of occur-
rence on your test setup, which means that you won’t
see it no matter how much machine time you burn
testing it.

Of course, if your code is small enough, formal validation
may be helpful, as discussed in Chapter 12. But beware:
formal validation of your code will not find errors in
your assumptions, misunderstanding of the requirements,
misunderstanding of the software or hardware primitives
you use, or errors that you did not think to construct a
proof for. q

Quick Quiz 11.8:
Say what??? When I plug the earlier example of five
tests each with a 10 % failure rate into the formula, I get
59,050 % and that just doesn’t make sense!!!

Answer:
You are right, that makes no sense at all.

Remember that a probability is a number between zero
and one, so that you need to divide a percentage by 100
to get a probability. So 10 % is a probability of 0.1, which
gets a probability of 0.4095, which rounds to 41 %, which
quite sensibly matches the earlier result. q

Quick Quiz 11.9:
In Equation 11.6, are the logarithms base-10, base-2, or
base-e?

Answer:
It does not matter. You will get the same answer no
matter what base of logarithms you use because the result
is a pure ratio of logarithms. The only constraint is that
you use the same base for both the numerator and the
denominator. q

Quick Quiz 11.10:
Suppose that a bug causes a test failure three times per
hour on average. How long must the test run error-free
to provide 99.9 % confidence that the fix significantly
reduced the probability of failure?

Answer:
We set n to 3 and P to 99.9 in Equation 11.11, resulting
in:

T = −
1
3

ln
100 − 99.9

100
= 2.3 (E.9)

If the test runs without failure for 2.3 hours, we can
be 99.9 % certain that the fix reduced the probability of
failure. q

Quick Quiz 11.11:
Doing the summation of all the factorials and exponentials
is a real pain. Isn’t there an easier way?

Answer:
One approach is to use the open-source symbolic ma-
nipulation program named “maxima”. Once you have
installed this program, which is a part of many Debian-
based Linux distributions, you can run it and give the
load(distrib); command followed by any number of
bfloat(cdf_poisson(m,l)); commands, where the
m is replaced by the desired value of m (the actual num-
ber of failures in actual test) and the l is replaced by the
desired value of λ (the expected number of failures in the
actual test).

In particular, the bfloat(cdf_poisson(2,24));
command results in 1.181617112359357b-8, which
matches the value given by Equation 11.13.

Alternatively, you can use the rough-and-ready method
described in Section 11.6.2. q

Quick Quiz 11.12:
But wait!!! Given that there has to be some number of fail-
ures (including the possibility of zero failures), shouldn’t
the summation shown in Equation 11.13 approach the
value 1 as m goes to infinity?

446 APPENDIX E. ANSWERS TO QUICK QUIZZES

Answer:
Indeed it should. And it does.

To see this, note that e−λ does not depend on i, which
means that it can be pulled out of the summation as fol-
lows:

e−λ
∞∑
i=0

λi

i!
(E.10)

The remaining summation is exactly the Taylor series
for eλ , yielding:

e−λeλ (E.11)

The two exponentials are reciprocals, and therefore
cancel, resulting in exactly 1, as required. q

Quick Quiz 11.13:
How is this approach supposed to help if the corruption
affected some unrelated pointer, which then caused the
corruption???

Answer:
Indeed, that can happen. Many CPUs have hardware-
debugging facilities that can help you locate that unre-
lated pointer. Furthermore, if you have a core dump, you
can search the core dump for pointers referencing the cor-
rupted region of memory. You can also look at the data
layout of the corruption, and check pointers whose type
matches that layout.

You can also step back and test the modules making up
your program more intensively, which will likely confine
the corruption to the module responsible for it. If this
makes the corruption vanish, consider adding additional
argument checking to the functions exported from each
module.

Nevertheless, this is a hard problem, which is why I
used the words “a bit of a dark art”. q

Quick Quiz 11.14:
But I did the bisection, and ended up with a huge commit.
What do I do now?

Answer:
A huge commit? Shame on you! This is but one reason
why you are supposed to keep the commits small.

And that is your answer: Break up the commit into
bite-sized pieces and bisect the pieces. In my experience,
the act of breaking up the commit is often sufficient to
make the bug painfully obvious. q

Quick Quiz 11.15:
Why don’t existing conditional-locking primitives provide
this spurious-failure functionality?

Answer:
There are locking algorithms that depend on conditional-
locking primitives telling them the truth. For example, if
conditional-lock failure signals that some other thread is
already working on a given job, spurious failure might
cause that job to never get done, possibly resulting in a
hang. q

Quick Quiz 11.16:
That is ridiculous!!! After all, isn’t getting the correct
answer later than one would like better than getting an
incorrect answer???

Answer:
This question fails to consider the option of choosing
not to compute the answer at all, and in doing so, also
fails to consider the costs of computing the answer. For
example, consider short-term weather forecasting, for
which accurate models exist, but which require large (and
expensive) clustered supercomputers, at least if you want
to actually run the model faster than the weather.

And in this case, any performance bug that prevents
the model from running faster than the actual weather
prevents any forecasting. Given that the whole purpose
of purchasing the large clustered supercomputers was
to forecast weather, if you cannot run the model faster
than the weather, you would be better off not running the
model at all.

More severe examples may be found in the area of
safety-critical real-time computing. q

Quick Quiz 11.17:
But if you are going to put in all the hard work of paral-
lelizing an application, why not do it right? Why settle
for anything less than optimal performance and linear
scalability?

Answer:
Although I do heartily salute your spirit and aspirations,
you are forgetting that there may be high costs due to
delays in the program’s completion. For an extreme ex-
ample, suppose that a 40 % performance shortfall from a
single-threaded application is causing one person to die
each day. Suppose further that in a day you could hack
together a quick and dirty parallel program that ran 50 %
faster on an eight-CPU system than the sequential version,
but that an optimal parallel program would require four

E.12. FORMAL VERIFICATION 447

months of painstaking design, coding, debugging, and
tuning.

It is safe to say that more than 100 people would prefer
the quick and dirty version. q

Quick Quiz 11.18:
But what about other sources of error, for example, due
to interactions between caches and memory layout?

Answer:
Changes in memory layout can indeed result in unrealistic
decreases in execution time. For example, suppose that
a given microbenchmark almost always overflows the
L0 cache’s associativity, but with just the right memory
layout, it all fits. If this is a real concern, consider running
your microbenchmark using huge pages (or within the
kernel or on bare metal) in order to completely control
the memory layout. q

Quick Quiz 11.19:
Wouldn’t the techniques suggested to isolate the code
under test also affect that code’s performance, particularly
if it is running within a larger application?

Answer:
Indeed it might, although in most microbenchmarking
efforts you would extract the code under test from the
enclosing application. Nevertheless, if for some reason
you must keep the code under test within the application,
you will very likely need to use the techniques discussed
in Section 11.7.6. q

Quick Quiz 11.20:
This approach is just plain weird! Why not use means and
standard deviations, like we were taught in our statistics
classes?

Answer:
Because mean and standard deviation were not designed
to do this job. To see this, try applying mean and standard
deviation to the following data set, given a 1 % relative
error in measurement:

49,548.4 49,549.4 49,550.2 49,550.9 49,550.9
49,551.0 49,551.5 49,552.1 49,899.0 49,899.3
49,899.7 49,899.8 49,900.1 49,900.4 52,244.9
53,333.3 53,333.3 53,706.3 53,706.3 54,084.5

The problem is that mean and standard deviation do not
rest on any sort of measurement-error assumption, and
they will therefore see the difference between the values
near 49,500 and those near 49,900 as being statistically
significant, when in fact they are well within the bounds
of estimated measurement error.

Of course, it is possible to create a script similar to that
in Listing 11.2 that uses standard deviation rather than
absolute difference to get a similar effect, and this is left
as an exercise for the interested reader. Be careful to avoid
divide-by-zero errors arising from strings of identical data
values! q

Quick Quiz 11.21:
But what if all the y-values in the trusted group of data
are exactly zero? Won’t that cause the script to reject any
non-zero value?

Answer:
Indeed it will! But if your performance measurements
often produce a value of exactly zero, perhaps you need
to take a closer look at your performance-measurement
code.

Note that many approaches based on mean and standard
deviation will have similar problems with this sort of
dataset. q

E.12 Formal Verification

Quick Quiz 12.1:
Why is there an unreached statement in locker? After all,
isn’t this a full state-space search?

Answer:
The locker process is an infinite loop, so control never
reaches the end of this process. However, since there are
no monotonically increasing variables, Promela is able to
model this infinite loop with a small number of states. q

Quick Quiz 12.2:
What are some Promela code-style issues with this exam-
ple?

Answer:
There are several:

1. The declaration of sum should be moved to within
the init block, since it is not used anywhere else.

448 APPENDIX E. ANSWERS TO QUICK QUIZZES

2. The assertion code should be moved outside of the
initialization loop. The initialization loop can then
be placed in an atomic block, greatly reducing the
state space (by how much?).

3. The atomic block covering the assertion code should
be extended to include the initialization of sum and
j, and also to cover the assertion. This also reduces
the state space (again, by how much?). q

Quick Quiz 12.3:
Is there a more straightforward way to code the do-od
statement?

Answer:
Yes. Replace it with if-fi and remove the two break
statements. q

Quick Quiz 12.4:
Why are there atomic blocks at lines 12-21 and lines 44-
56, when the operations within those atomic blocks have
no atomic implementation on any current production mi-
croprocessor?

Answer:
Because those operations are for the benefit of the as-
sertion only. They are not part of the algorithm itself.
There is therefore no harm in marking them atomic, and
so marking them greatly reduces the state space that must
be searched by the Promela model. q

Quick Quiz 12.5:
Is the re-summing of the counters on lines 24-27 really
necessary?

Answer:
Yes. To see this, delete these lines and run the model.

Alternatively, consider the following sequence of steps:

1. One process is within its RCU read-side critical sec-
tion, so that the value of ctr[0] is zero and the
value of ctr[1] is two.

2. An updater starts executing, and sees that the sum
of the counters is two so that the fastpath cannot be
executed. It therefore acquires the lock.

3. A second updater starts executing, and fetches the
value of ctr[0], which is zero.

4. The first updater adds one to ctr[0], flips the index
(which now becomes zero), then subtracts one from
ctr[1] (which now becomes one).

5. The second updater fetches the value of ctr[1],
which is now one.

6. The second updater now incorrectly concludes that
it is safe to proceed on the fastpath, despite the fact
that the original reader has not yet completed. q

Quick Quiz 12.6:
But different formal-verification tools are often designed
to locate particular classes of bugs. For example, very
few formal-verification tools will find an error in the spec-
ification. So isn’t this “clearly untrustworthy” judgment a
bit harsh?

Answer:
It is certainly true that many formal-verification tools are
specialized in some way. For example, Promela does
not handle realistic memory models (though they can be
programmed into Promela [DMD13]), CBMC [CKL04]
does not detect probabilistic hangs and deadlocks, and
Nidhugg [LSLK14] does not detect bugs involving data
nondeterminism. But this means that that these tools
cannot be trusted to find bugs that they are not designed
to locate.

And therefore people creating formal-verification tools
should “tell the truth on the label”, clearly calling out
what classes of bugs their tools can and cannot detect.
Otherwise, the first time a practitioner finds a tool failing
to detect a bug, that practitioner is likely to make ex-
tremely harsh and extremely public denunciations of that
tool. Yes, yes, there is something to be said for putting
your best foot forward, but putting it too far forward with-
out appropriate disclaimers can easily trigger a land mine
of negative reaction that your tool might or might not be
able to recover from.

You have been warned! q

Quick Quiz 12.7:
Given that we have two independent proofs of correctness
for the QRCU algorithm described herein, and given that
the proof of incorrectness covers what is known to be a
different algorithm, why is there any room for doubt?

Answer:
There is always room for doubt. In this case, it is impor-
tant to keep in mind that the two proofs of correctness

E.12. FORMAL VERIFICATION 449

preceded the formalization of real-world memory models,
raising the possibility that these two proofs are based on
incorrect memory-ordering assumptions. Furthermore,
since both proofs were constructed by the same person, it
is quite possible that they contain a common error. Again,
there is always room for doubt. q

Quick Quiz 12.8:
Yeah, that’s just great! Now, just what am I supposed
to do if I don’t happen to have a machine with 40 GB of
main memory???

Answer:
Relax, there are a number of lawful answers to this ques-
tion:

1. Further optimize the model, reducing its memory
consumption.

2. Work out a pencil-and-paper proof, perhaps starting
with the comments in the code in the Linux kernel.

3. Devise careful torture tests, which, though they can-
not prove the code correct, can find hidden bugs.

4. There is some movement towards tools that do model
checking on clusters of smaller machines. However,
please note that we have not actually used such tools
myself, courtesy of some large machines that Paul
has occasional access to.

5. Wait for memory sizes of affordable systems to ex-
pand to fit your problem.

6. Use one of a number of cloud-computing services to
rent a large system for a short time period. q

Quick Quiz 12.9:
Why not simply increment rcu_update_flag, and then
only increment dynticks_progress_counter if the
old value of rcu_update_flag was zero???

Answer:
This fails in presence of NMIs. To see this, suppose
an NMI was received just after rcu_irq_enter() in-
cremented rcu_update_flag, but before it incremented
dynticks_progress_counter. The instance of rcu_
irq_enter() invoked by the NMI would see that the
original value of rcu_update_flag was non-zero, and
would therefore refrain from incrementing dynticks_
progress_counter. This would leave the RCU grace-
period machinery no clue that the NMI handler was ex-
ecuting on this CPU, so that any RCU read-side critical

sections in the NMI handler would lose their RCU protec-
tion.

The possibility of NMI handlers, which, by definition
cannot be masked, does complicate this code. q

Quick Quiz 12.10:
But if line 7 finds that we are the outermost inter-
rupt, wouldn’t we always need to increment dynticks_
progress_counter?

Answer:
Not if we interrupted a running task! In that case,
dynticks_progress_counter would have already
been incremented by rcu_exit_nohz(), and there
would be no need to increment it again. q

Quick Quiz 12.11:
Can you spot any bugs in any of the code in this section?

Answer:
Read the next section to see if you were correct. q

Quick Quiz 12.12:
Why isn’t the memory barrier in rcu_exit_nohz() and
rcu_enter_nohz() modeled in Promela?

Answer:
Promela assumes sequential consistency, so it is not neces-
sary to model memory barriers. In fact, one must instead
explicitly model lack of memory barriers, for example, as
shown in Listing 12.13 on page 206. q

Quick Quiz 12.13:
Isn’t it a bit strange to model rcu_exit_nohz() fol-
lowed by rcu_enter_nohz()? Wouldn’t it be more nat-
ural to instead model entry before exit?

Answer:
It probably would be more natural, but we will need this
particular order for the liveness checks that we will add
later. q

Quick Quiz 12.14:
Wait a minute! In the Linux kernel, both dynticks_
progress_counter and rcu_dyntick_snapshot are
per-CPU variables. So why are they instead being mod-
eled as single global variables?

Answer:
Because the grace-period code processes each CPU’s

450 APPENDIX E. ANSWERS TO QUICK QUIZZES

dynticks_progress_counter and rcu_dyntick_
snapshot variables separately, we can collapse the state
onto a single CPU. If the grace-period code were instead
to do something special given specific values on specific
CPUs, then we would indeed need to model multiple
CPUs. But fortunately, we can safely confine ourselves to
two CPUs, the one running the grace-period processing
and the one entering and leaving dynticks-idle mode. q

Quick Quiz 12.15:
Given there are a pair of back-to-back changes to gp_
state on lines 25 and 26, how can we be sure that
line 25’s changes won’t be lost?

Answer:
Recall that Promela and spin trace out every possible
sequence of state changes. Therefore, timing is irrelevant:
Promela/spin will be quite happy to jam the entire rest
of the model between those two statements unless some
state variable specifically prohibits doing so. q

Quick Quiz 12.16:
But what would you do if you needed the statements in
a single EXECUTE_MAINLINE() group to execute non-
atomically?

Answer:
The easiest thing to do would be to put each such state-
ment in its own EXECUTE_MAINLINE() statement. q

Quick Quiz 12.17:
But what if the dynticks_nohz() process had “if” or
“do” statements with conditions, where the statement bod-
ies of these constructs needed to execute non-atomically?

Answer:
One approach, as we will see in a later section, is to use
explicit labels and “goto” statements. For example, the
construct:

if
:: i == 0 -> a = -1;
:: else -> a = -2;
fi;

could be modeled as something like:

EXECUTE_MAINLINE(stmt1,
if
:: i == 0 -> goto stmt1_then;
:: else -> goto stmt1_else;
fi)

stmt1_then: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -1; goto stmt1_end)
stmt1_else: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -2)
stmt1_end: skip;

However, it is not clear that the macro is helping much
in the case of the “if” statement, so these sorts of situations
will be open-coded in the following sections. q

Quick Quiz 12.18:
Why are lines 45 and 46 (the in_dyntick_irq = 0;
and the i++;) executed atomically?

Answer:
These lines of code pertain to controlling the model, not
to the code being modeled, so there is no reason to model
them non-atomically. The motivation for modeling them
atomically is to reduce the size of the state space. q

Quick Quiz 12.19:
What property of interrupts is this dynticks_irq() pro-
cess unable to model?

Answer:
One such property is nested interrupts, which are handled
in the following section. q

Quick Quiz 12.20:
Does Paul always write his code in this painfully incre-
mental manner?

Answer:
Not always, but more and more frequently. In this case,
Paul started with the smallest slice of code that included
an interrupt handler, because he was not sure how best to
model interrupts in Promela. Once he got that working,
he added other features. (But if he was doing it again, he
would start with a “toy” handler. For example, he might
have the handler increment a variable twice and have the
mainline code verify that the value was always even.)

Why the incremental approach? Consider the follow-
ing, attributed to Brian W. Kernighan:

Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the
code as cleverly as possible, you are, by defini-
tion, not smart enough to debug it.

E.12. FORMAL VERIFICATION 451

This means that any attempt to optimize the production
of code should place at least 66 % of its emphasis on
optimizing the debugging process, even at the expense of
increasing the time and effort spent coding. Incremental
coding and testing is one way to optimize the debugging
process, at the expense of some increase in coding effort.
Paul uses this approach because he rarely has the luxury
of devoting full days (let alone weeks) to coding and
debugging. q

Quick Quiz 12.21:
But what happens if an NMI handler starts running be-
fore an IRQ handler completes, and if that NMI handler
continues running until a second IRQ handler starts?

Answer:
This cannot happen within the confines of a single CPU.
The first IRQ handler cannot complete until the NMI
handler returns. Therefore, if each of the dynticks and
dynticks_nmi variables have taken on an even value
during a given time interval, the corresponding CPU really
was in a quiescent state at some time during that interval.
q

Quick Quiz 12.22:
This is still pretty complicated. Why not just have a
cpumask_t that has a bit set for each CPU that is in
dyntick-idle mode, clearing the bit when entering an IRQ
or NMI handler, and setting it upon exit?

Answer:
Although this approach would be functionally correct,
it would result in excessive IRQ entry/exit overhead on
large machines. In contrast, the approach laid out in this
section allows each CPU to touch only per-CPU data on
IRQ and NMI entry/exit, resulting in much lower IRQ
entry/exit overhead, especially on large machines. q

Quick Quiz 12.23:
But x86 has strong memory ordering! Why would you
need to formalize its memory model?

Answer:
Actually, academics consider the x86 memory model to
be weak because it can allow prior stores to be reordered
with subsequent loads. From an academic viewpoint, a
strong memory model is one that allows absolutely no
reordering, so that all threads agree on the order of all
operations visible to them. q

Quick Quiz 12.24:
Why does line 8 of Listing 12.24 initialize the registers?
Why not instead initialize them on lines 4 and 5?

Answer:
Either way works. However, in general, it is better to
use initialization than explicit instructions. The explicit
instructions are used in this example to demonstrate their
use. In addition, many of the litmus tests available on the
tool’s web site (http://www.cl.cam.ac.uk/~pes20/
ppcmem/) were automatically generated, which generates
explicit initialization instructions. q

Quick Quiz 12.25:
But whatever happened to line 17 of Listing 12.24, the
one that is the Fail: label?

Answer:
The implementation of powerpc version of atomic_
add_return() loops when the stwcx instruction fails,
which it communicates by setting non-zero status in the
condition-code register, which in turn is tested by the bne
instruction. Because actually modeling the loop would
result in state-space explosion, we instead branch to the
Fail: label, terminating the model with the initial value
of 2 in P0’s r3 register, which will not trigger the exists
assertion.

There is some debate about whether this trick is univer-
sally applicable, but I have not seen an example where it
fails. q

Quick Quiz 12.26:
Does the ARM Linux kernel have a similar bug?

Answer:
ARM does not have this particular bug because that
it places smp_mb() before and after the atomic_add_
return() function’s assembly-language implementation.
PowerPC no longer has this bug; it has long since been
fixed. Finding any other bugs that the Linux kernel might
have is left as an exercise for the reader. q

Quick Quiz 12.27:
What do you have to do to run herd on litmus tests like
that shown in Listing 12.30?

Answer:
Get version v4.17 (or later) of the Linux-kernel source
code, then follow the instructions in tools/memory-
model/README to install the needed tools. Then follow
the further instructions to run these tools on the litmus
test of your choice. q

http://www.cl.cam.ac.uk/~pes20/ppcmem/
http://www.cl.cam.ac.uk/~pes20/ppcmem/

452 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 12.28:
Wait!!! Isn’t leaking pointers out of an RCU read-side
critical section a critical bug???

Answer:
Yes, it usually is a critical bug. However, in this case,
the updater has been cleverly constructed to properly han-
dle such pointer leaks. But please don’t make a habit of
doing this sort of thing, and especially don’t do this with-
out having put a lot of thought into making some more
conventional approach work. q

Quick Quiz 12.29:
In Listing 12.33, why couldn’t a reader fetch c just before
P1() zeroed it on line 45, and then later store this same
value back into c just after it was zeroed, thus defeating
the zeroing operation?

Answer:
Because the reader advances to the next element on
line 24, thus avoiding storing a pointer to the same el-
ement as was fetched. q

Quick Quiz 12.30:
In Listing 12.33, why not have just one call to
synchronize_rcu() immediately before line 48?

Answer:
Because this results in P0() accessing a freed element.
But don’t take my word for this, try it out in herd! q

Quick Quiz 12.31:
Also in Listing 12.33, can’t line 48 be WRITE_ONCE()
instead of smp_store_release()?

Answer:
That is an excellent question. As of late 2018, the answer
is “no one knows”. Much depends on the semantics of
ARMv8’s conditional-move instruction. While awaiting
clarity on these semantics, smp_store_release() is
the safe choice. q

Quick Quiz 12.32:
But shouldn’t sufficiently low-level software be for all
intents and purposes immune to being exploited by black
hats?

Answer:
Unfortunately, no.

At one time, Paul E. McKenny felt that Linux-kernel
RCU was immune to such exploits, but the advent of Row
Hammer showed him otherwise. After all, if the black

hats can hit the system’s DRAM, they can hit any and all
low-level software, even including RCU. q

Quick Quiz 12.33:
In light of the full verification of the L4 microkernel, isn’t
this limited view of formal verification just a little bit
obsolete?

Answer:
Unfortunately, no.

The first full verification of the L4 microkernel was
a tour de force, with a large number of Ph.D. students
hand-verifying code at a very slow per-student rate. This
level of effort could not be applied to most software
projects because the rate of change is just too great. Fur-
thermore, although the L4 microkernel is a large software
artifact from the viewpoint of formal verification, it is tiny
compared to a great number of projects, including LLVM,
GCC, the Linux kernel, Hadoop, MongoDB, and a great
many others. In addition, this verification did have limits,
as the researchers freely admit, to their credit: https://
wiki.sel4.systems/FrequentlyAskedQuestions#
Does_seL4_have_zero_bugs.3F.

Although formal verification is finally starting to show
some promise, including more-recent L4 verifications
involving greater levels of automation, it currently has no
chance of completely displacing testing in the foreseeable
future. And although I would dearly love to be proven
wrong on this point, please note that such a proof will be
in the form of a real tool that verifies real software, not in
the form of a large body of rousing rhetoric.

Perhaps someday formal verification will be used heav-
ily for validation, including for what is now known as
regression testing. Section 17.4 looks at what would be
required to make this possibility a reality. q

E.13 Putting It All Together

Quick Quiz 13.1:
Why not implement reference-acquisition using a simple
compare-and-swap operation that only acquires a refer-
ence if the reference counter is non-zero?

Answer:
Although this can resolve the race between the release of
the last reference and acquisition of a new reference, it
does absolutely nothing to prevent the data structure from
being freed and reallocated, possibly as some completely

https://wiki.sel4.systems/FrequentlyAskedQuestions#Does_seL4_have_zero_bugs.3F
https://wiki.sel4.systems/FrequentlyAskedQuestions#Does_seL4_have_zero_bugs.3F
https://wiki.sel4.systems/FrequentlyAskedQuestions#Does_seL4_have_zero_bugs.3F

E.13. PUTTING IT ALL TOGETHER 453

different type of structure. It is quite likely that the “sim-
ple compare-and-swap operation” would give undefined
results if applied to the differently typed structure.

In short, use of atomic operations such as compare-and-
swap absolutely requires either type-safety or existence
guarantees. q

Quick Quiz 13.2:
Why isn’t it necessary to guard against cases where one
CPU acquires a reference just after another CPU releases
the last reference?

Answer:
Because a CPU must already hold a reference in order
to legally acquire another reference. Therefore, if one
CPU releases the last reference, there cannot possibly
be any CPU that is permitted to acquire a new reference.
This same fact allows the non-atomic check in line 22 of
Listing 13.2. q

Quick Quiz 13.3:
Suppose that just after the atomic_sub_and_test() on
line 22 of Listing 13.2 is invoked, that some other CPU
invokes kref_get(). Doesn’t this result in that other
CPU now having an illegal reference to a released object?

Answer:
This cannot happen if these functions are used correctly.
It is illegal to invoke kref_get() unless you already
hold a reference, in which case the kref_sub() could
not possibly have decremented the counter to zero. q

Quick Quiz 13.4:
Suppose that kref_sub() returns zero, indicating that
the release() function was not invoked. Under what
conditions can the caller rely on the continued existence
of the enclosing object?

Answer:
The caller cannot rely on the continued existence of the
object unless it knows that at least one reference will con-
tinue to exist. Normally, the caller will have no way of
knowing this, and must therefore carefullly avoid refer-
encing the object after the call to kref_sub(). q

Quick Quiz 13.5:
Why not just pass kfree() as the release function?

Answer:
Because the kref structure normally is embedded in a
larger structure, and it is necessary to free the entire

structure, not just the kref field. This is normally ac-
complished by defining a wrapper function that does a
container_of() and then a kfree(). q

Quick Quiz 13.6:
Why can’t the check for a zero reference count be made
in a simple “if” statement with an atomic increment in its
“then” clause?

Answer:
Suppose that the “if” condition completed, finding the
reference counter value equal to one. Suppose that a
release operation executes, decrementing the reference
counter to zero and therefore starting cleanup operations.
But now the “then” clause can increment the counter back
to a value of one, allowing the object to be used after it
has been cleaned up. q

Quick Quiz 13.7:
An atomic_read() and an atomic_set() that are non-
atomic? Is this some kind of bad joke???

Answer:
It might well seem that way, but in situations where no
other CPU has access to the atomic variable in question,
the overhead of an actual atomic instruction would be
wasteful. Two examples where no other CPU has access
are during initialization and cleanup. q

Quick Quiz 13.8:
Why on earth did we need that global lock in the first
place?

Answer:
A given thread’s __thread variables vanish when that
thread exits. It is therefore necessary to synchronize any
operation that accesses other threads’ __thread variables
with thread exit. Without such synchronization, accesses
to __thread variable of a just-exited thread will result in
segmentation faults. q

Quick Quiz 13.9:
Just what is the accuracy of read_count(), anyway?

Answer:
Refer to Listing 5.5 on Page 50. Clearly, if there are no
concurrent invocations of inc_count(), read_count()
will return an exact result. However, if there are con-
current invocations of inc_count(), then the sum is in
fact changing as read_count() performs its summation.
That said, because thread creation and exit are excluded

454 APPENDIX E. ANSWERS TO QUICK QUIZZES

by final_mutex, the pointers in counterp remain con-
stant.

Let’s imagine a mythical machine that is able to take
an instantaneous snapshot of its memory. Suppose that
this machine takes such a snapshot at the beginning of
read_count()’s execution, and another snapshot at the
end of read_count()’s execution. Then read_count()
will access each thread’s counter at some time between
these two snapshots, and will therefore obtain a result
that is bounded by those of the two snapshots, inclusive.
The overall sum will therefore be bounded by the pair of
sums that would have been obtained from each of the two
snapshots (again, inclusive).

The expected error is therefore half of the difference
between the pair of sums that would have been obtained
from each of the two snapshots, that is to say, half of
the execution time of read_count() multiplied by the
number of expected calls to inc_count() per unit time.

Or, for those who prefer equations:

ε =
TrRi

2
(E.12)

where ε is the expected error in read_count()’s return
value, Tr is the time that read_count() takes to execute,
and Ri is the rate of inc_count() calls per unit time.
(And of course, Tr and Ri should use the same units of
time: microseconds and calls per microsecond, seconds
and calls per second, or whatever, as long as they are the
same units.) q

Quick Quiz 13.10:
Hey!!! Line 46 of Listing 13.5 modifies a value in a
pre-existing countarray structure! Didn’t you say that
this structure, once made available to read_count(),
remained constant???

Answer:
Indeed I did say that. And it would be possible to make
count_register_thread() allocate a new structure,
much as count_unregister_thread() currently does.

But this is unnecessary. Recall the derivation of the
error bounds of read_count() that was based on the
snapshots of memory. Because new threads start with
initial counter values of zero, the derivation holds even
if we add a new thread partway through read_count()’s
execution. So, interestingly enough, when adding a new
thread, this implementation gets the effect of allocating
a new structure, but without actually having to do the
allocation. q

Listing E.6: Localized Correlated Measurement Fields
1 struct measurement {
2 double meas_1;
3 double meas_2;
4 double meas_3;
5 };
6
7 struct animal {
8 char name[40];
9 double age;

10 struct measurement *mp;
11 struct measurement meas;
12 char photo[0]; /* large bitmap. */
13 };

Quick Quiz 13.11:
Wow! Listing 13.5 contains 69 lines of code, compared
to only 42 in Listing 5.5. Is this extra complexity really
worth it?

Answer:
This of course needs to be decided on a case-by-case
basis. If you need an implementation of read_count()
that scales linearly, then the lock-based implementation
shown in Listing 5.5 simply will not work for you. On the
other hand, if calls to count_read() are sufficiently rare,
then the lock-based version is simpler and might thus be
better, although much of the size difference is due to the
structure definition, memory allocation, and NULL return
checking.

Of course, a better question is “Why doesn’t the lan-
guage implement cross-thread access to __thread vari-
ables?” After all, such an implementation would make
both the locking and the use of RCU unnecessary. This
would in turn enable an implementation that was even
simpler than the one shown in Listing 5.5, but with all the
scalability and performance benefits of the implementa-
tion shown in Listing 13.5! q

Quick Quiz 13.12:
But cant’t the approach shown in Listing 13.9 result in
extra cache misses, in turn resulting in additional read-
side overhead?

Answer:
Indeed it can.

One way to avoid this cache-miss overhead is shown
in Listing E.6: Simply embed an instance of a
measurement structure named meas into the animal
structure, and point the ->mp field at this ->meas field.

Measurement updates can then be carried out as fol-
lows:

E.14. ADVANCED SYNCHRONIZATION 455

1. Allocate a new measurement structure and place
the new measurements into it.

2. Use rcu_assign_pointer() to point ->mp to this
new structure.

3. Wait for a grace period to elapse, for example using
either synchronize_rcu() or call_rcu().

4. Copy the measurements from the new measurement
structure into the embedded ->meas field.

5. Use rcu_assign_pointer() to point ->mp back
to the old embedded ->meas field.

6. After another grace period elapses, free up the new
measurement structure.

This approach uses a heavier weight update procedure
to eliminate the extra cache miss in the common case. The
extra cache miss will be incurred only while an update is
actually in progress. q

Quick Quiz 13.13:
But how does this scan work while a resizable hash table
is being resized? In that case, neither the old nor the new
hash table is guaranteed to contain all the elements in the
hash table!

Answer:
True, resizable hash tables as described in Section 10.4
cannot be fully scanned while being resized. One simple
way around this is to acquire the hashtab structure’s ->
ht_lock while scanning, but this prevents more than one
scan from proceeding concurrently.

Another approach is for updates to mutate the old hash
table as well as the new one while resizing is in progress.
This would allow scans to find all elements in the old
hash table. Implementing this is left as an exercise for the
reader. q

E.14 Advanced Synchronization
Quick Quiz 14.1:
But what about battery-powered systems? They don’t
require energy flowing into the system as a whole.

Answer:
Sooner or later, either the battery must be recharged,
which requires energy to flow into the system, or the
system will stop operating. q

Quick Quiz 14.2:
But given the results from queueing theory, won’t low uti-
lization merely improve the average response time rather
than improving the worst-case response time? And isn’t
worst-case response time all that most real-time systems
really care about?

Answer:
Yes, but . . .

Those queueing-theory results assume infinite “calling
populations”, which in the Linux kernel might correspond
to an infinite number of tasks. As of mid-2016, no real
system supports an infinite number of tasks, so results
assuming infinite calling populations should be expected
to have less-than-infinite applicability.

Other queueing-theory results have finite calling
populations, which feature sharply bounded response
times [HL86]. These results better model real systems,
and these models do predict reductions in both average
and worst-case response times as utilizations decrease.
These results can be extended to model concurrent sys-
tems that use synchronization mechanisms such as lock-
ing [Bra11].

In short, queueing-theory results that accurately de-
scribe real-world real-time systems show that worst-case
response time decreases with decreasing utilization. q

Quick Quiz 14.3:
Formal verification is already quite capable, benefiting
from decades of intensive study. Are additional advances
really required, or is this just a practitioner’s excuse to
continue to be lazy and ignore the awesome power of
formal verification?

Answer:
Perhaps this situation is just a theoretician’s excuse to
avoid diving into the messy world of real software? Per-
haps more constructively, the following advances are re-
quired:

1. Formal verification needs to handle larger software
artifacts. The largest verification efforts have been
for systems of only about 10,000 lines of code, and
those have been verifying much simpler properties
than real-time latencies.

2. Hardware vendors will need to publish formal tim-
ing guarantees. This used to be common practice
back when hardware was much simpler, but today’s
complex hardware results in excessively complex ex-
pressions for worst-case performance. Unfortunately,

456 APPENDIX E. ANSWERS TO QUICK QUIZZES

energy-efficiency concerns are pushing vendors in
the direction of even more complexity.

3. Timing analysis needs to be integrated into develop-
ment methodologies and IDEs.

All that said, there is hope, given recent work for-
malizing the memory models of real computer sys-
tems [AMP+11, AKNT13]. q

Quick Quiz 14.4:
Differentiating real-time from non-real-time based on
what can “be achieved straightforwardly by non-real-time
systems and applications” is a travesty! There is abso-
lutely no theoretical basis for such a distinction!!! Can’t
we do better than that???

Answer:
This distinction is admittedly unsatisfying from a strictly
theoretical perspective. But on the other hand, it is exactly
what the developer needs in order to decide whether the
application can be cheaply and easily developed using
standard non-real-time approaches, or whether the more
difficult and expensive real-time approaches are required.
In other words, theory is quite important, however, for
those of us who like to get things done, theory supports
practice, never the other way around. q

Quick Quiz 14.5:
But if you only allow one reader at a time to read-acquire
a reader-writer lock, isn’t that the same as an exclusive
lock???

Answer:
Indeed it is, other than the API. And the API is important
because it allows the Linux kernel to offer real-time capa-
bilities without having the -rt patchset grow to ridiculous
sizes.

However, this approach clearly and severely limits
read-side scalability. The Linux kernel’s -rt patchset has
been able to live with this limitation for several reasons:
(1) Real-time systems have traditionally been relatively
small, (2) Real-time systems have generally focused on
process control, thus being unaffected by scalability limi-
tations in the I/O subsystems, and (3) Many of the Linux
kernel’s reader-writer locks have been converted to RCU.

All that aside, it is quite possible that the Linux kernel
will some day permit limited read-side parallelism for
reader-writer locks subject to priority boosting. q

Quick Quiz 14.6:
Suppose that preemption occurs just after the load from
t->rcu_read_unlock_special.s on line 17 of List-
ing 14.2. Mightn’t that result in the task failing to invoke
rcu_read_unlock_special(), thus failing to remove
itself from the list of tasks blocking the current grace
period, in turn causing that grace period to extend indefi-
nitely?

Answer:
That is a real problem, and it is solved in RCU’s scheduler
hook. If that scheduler hook sees that the value of t->
rcu_read_lock_nesting is negative, it invokes rcu_
read_unlock_special() if needed before allowing the
context switch to complete. q

Quick Quiz 14.7:
But isn’t correct operation despite fail-stop bugs a valu-
able fault-tolerance property?

Answer:
Yes and no.

Yes in that non-blocking algorithms can provide fault
tolerance in the face of fail-stop bugs, but no in that this
is grossly insufficient for practical fault tolerance. For
example, suppose you had a wait-free queue, and further
suppose that a thread has just dequeued an element. If
that thread now succumbs to a fail-stop bug, the element it
has just dequeued is effectively lost. True fault tolerance
requires way more than mere non-blocking properties,
and is beyond the scope of this book. q

Quick Quiz 14.8:
I couldn’t help but spot the word “includes” before this
list. Are there other constraints?

Answer:
Indeed there are, and lots of them. However, they tend to
be specific to a given situation, and many of them can be
thought of as refinements of some of the constraints listed
above. For example, the many constraints on choices of
data structure will help meeting the “Bounded time spent
in any given critical section” constraint. q

Quick Quiz 14.9:
Given that real-time systems are often used for safety-
critical applications, and given that runtime memory al-
location is forbidden in many safety-critical situations,
what is with the call to malloc()???

Answer:
In early 2016, situations forbidding runtime memory were

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 457

also not so excited with multithreaded computing. So the
runtime memory allocation is not an additional obstacle
to safety criticality. q

Quick Quiz 14.10:
Don’t you need some kind of synchronization to protect
update_cal()?

Answer:
Indeed you do, and you could use any of a number of
techniques discussed earlier in this book. q

E.15 Advanced Synchronization:
Memory Ordering

Quick Quiz 15.1:
This material has been almost completely rewritten since
the first edition. Memory ordering cannot have changed
all that in late 2017, so what gives?

Answer:
The earlier memory-ordering section had its roots in
a pair of Linux Journal articles [McK05a, McK05b]
dating back to 2005. Since then, the C and C++

memory models [Bec10] have been formalized (and
critiqued [BS14, BD14, VBC+15, BMN+15, LVK+17,
BGV17]), executable formal memory models for com-
puter systems have become the norm [MSS12, McK11c,
SSA+11, AMP+11, AKNT13, AKT13, AMT14, MS14,
FSP+17, ARM17], and there is even a memory model for
the Linux kernel [AMM+17a, AMM+17b, AMM+18].

Given all this progress since 2005, it was high time for
a full rewrite! q

Quick Quiz 15.2:
The compiler can also reorder Thread P0()’s and
Thread P1()’s memory accesses in Listing 15.1, right?

Answer:
In general, compiler optimizations carry out more ex-
tensive and profound reorderings than CPUs can. How-
ever, in this case, the volatile accesses in READ_ONCE()
and WRITE_ONCE() prevent the compiler from reordering.
And also from doing much else as well, so the examples
in this section will be making heavy use of READ_ONCE()
and WRITE_ONCE(). See Section 15.3 for more detail on
the need for READ_ONCE() and WRITE_ONCE(). q

Quick Quiz 15.3:
But wait!!! On row 2 of Table 15.1 both x0 and x1 each
have two values at the same time, namely zero and two.
How can that possibly work???

Answer:
There is an underlying cache-coherence protocol that
straightens things out, which are discussed in Appen-
dix C.2. But if you think that a given variable having two
values at the same time is surprising, just wait until you
get to Section 15.2.1! q

Quick Quiz 15.4:
But don’t the values also need to be flushed from the
cache to main memory?

Answer:
Perhaps surprisingly, not necessarily! On some systems,
if the two variables are being used heavily, they might be
bounced back and forth between the CPUs’ caches and
never land in main memory. q

Quick Quiz 15.5:
The rows in Table 15.3 seem quite random and confused.
Whatever is the conceptual basis of this table???

Answer:
The rows correspond roughly to hardware mechanisms of
increasing power and overhead.

The WRITE_ONCE() row captures the fact that accesses
to a single variable are always fully ordered, as indicated
by the “SV”column. Note that all other operations provid-
ing ordering against accesses to multiple variables also
provide this same-variable ordering.

The READ_ONCE() row captures the fact that (as of
2018) compilers and CPUs do not indulge in user-visible
speculative stores, so that any store whose address, data,
or execution depends on a prior load is guaranteed to
happen after that load completes. However, this guarantee
assumes that these dependencies have been constructed
carefully as described in Sections 15.3.2 and 15.3.3.

The “_relaxed() RMW operation” row captures the
fact that a value-returning _relaxed() RMW has done
a load and a store, which are every bit as good as a READ_
ONCE() and a WRITE_ONCE(), respectively.

The smp_read_barrier_depends() row captures
the fact that, with the notable exception of DEC Alpha,
compilers and CPUs do not indulge in user-visible break-
age of address dependencies, again assuming that these de-
pendencies have been constructed carefully as described
in Section 15.3.2. However, as of version v4.15 of the

458 APPENDIX E. ANSWERS TO QUICK QUIZZES

Linux kernel, the fact that READ_ONCE() provides depen-
dency ordering should mean that there is little further
need for smp_read_barrier_depends().

The *_dereference() row captures the address
and data dependency ordering provided by rcu_
dereference() and friends.

The “Successful *_acquire()” row captures the fact
that many CPUs have special “acquire” forms of loads
and of atomic RMW instructions, and that many other
CPUs have light-weight memory-barrier instructions that
order prior loads against subsequent loads and stores.

The “Successful *_release()” row captures the fact
that many CPUs have special “release” forms of stores
and of atomic RMW instructions, and that many other
CPUs have light-weight memory-barrier instructions that
order prior loads and stores against subsequent stores.

The smp_rmb() row captures the fact that many CPUs
have light-weight memory-barrier instructions that order
prior loads against subsequent loads. Similarly, the smp_
wmb() row captures the fact that many CPUs have light-
weight memory-barrier instructions that order prior stores
against subsequent stores.

None of the ordering operations thus far require prior
stores to be ordered against subsequent loads, which
means that these operations need not interfere with store
buffers, whose main purpose in life is in fact to reorder
prior stores against subsequent loads. The light-weight na-
ture of these operations is precisely due to their policy of
store-buffer non-interference. However, as noted earlier,
it is sometimes necessary to interfere with the store buf-
fer in order to prevent prior stores from being reordered
against later stores, which brings us to the remaining rows
in this table.

The smp_mb() row corresponds to the full memory
barrier available on most platforms, with Itanium being
the exception that proves the rule. However, even on
Itanium, smp_mb() provides full ordering with respect
to READ_ONCE() and WRITE_ONCE(), as discussed in
Section 15.4.4.

The “Successful full-strength non-void RMW” row
captures the fact that on some platforms (such as x86)
atomic RMW instructions provide full ordering both be-
fore and after. The Linux kernel therefore requires that
full-strength non-void atomic RMW operations provide
full ordering in cases where these operations succeed.
(Full-strength atomic RMW operation’s names do not end
in _relaxed, _acquire, or _release.) As noted ear-
lier, the case where these operations do not succeed is
covered by the “_relaxed() RMW operation” row.

However, the Linux kernel does not require that either
void or _relaxed() atomic RMW operations provide
any ordering whatsoever, with the canonical example be-
ing atomic_inc(). Therefore, these operations, along
with failing non-void atomic RMW operations may be
preceded by smp_mb__before_atomic() and followed
by smp_mb__after_atomic() to provide full ordering
for any accesses preceding or following both. No order-
ing need be provided for accesses between the smp_mb__
before_atomic() (or, similarly, the smp_mb__after_
atomic()) and the atomic RMW operation, as indicated
by the “a” entries on the smp_mb__before_atomic()
and smp_mb__after_atomic() rows of the table.

In short, any randomness in the table is due to the prop-
erties of the underlying hardware, which are constrained
by nothing other than the laws of physics, which were
covered back in Chapter 3. q

Quick Quiz 15.6:
Why is Table 15.3 missing smp_mb__after_unlock_
lock() and smp_mb__after_spinlock()?

Answer:
These two primitives are rather specialized, and at
present seem difficult to fit into Table 15.3. The smp_
mb__after_unlock_lock() primitive is intended to be
placed immediately after a lock acquisition, and ensures
that all CPUs see all accesses in prior critical sections as
happening before all accesses following the smp_mb__
after_unlock_lock() and also before all accesses in
later critical sections. Here “all CPUs” includes those
CPUs not holding that lock, and “prior critical sections”
includes all prior critical sections for the lock in question
as well as all prior critical sections for all other locks
that were released by the same CPU that executed the
smp_mb__after_unlock_lock().

The smp_mb__after_spinlock() provides the same
guarantees as does smp_mb__after_unlock_lock(),
but also provides additional visibility guarantees for other
accesses performed by the CPU that executed the smp_
mb__after_spinlock(). Given any store S performed
prior to any earlier lock acquisition and any load L
performed after the smp_mb__after_spinlock(), all
CPUs will see S as happening before L. In other words,
if a CPU performs a store S, acquires a lock, executes an
smp_mb__after_spinlock(), then performs a load L,
all CPUs will see S as happening before L. q

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 459

Quick Quiz 15.7:
But how can I know that a given project can be designed
and coded within the confines of these rules of thumb?

Answer:
Much of the purpose of the remainder of this chapter is to
answer exactly that question! q

Quick Quiz 15.8:
How can you tell which memory barriers are strong
enough for a given use case?

Answer:
Ah, that is a deep question whose answer requires most
of the rest of this chapter. q

Quick Quiz 15.9:
Wait!!! Where do I find this tooling that automatically
analyzes litmus tests???

Answer:
Get version v4.17 (or later) of the Linux-kernel source
code, then follow the instructions in tools/memory-
model/README to install the needed tools. Then follow
the further instructions to run these tools on the litmus
test of your choice. q

Quick Quiz 15.10:
What assumption is the code fragment in Listing 15.3
making that might not be valid on real hardware?

Answer:
The code assumes that as soon as a given CPU stops
seeing its own value, it will immediately see the final
agreed-upon value. On real hardware, some of the CPUs
might well see several intermediate results before converg-
ing on the final value. The actual code used to produce
the data in the figures discussed later in this section was
therefore somewhat more complex. q

Quick Quiz 15.11:
How could CPUs possibly have different views of the
value of a single variable at the same time?

Answer:
As discussed in Section 15.1.1, many CPUs have store
buffers that record the values of recent stores, which do
not become globally visible until the corresponding cache
line makes its way to the CPU. Therefore, it is quite pos-
sible for each CPU to see a different value for a given
variable at a single point in time—and for main memory

to hold yet another value. One of the reasons that mem-
ory barriers were invented was to allow software to deal
gracefully with situations like this one. q

Quick Quiz 15.12:
Why do CPUs 2 and 3 come to agreement so quickly,
when it takes so long for CPUs 1 and 4 to come to the
party?

Answer:
CPUs 2 and 3 are a pair of hardware threads on the same
core, sharing the same cache hierarchy, and therefore have
very low communications latencies. This is a NUMA, or,
more accurately, a NUCA effect.

This leads to the question of why CPUs 2 and 3 ever
disagree at all. One possible reason is that they each
might have a small amount of private cache in addition to a
larger shared cache. Another possible reason is instruction
reordering, given the short 10-nanosecond duration of
the disagreement and the total lack of memory-ordering
operations in the code fragment. q

Quick Quiz 15.13:
But why make load-load reordering visible to the user?
Why not just use speculative execution to allow execu-
tion to proceed in the common case where there are no
intervening stores, in which case the reordering cannot be
visible anyway?

Answer:
They can and many do, otherwise systems containing
strongly ordered CPUs would be slow indeed. However,
speculative execution does have its downsides, especially
if speculation must be rolled back frequently, and espe-
cially on battery-powered systems. But perhaps future
systems will be able to overcome these disadvantages.
Until then, we can expect vendors to continue producing
weakly ordered CPUs. q

Quick Quiz 15.14:
Why should strongly ordered systems pay the perfor-
mance price of unnecessary smp_rmb() and smp_wmb()
invocations? Shouldn’t weakly ordered systems shoulder
the full cost of their misordering choices???

Answer:
That is in fact exactly what happens. On strongly ordered
systems, smp_rmb() and smp_wmb() emit no instruc-
tions, but instead just constrain the compiler. Thus, in this
case, weakly ordered systems do in fact shoulder the full
cost of their memory-ordering choices. q

460 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 15.15:
But how do we know that all platforms really avoid trig-
gering the exists clauses in Listings 15.10 and 15.11?

Answer:
Answering this requires identifying three major groups
of platforms: (1) Total-store-order (TSO) platforms,
(2) Weakly ordered platorms, and (3) DEC Alpha.

The TSO platforms order all pairs of memory refer-
ences except for prior stores against later loads. Be-
cause the address dependency on lines 21 and 22 of List-
ing 15.10 is instead a load followed by another load, TSO
platforms preserve this address dependency. They also
preserve the address dependency on lines 20 and 21 of
Listing 15.11 because this is a load followed by a store.
Because address dependencies must start with a load,
TSO platforms implicitly but completely respect them.

Weakly ordered platforms don’t necessarily maintain
ordering of unrelated accesses. However, the address de-
pendencies in Listings 15.10 and 15.11 are not unrelated:
There is an address dependency. The hardware tracks
dependencies and maintains the needed ordering.

There is one (famous) exception to this rule for weakly
ordered platforms, and that exception is DEC Alpha for
load-to-load address dependencies. And this is why,
in Linux kernels predating v4.15, DEC Alpha requires
the explicit memory barrier supplied for it by the now-
obsolete lockless_dereference() on line 21 of List-
ing 15.10. However, DEC Alpha does track load-to-
store address dependencies, which is why line 20 of List-
ing 15.11 does not need a lockless_dereference(),
even in Linux kernels predating v4.15.

To sum up, current platforms either respect address
dependencies implicitly, as is the case for TSO platforms
(x86, mainframe, SPARC, ...), have hardware tracking for
address dependencies (ARM, PowerPC, MIPS, ...), have
the required memory barriers supplied by READ_ONCE()
(DEC Alpha in Linux kernel v4.15 and later), or require
the memory barriers supplied by rcu_dereference()
(DEC Alpha in Linux kernel v4.14 and earlier). q

Quick Quiz 15.16:
SP, MP, LB, and now S. Where do all these litmus-test
abbreviations come from and how can anyone keep track
of them?

Answer:
The best scorecard is the infamous test6.pdf [SSA+11].

Unfortunately, not all of the abbreviations have catchy ex-
pansions like SB (store buffering), MP (message passing),
and LB (load buffering), but at least the list of abbrevia-
tions is available. q

Quick Quiz 15.17:
But wait!!! Line 18 of Listing 15.12 uses READ_ONCE(),
which marks the load as volatile, which means that the
compiler absolutely must emit the load instruction even
if the value is later multiplied by zero. So do you really
need to work so hard to keep the compiler from breaking
your data dependencies?

Answer:
Yes, the compiler absolutely must emit a load instruction
for a volatile load. But if you multiply the value loaded
by zero, the compiler is well within its rights to substitute
a constant zero for the result of that multiplication, which
will break the data dependency on many platforms.

Worse yet, if the dependent store does not use WRITE_
ONCE(), the compiler could hoist it above the load, which
would cause even TSO platforms to fail to provide order-
ing. q

Quick Quiz 15.18:
Wouldn’t control dependencies be more robust if they
were mandated by language standards???

Answer:
In the fullness of time, perhaps they will be so mandated.
q

Quick Quiz 15.19:
But in Listing 15.15, wouldn’t be just as bad if P2()’s r1
and r2 obtained the values 2 and 1, respectively, while
P3()’s r1 and r2 obtained the values 1 and 2, respec-
tively?

Answer:
Yes, it would. Feel free to modify the exists clause to
check for that outcome and see what happens. q

Quick Quiz 15.20:
Can you give a specific example showing different be-
havior for multicopy atomic on the one hand and other-
multicopy atomic on the other?

Answer:
Listing E.7 (C-MP-OMCA+o-o-o+o-rmb-o.litmus)
shows such a test.

On a multicopy-atomic platform, P0()’s store to x
on line 10 must become visible to both P0() and P1()

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 461

Listing E.7: Litmus Test Distinguishing Multicopy Atomic
From Other Multicopy Atomic

1 C C-MP-OMCA+o-o-o+o-rmb-o
2
3 {
4 }
5
6 P0(int *x, int *y)
7 {
8 int r0;
9

10 WRITE_ONCE(*x, 1);
11 r0 = READ_ONCE(*x);
12 WRITE_ONCE(*y, r0);
13 }
14
15 P1(int *x, int *y)
16 {
17 int r1;
18 int r2;
19
20 r1 = READ_ONCE(*y);
21 smp_rmb();
22 r2 = READ_ONCE(*x);
23 }
24
25 exists (1:r1=1 /\ 1:r2=0)

simultaneously. Because this store becomes visible to
P0() on line 11, before P0()’s store to y on line 12,
P0()’s store to x must become visible before its store to
y everywhere, including P1(). Therefore, if P1()’s load
from y on line 20 returns the value 1, so must its load
from x on line 22, given that the smp_rmb() on line 21
forces these two loads to execute in order. Therefore, the
exists clause on line 25 cannot trigger on a multicopy-
atomic platform.

In contrast, on an other-multicopy-atomic platform,
P0() could see its own store early, so that there would be
no constraint on the order of visibility of the two stores
from to P1(), which in turn allows the exists clause to
trigger. q

Quick Quiz 15.21:
Then who would even think of designing a system with
shared store buffers???

Answer:
This is in fact a very natural design for any system hav-
ing multiple hardware threads per core. Natural from a
hardware point of view, that is! q

Quick Quiz 15.22:
But just how is it fair that P0() and P1() must share a
store buffer and a cache, but P2() gets one each of its
very own???

Answer:
Presumably there is a P3(), as is in fact shown in Fig-
ure 15.8, that shares P2()’s store buffer and cache. But
not necessarily. Some platforms allow different cores to
disable different numbers of threads, allowing the hard-
ware to adjust to the needs of the workload at hand. For
example, a single-threaded critical-path portion of the
workload might be assigned to a core with only one thread
enabled, thus allowing the single thread running that por-
tion of the workload to use the entire capabilities of that
core. Other more highly parallel but cache-miss-prone
portions of the workload might be assigned to cores with
all hardware threads enabled to provide improved through-
put. This improved throughput could be due to the fact
that while one hardware thread is stalled on a cache miss,
the other hardware threads can make forward progress.

In such cases, performance requirements override
quaint human notions of fairness. q

Quick Quiz 15.23:
Referring to Table 15.4, why on earth would P0()’s store
take so long to complete when P1()’s store complete
so quickly? In other words, does the exists clause on
line 32 of Listing 15.16 really trigger on real systems?

Answer:
You need to face the fact that it really can trigger. Akira
Yokosawa used the litmus7 tool to run this litmus test
on a POWER8 system. Out of 1,000,000,000 runs, 4 trig-
gered the exists clause. Thus, triggering the exists
clause is not merely a one-in-a-million occurrence, but
rather a one-in-a-hundred-million occurrence. But it nev-
ertheless really does trigger on real systems. q

Quick Quiz 15.24:
But it is not necessary to worry about propagation unless
there are at least three threads in the litmus test, right?

Answer:
Wrong.

Listing E.8 (C-R+o-wmb-o+o-mb-o.litmus) shows
a two-thread litmus test that requires propagation due to
the fact that it only has store-to-store and load-to-store
links between its pair of threads. Even though P0() is
fully ordered by the smp_wmb() and P1() is fully ordered
by the smp_mb(), the counter-temporal nature of the links
means that the exists clause on line 22 really can trigger.
To prevent this triggering, the smp_wmb() on line 8 must
become an smp_mb(), bringing propagation into play
twice, once for each non-temporal link. q

462 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.8: R Litmus Test With Write Memory Barrier (No
Ordering)

1 C C-R+o-wmb-o+o-mb-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 1);
8 smp_wmb();
9 WRITE_ONCE(*x1, 1);

10 }
11
12
13 P1(int *x0, int *x1)
14 {
15 int r2;
16
17 WRITE_ONCE(*x1, 2);
18 smp_mb();
19 r2 = READ_ONCE(*x0);
20 }
21
22 exists (1:r2=0 /\ x1=2)

Quick Quiz 15.25:
But given that smp_mb() has the propagation property,
why doesn’t the smp_mb() on line 29 of Listing 15.18
prevent the exists clause from triggering?

Answer:
As a rough rule of thumb, the smp_mb() barrier’s propa-
gation property is sufficient to maintain ordering through
only one store-to-load link between processes. Unfortu-
nately, Listing 15.18 has not one but two store-to-load
links, with the first being from the READ_ONCE() on
line 21 to the WRITE_ONCE() on line 28 and the second
being from the READ_ONCE() on line 30 to the WRITE_
ONCE() on line 11. Therefore, preventing the exists
clause from triggering should be expected to require not
one but two instances of smp_mb().

As a special exception to this rule of thumb, a release-
acquire chain can have one load-to-store link between
processes and still prohibit the cycle. q

Quick Quiz 15.26:
But for litmus tests having only ordered stores, as shown
in Listing 15.20 (C-2+2W+o-wmb-o+o-wmb-o.litmus),
research shows that the cycle is prohibited, even in weakly
ordered systems such as ARM and Power [SSA+11].
Given that, are store-to-store really always counter-
temporal???

Answer:
This litmus test is indeed a very interesting curiosity. Its
ordering apparently occurs naturally given typical weakly

Listing E.9: 2+2W Litmus Test (No Ordering)
1 C C-2+2W+o-o+o-o
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 1);
8 WRITE_ONCE(*x1, 2);
9 }

10
11
12 P1(int *x0, int *x1)
13 {
14 WRITE_ONCE(*x1, 1);
15 WRITE_ONCE(*x0, 2);
16 }
17
18 exists (x0=1 /\ x1=1)

ordered hardware design, which would normally be con-
sidered a great gift from the relevant laws of physics and
cache-coherency-protocol mathematics.

Unfortunately, no one has been able to come up with a
software use case for this gift that does not have a much
better alternative implementation. Therefore, neither the
C11 nor the Linux kernel memory models provide any
guarantee corresponding to Listing 15.20. This means
that the exists clause on line 20 can trigger.

Of course, without the barrier, there are no ordering
guarantees, even on real weakly ordered hardware, as
shown in Listing E.9 (C-2+2W+o-o+o-o.litmus). q

Quick Quiz 15.27:
Can you construct a litmus test like that in Listing 15.21
that uses only dependencies?

Answer:
Listing E.10 shows a somewhat nonsensical but very real
example. Creating a more useful (but still real) litmus test
is left as an exercise for the reader. q

Quick Quiz 15.28:
Suppose we have a short release-acquire chain along with
one load-to-store link and one store-to-store link, like that
shown in Listing 15.25. Given that there is only one of
each type of non-store-to-load link, the exists cannot
trigger, right?

Answer:
Wrong. It is the number of non-store-to-load links that
matters. If there is only one non-store-to-load link, a
release-acquire chain can prevent the exists clause from
triggering. However, if there is more than one non-store-
to-load link, be they store-to-store, load-to-store, or any
combination thereof, it is necessary to have at least one

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 463

Listing E.10: LB Litmus Test With No Acquires
1 C C-LB+o-data-o+o-data-o+o-data-o
2 {
3 int x0=0;
4 int x1=1;
5 int x2=2;
6 }
7
8 P0(int *x0, int *x1)
9 {

10 int r2;
11
12 r2 = READ_ONCE(*x0);
13 WRITE_ONCE(*x1, r2);
14 }
15
16
17 P1(int *x1, int *x2)
18 {
19 int r2;
20
21 r2 = READ_ONCE(*x1);
22 WRITE_ONCE(*x2, r2);
23 }
24
25 P2(int *x2, int *x0)
26 {
27 int r2;
28
29 r2 = READ_ONCE(*x2);
30 WRITE_ONCE(*x0, r2);
31 }
32
33 exists (0:r2=2 /\ 1:r2=0 /\ 2:r2=1)

full barrier (smp_mb() or better) between each non-store-
to-load link. In Listing 15.25, preventing the exists
clause from triggering therefore requires an additional
full barrier between either P0()’s or P1()’s accesses. q

Quick Quiz 15.29:
There are store-to-load links, load-to-store links, and
store-to-store links. But what about load-to-load links?

Answer:
The problem with the concept of load-to-load links is
that if the two loads from the same variable return the
same value, there is no way to determine their ordering.
The only way to determine their ordering is if they return
different values, in which case there had to have been an
intervening store. And that intervening store means that
there is no load-to-load link, but rather a load-to-store link
followed by a store-to-load link. q

Quick Quiz 15.30:
Why can’t the compiler invent a store to a normal variable
any time it likes?

Answer:
Because the compiler is forbidden from introducing data
races. The case of inventing a store just before a normal

Listing E.11: Breakable Dependencies With Non-Constant
Comparisons

1 int *gp1;
2 int *gp2;
3 int *p;
4 int *q;
5
6 p = rcu_dereference(gp1);
7 q = READ_ONCE(gp2);
8 if (p == q)
9 handle_equality(p);

10 do_something_with(*p);

store is quite special: It is not possible for some other en-
tity, be it CPU, thread, signal handler, or interrupt handler,
to be able to see the invented store unless the code already
has a data race, even without the invented store. And if
the code already has a data race, it already invokes the
dreaded spectre of undefined behavior, which allows the
compiler to generate pretty much whatever code it wants,
regardless of the wishes of the developer.

But if the original store is volatile, as in WRITE_
ONCE(), for all the compiler knows, there might be a
side effect associated with the store that could signal some
other thread, allowing data-race-free access to the variable.
By inventing the store, the compiler might be introducing
a data race, which it is not permitted to do.

In the case of volatile and atomic variables, the com-
piler is specifically forbidden from inventing writes. q

Quick Quiz 15.31:
Why can’t you simply dereference the pointer before com-
paring it to &reserve_int on line 6 of Listing 15.26?

Answer:
For first, it might be necessary to invoke handle_
reserve() before do_something_with().

But more relevant to memory ordering, the compiler is
often within its rights to hoist the comparison ahead of
the dereferences, which would allow the compiler to use
&reserve_int instead of the variable p that the hardware
has tagged with a dependency. q

Quick Quiz 15.32:
But it should be safe to compare two pointer variables,
right? After all, the compiler doesn’t know the value of
either, so how can it possibly learn anything from the
comparison?

Answer:
Unfortunately, the compiler really can learn enough to

464 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.12: Broken Dependencies With Non-Constant Com-
parisons

1 int *gp1;
2 int *gp2;
3 int *p;
4 int *q;
5
6 p = rcu_dereference(gp1);
7 q = READ_ONCE(gp2);
8 if (p == q) {
9 handle_equality(q);

10 do_something_with(*q);
11 } else {
12 do_something_with(*p);
13 }

break your dependency chain, for example, as shown in
Listing E.11. The compiler is within its rights to trans-
form this code into that shown in Listing E.12, and might
well make this transformation due to register pressure
if handle_equality() was inlined and needed a lot of
registers. Line 10 of this transformed code uses q, which
although equal to p, is not necessarily tagged by the hard-
ware as carrying a dependency. Therefore, this trans-
formed code does not necessarily guarantee that line 10
is ordered after line 6.9 q

Quick Quiz 15.33:
But doesn’t the condition in line 35 supply a control de-
pendency that would keep line 36 ordered after line 34?

Answer:
Yes, but no. Yes, there is a control dependency, but control
dependencies do not order later loads, only later stores. If
you really need ordering, you could place an smp_rmb()
between lines 35 and 36. Or considerably better, have
update() allocate two structures instead of reusing the
structure. q

Quick Quiz 15.34:
Can’t you instead add an smp_mb() to P1() in List-
ing 15.30?

Answer:
Not given the Linux kernel memory model. (Try it!) How-
ever, you can instead replace P0()’s WRITE_ONCE() with
smp_store_release(), which usually has less over-
head than does adding an smp_mb(). q

Quick Quiz 15.35:
Why is Alpha’s smp_read_barrier_depends() an
smp_mb() rather than smp_rmb()?

9 Kudos to Linus Torvalds for providing this example.

Answer:
Alpha has only mb and wmb instructions, so smp_rmb()
would be implemented by the Alpha mb instruction in
either case. In addition, at the time that smp_read_
barrier_depends() was added to the Linux kernel, it
was not clear that Alpha ordered dependent stores, and
thus smp_mb() was therefore the safe choice.

However, v4.15 of the Linux kernel has added smp_
read_barrier_depends() to READ_ONCE() and a few
of Alpha’s atomic read-modify-write operations, thus
making it unnecessary to use smp_read_barrier_
depends() anywhere else in the core kernel. This means
that other than READ_ONCE(), no Linux-kernel core code
need concern itself with DEC Alpha, thus greatly reducing
Paul E. McKenney’s incentive to remove Alpha support
from the kernel. q

Quick Quiz 15.36:
Isn’t DEC Alpha significant as having the weakest possi-
ble memory ordering?

Answer:
Although DEC Alpha does take considerable flak, it
does avoid reordering reads from the same CPU to the
same variable. It also avoids the out-of-thin-air problem
that plagues the Java and C11 memory models [BD14,
BMN+15, BS14, Jef14, MJST16, Š11, VBC+15]. q

Quick Quiz 15.37:
Why is it necessary to use heavier-weight ordering for
load-to-store and store-to-store links, but not for store-to-
load links? What on earth makes store-to-load links so
special???

Answer:
Recall that load-to-store and store-to-store links can
be counter-temporal, as illustrated by Figures 15.10
and 15.11 in Section 15.2.7.2. This counter-temporal na-
ture of load-to-store and store-to-store links necessitates
strong ordering.

In constrast, store-to-load links are temporal, as illus-
trated by Listings 15.12 and 15.13. This temporal nature
of store-to-load links permits use of minimal ordering. q

E.16. EASE OF USE 465

E.16 Ease of Use

Quick Quiz 16.1:
Can a similar algorithm be used when deleting elements?

Answer:
Yes. However, since each thread must hold the locks of
three consecutive elements to delete the middle one, if
there are N threads, there must be 2N +1 elements (rather
than just N + 1) in order to avoid deadlock. q

Quick Quiz 16.2:
Yetch! What ever possessed someone to come up with an
algorithm that deserves to be shaved as much as this one
does???

Answer:
That would be Paul.

He was considering the Dining Philosopher’s Prob-
lem, which involves a rather unsanitary spaghetti dinner
attended by five philosophers. Given that there are five
plates and but five forks on the table, and given that each
philosopher requires two forks at a time to eat, one is
supposed to come up with a fork-allocation algorithm that
avoids deadlock. Paul’s response was “Sheesh! Just get
five more forks!”

This in itself was OK, but Paul then applied this same
solution to circular linked lists.

This would not have been so bad either, but he had to
go and tell someone about it! q

Quick Quiz 16.3:
Give an exception to this rule.

Answer:
One exception would be a difficult and complex algorithm
that was the only one known to work in a given situation.
Another exception would be a difficult and complex algo-
rithm that was nonetheless the simplest of the set known
to work in a given situation. However, even in these cases,
it may be very worthwhile to spend a little time trying
to come up with a simpler algorithm! After all, if you
managed to invent the first algorithm to do some task, it
shouldn’t be that hard to go on to invent a simpler one. q

E.17 Conflicting Visions of the Fu-
ture

Quick Quiz 17.1:
What about non-persistent primitives represented by data
structures in mmap() regions of memory? What happens
when there is an exec() within a critical section of such
a primitive?

Answer:
If the exec()ed program maps those same regions of
memory, then this program could in principle simply re-
lease the lock. The question as to whether this approach
is sound from a software-engineering viewpoint is left as
an exercise for the reader. q

Quick Quiz 17.2:
Why would it matter that oft-written variables shared the
cache line with the lock variable?

Answer:
If the lock is in the same cacheline as some of the variables
that it is protecting, then writes to those variables by
one CPU will invalidate that cache line for all the other
CPUs. These invalidations will generate large numbers of
conflicts and retries, perhaps even degrading performance
and scalability compared to locking. q

Quick Quiz 17.3:
Why are relatively small updates important to HTM per-
formance and scalability?

Answer:
The larger the updates, the greater the probability of con-
flict, and thus the greater probability of retries, which
degrade performance. q

Quick Quiz 17.4:
How could a red-black tree possibly efficiently enumerate
all elements of the tree regardless of choice of synchro-
nization mechanism???

Answer:
In many cases, the enumeration need not be exact. In these
cases, hazard pointers or RCU may be used to protect
readers with low probability of conflict with any given
insertion or deletion. q

Quick Quiz 17.5:
But why can’t a debugger emulate single stepping by
setting breakpoints at successive lines of the transaction,

466 APPENDIX E. ANSWERS TO QUICK QUIZZES

relying on the retry to retrace the steps of the earlier
instances of the transaction?

Answer:
This scheme might work with reasonably high probability,
but it can fail in ways that would be quite surprising to
most users. To see this, consider the following transac-
tion:

1 begin_trans();
2 if (a) {
3 do_one_thing();
4 do_another_thing();
5 } else {
6 do_a_third_thing();
7 do_a_fourth_thing();
8 }
9 end_trans();

Suppose that the user sets a breakpoint at line 3, which
triggers, aborting the transaction and entering the debug-
ger. Suppose that between the time that the breakpoint
triggers and the debugger gets around to stopping all the
threads, some other thread sets the value of a to zero.
When the poor user attempts to single-step the program,
surprise! The program is now in the else-clause instead
of the then-clause.

This is not what I call an easy-to-use debugger. q

Quick Quiz 17.6:
But why would anyone need an empty lock-based critical
section???

Answer:
See the answer to Quick Quiz 7.18 in Section 7.2.1.

However, it is claimed that given a strongly atomic
HTM implementation without forward-progress guaran-
tees, any memory-based locking design based on empty
critical sections will operate correctly in the presence of
transactional lock elision. Although I have not seen a
proof of this statement, there is a straightforward ratio-
nale for this claim. The main idea is that in a strongly
atomic HTM implementation, the results of a given trans-
action are not visible until after the transaction completes
successfully. Therefore, if you can see that a transaction
has started, it is guaranteed to have already completed,
which means that a subsequent empty lock-based critical
section will successfully “wait” on it—after all, there is
no waiting required.

This line of reasoning does not apply to weakly atomic
systems (including many STM implementation), and it
also does not apply to lock-based programs that use means

other than memory to communicate. One such means
is the passage of time (for example, in hard real-time
systems) or flow of priority (for example, in soft real-time
systems).

Locking designs that rely on priority boosting are of
particular interest. q

Quick Quiz 17.7:
Can’t transactional lock elision trivially handle locking’s
time-based messaging semantics by simply choosing not
to elide empty lock-based critical sections?

Answer:
It could do so, but this would be both unnecessary and
insufficient.

It would be unnecessary in cases where the empty criti-
cal section was due to conditional compilation. Here, it
might well be that the only purpose of the lock was to
protect data, so eliding it completely would be the right
thing to do. In fact, leaving the empty lock-based critical
section would degrade performance and scalability.

On the other hand, it is possible for a non-empty lock-
based critical section to be relying on both the data-
protection and time-based and messaging semantics of
locking. Using transactional lock elision in such a case
would be incorrect, and would result in bugs. q

Quick Quiz 17.8:
Given modern hardware [MOZ09], how can anyone pos-
sibly expect parallel software relying on timing to work?

Answer:
The short answer is that on commonplace commodity
hardware, synchronization designs based on any sort of
fine-grained timing are foolhardy and cannot be expected
to operate correctly under all conditions.

That said, there are systems designed for hard real-time
use that are much more deterministic. In the (very un-
likely) event that you are using such a system, here is a toy
example showing how time-based synchronization can
work. Again, do not try this on commodity microproces-
sors, as they have highly nondeterministic performance
characteristics.

This example uses multiple worker threads along with
a control thread. Each worker thread corresponds to an
outbound data feed, and records the current time (for
example, from the clock_gettime() system call) in a
per-thread my_timestamp variable after executing each
unit of work. The real-time nature of this example results
in the following set of constraints:

E.17. CONFLICTING VISIONS OF THE FUTURE 467

1. It is a fatal error for a given worker thread to fail to
update its timestamp for a time period of more than
MAX_LOOP_TIME.

2. Locks are used sparingly to access and update global
state.

3. Locks are granted in strict FIFO order within a given
thread priority.

When worker threads complete their feed, they must
disentangle themselves from the rest of the application
and place a status value in a per-thread my_status vari-
able that is initialized to −1. Threads do not exit; they
instead are placed on a thread pool to accommodate later
processing requirements. The control thread assigns (and
re-assigns) worker threads as needed, and also maintains
a histogram of thread statuses. The control thread runs
at a real-time priority no higher than that of the worker
threads.

Worker threads’ code is as follows:

1 int my_status = -1; /* Thread local. */
2
3 while (continue_working()) {
4 enqueue_any_new_work();
5 wp = dequeue_work();
6 do_work(wp);
7 my_timestamp = clock_gettime(...);
8 }
9

10 acquire_lock(&departing_thread_lock);
11
12 /*
13 * Disentangle from application, might
14 * acquire other locks, can take much longer
15 * than MAX_LOOP_TIME, especially if many
16 * threads exit concurrently.
17 */
18 my_status = get_return_status();
19 release_lock(&departing_thread_lock);
20
21 /* thread awaits repurposing. */

The control thread’s code is as follows:

1 for (;;) {
2 for_each_thread(t) {
3 ct = clock_gettime(...);
4 d = ct - per_thread(my_timestamp, t);
5 if (d >= MAX_LOOP_TIME) {
6 /* thread departing. */
7 acquire_lock(&departing_thread_lock);
8 release_lock(&departing_thread_lock);
9 i = per_thread(my_status, t);

10 status_hist[i]++; /* Bug if TLE! */
11 }
12 }
13 /* Repurpose threads as needed. */
14 }

Line 5 uses the passage of time to deduce that the
thread has exited, executing lines 6-10 if so. The empty

lock-based critical section on lines 7 and 8 guarantees that
any thread in the process of exiting completes (remember
that locks are granted in FIFO order!).

Once again, do not try this sort of thing on commodity
microprocessors. After all, it is difficult enough to get
right on systems specifically designed for hard real-time
use! q

Quick Quiz 17.9:
But the boostee() function in Listing 17.1 alternatively
acquires its locks in reverse order! Won’t this result in
deadlock?

Answer:
No deadlock will result. To arrive at deadlock, two differ-
ent threads must each acquire the two locks in oppposite
orders, which does not happen in this example. However,
deadlock detectors such as lockdep [Cor06a] will flag this
as a false positive. q

Quick Quiz 17.10:
So a bunch of people set out to supplant locking, and they
mostly end up just optimizing locking???

Answer:
At least they accomplished something useful! And per-
haps there will be additional HTM progress over time. q

Quick Quiz 17.11:
Given the groundbreaking nature of the various verifiers
used in the SEL4 project, why doesn’t this chapter cover
them in more depth?

Answer:
There can be no doubt that the verifiers used by the SEL4
project are quite capable. However, it has been only in
the past couple of years (as of 2017) that SEL4 has been
anything other than a single-CPU project. And although
SEL4 is starting to gain multi-processor capabilities, it is
currently using very coarse-grained locking that is similar
to the Linux kernel’s old Big Kernel Lock (BKL). There
will hopefully come a day when it makes sense to add
SEL4’s verifiers to a book on parallel programming, but
unfortunately, this is not yet that day. q

Quick Quiz 17.12:
Why bother with a separate filter command on line 28
of Listing 17.2 instead of just adding the condition to
the exists clause? And wouldn’t it be simpler to use
xchg_acquire() instead of cmpxchg_acquire()?

468 APPENDIX E. ANSWERS TO QUICK QUIZZES

Answer:
The filter clause causes the herd tool to discard ex-
ecutions at an earlier stage of processing than does the
exists clause, which provides significant speedups.

Table E.2: Emulating Locking: Performance Compari-
son (s)

cmpxchg_acquire() xchg_acquire()

Lock filter exists filter exists

2 0.004 0.022 0.039 0.027 0.058
3 0.041 0.743 1.653 0.968 3.203
4 0.374 59.565 151.962 74.818 500.96
5 4.905

As for xchg_acquire(), this atomic operation will
do a write whether or not lock acquisition succeeds,
which means that a model using xchg_acquire()
will have more operations than one using cmpxchg_
acquire(), which won’t do a write in the failed-
acquisition case. More writes means more com-
binatorial to explode, as shown in Table E.2 (C-
SB+l-o-o-u+l-o-o-*u.litmus, C-SB+l-o-o-u+l-
o-o-u*-C.litmus, C-SB+l-o-o-u+l-o-o-u*-CE.
litmus, C-SB+l-o-o-u+l-o-o-u*-X.litmus, and
C-SB+l-o-o-u+l-o-o-u*-XE.litmus). This table
clearly shows that cmpxchg_acquire() outperforms
xchg_acquire() and that use of the filter clause out-
performs use of the exists clause. q

Quick Quiz 17.13:
How do we know that the MTBFs of known bugs is a
good estimate of the MTBFs of bugs that have not yet
been located?

Answer:
We don’t, but it does not matter.

To see this, note that the 7 % figure only applies to
injected bugs that were subsequently located: It neces-
sarily ignores any injected bugs that were never found.
Therefore, the MTBF statistics of known bugs is likely to
be a good approximation of that of the injected bugs that
are subsequently located.

A key point in this whole section is that we should
be more concerned about bugs that inconvenience users
than about other bugs that never actually manifest. This
of course is not to say that we should completely ignore
bugs that have not yet inconvenienced users, just that we

should properly prioritize our efforts so as to fix the most
important and urgent bugs first. q

Quick Quiz 17.14:
But the formal-verification tools should immediately find
all the bugs introduced by the fixes, so why is this a
problem?

Answer:
It is a problem because real-world formal-verification
tools (as opposed to those that exist only in the imag-
inations of the more vociferous proponents of formal
verification) are not omniscient, and thus are only able
to locate certain types of bugs. For but one example,
formal-verification tools are unlikely to spot a bug corre-
sponding to an omitted assertion or, equivalently, a bug
corresponding to an omitted portion of the specification.
q

Quick Quiz 17.15:
But many formal-verification tools can only find one bug
at a time, so that each bug must be fixed before the tool
can locate the next. How can bug-fix efforts be prioritized
given such a tool?

Answer:
One approach is to provide a simple fix that might not be
suitable for a production environment, but which allows
the tool to locate the next bug. Another approach is to
restrict configuration or inputs so that the bugs located
thus far cannot occur. There are a number of similar
approaches, but the common theme is that fixing the bug
from the tool’s viewpoint is usually much easier than
constructing and validating a production-quality fix, and
the key point is to prioritize the larger efforts required to
construct and validate the production-quality fixes. q

Quick Quiz 17.16:
How would testing stack up in the scorecard shown in
Table 17.5?

Answer:
It would be blue all the way down, with the possible
exception of the third row (overhead) which might well
be marked down for testing’s difficulty finding improbable
bugs.

On the other hand, improbable bugs are often also
irrelevant bugs, so your mileage may vary.

Much depends on the size of your installed base. If your
code is only ever going to run on (say) 10,000 systems,

E.18. IMPORTANT QUESTIONS 469

Murphy can actually be a really nice guy. Everything that
can go wrong, will. Eventually. Perhaps in geologic time.

But if your code is running on 20 billion systems, like
the Linux kernel was said to in late 2017, Murphy can be
a real jerk! Everything that can go wrong, will, and it can
go wrong really quickly!!! q

Quick Quiz 17.17:
But aren’t there a great many more formal-verification
systems than are shown in Table 17.5?

Answer:
Indeed there are! This table focuses on those that Paul
has used, but others are proving to be useful. Formal veri-
fication has been heavily used in the seL4 project [SM13],
and its tools can now handle modest levels of concur-
rency. More recently, Catalin Marinas used Lamport’s
TLA tool [Lam02] to locate some forward-progress bugs
in the Linux kernel’s queued spinlock implementation.
Will Deacon fixed these bugs [Dea18], and Catalin veri-
fied Will’s fixes [Mar18]. q

E.18 Important Questions

Quick Quiz A.1:
What SMP coding errors can you see in these examples?
See time.c for full code.

Answer:

1. Missing barrier() or volatile on tight loops.

2. Missing Memory barriers on update side.

3. Lack of synchronization between producer and con-
sumer. q

Quick Quiz A.2:
How could there be such a large gap between successive
consumer reads? See timelocked.c for full code.

Answer:

1. The consumer might be preempted for long time
periods.

2. A long-running interrupt might delay the consumer.

3. The producer might also be running on a faster CPU
than is the consumer (for example, one of the CPUs
might have had to decrease its clock frequency due to
heat-dissipation or power-consumption constraints).
q

Quick Quiz A.3:
Suppose a portion of a program uses RCU read-side prim-
itives as its only synchronization mechanism. Is this par-
allelism or concurrency?

Answer:
Yes. q

Quick Quiz A.4:
In what part of the second (scheduler-based) perspective
would the lock-based single-thread-per-CPU workload be
considered “concurrent”?

Answer:
The people who would like to arbitrarily subdivide and
interleave the workload. Of course, an arbitrary subdi-
vision might end up separating a lock acquisition from
the corresponding lock release, which would prevent any
other thread from acquiring that lock. If the locks were
pure spinlocks, this could even result in deadlock. q

E.19 “Toy” RCU Implementations

Quick Quiz B.1:
Why wouldn’t any deadlock in the RCU implementation
in Listing B.1 also be a deadlock in any other RCU im-
plementation?

Answer:
Suppose the functions foo() and bar() in Listing E.13

are invoked concurrently from different CPUs. Then
foo() will acquire my_lock() on line 3, while bar()
will acquire rcu_gp_lock on line 13. When foo() ad-
vances to line 4, it will attempt to acquire rcu_gp_lock,
which is held by bar(). Then when bar() advances to
line 14, it will attempt to acquire my_lock, which is held
by foo().

Each function is then waiting for a lock that the other
holds, a classic deadlock.

Other RCU implementations neither spin nor block in
rcu_read_lock(), hence avoiding deadlocks. q

470 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.13: Deadlock in Lock-Based RCU Implementation
1 void foo(void)
2 {
3 spin_lock(&my_lock);
4 rcu_read_lock();
5 do_something();
6 rcu_read_unlock();
7 do_something_else();
8 spin_unlock(&my_lock);
9 }

10
11 void bar(void)
12 {
13 rcu_read_lock();
14 spin_lock(&my_lock);
15 do_some_other_thing();
16 spin_unlock(&my_lock);
17 do_whatever();
18 rcu_read_unlock();
19 }

Quick Quiz B.2:
Why not simply use reader-writer locks in the RCU imple-
mentation in Listing B.1 in order to allow RCU readers
to proceed in parallel?

Answer:
One could in fact use reader-writer locks in this manner.
However, textbook reader-writer locks suffer from mem-
ory contention, so that the RCU read-side critical sections
would need to be quite long to actually permit parallel
execution [McK03].

On the other hand, use of a reader-writer lock that
is read-acquired in rcu_read_lock() would avoid the
deadlock condition noted above. q

Quick Quiz B.3:
Wouldn’t it be cleaner to acquire all the locks, and then re-
lease them all in the loop from lines 15-18 of Listing B.2?
After all, with this change, there would be a point in time
when there were no readers, simplifying things greatly.

Answer:
Making this change would re-introduce the deadlock, so
no, it would not be cleaner. q

Quick Quiz B.4:
Is the implementation shown in Listing B.2 free from
deadlocks? Why or why not?

Answer:
One deadlock is where a lock is held across
synchronize_rcu(), and that same lock is acquired
within an RCU read-side critical section. However, this
situation could deadlock any correctly designed RCU im-
plementation. After all, the synchronize_rcu() primi-
tive must wait for all pre-existing RCU read-side critical

sections to complete, but if one of those critical sections
is spinning on a lock held by the thread executing the
synchronize_rcu(), we have a deadlock inherent in
the definition of RCU.

Another deadlock happens when attempting to nest
RCU read-side critical sections. This deadlock is peculiar
to this implementation, and might be avoided by using
recursive locks, or by using reader-writer locks that are
read-acquired by rcu_read_lock() and write-acquired
by synchronize_rcu().

However, if we exclude the above two cases, this im-
plementation of RCU does not introduce any deadlock
situations. This is because only time some other thread’s
lock is acquired is when executing synchronize_rcu(),
and in that case, the lock is immediately released, pro-
hibiting a deadlock cycle that does not involve a lock held
across the synchronize_rcu() which is the first case
above. q

Quick Quiz B.5:
Isn’t one advantage of the RCU algorithm shown in List-
ing B.2 that it uses only primitives that are widely avail-
able, for example, in POSIX pthreads?

Answer:
This is indeed an advantage, but do not forget that rcu_
dereference() and rcu_assign_pointer() are still
required, which means volatile manipulation for rcu_
dereference() and memory barriers for rcu_assign_
pointer(). Of course, many Alpha CPUs require mem-
ory barriers for both primitives. q

Quick Quiz B.6:
But what if you hold a lock across a call to
synchronize_rcu(), and then acquire that same lock
within an RCU read-side critical section?

Answer:
Indeed, this would deadlock any legal RCU implemen-
tation. But is rcu_read_lock() really participating in
the deadlock cycle? If you believe that it is, then please
ask yourself this same question when looking at the RCU
implementation in Section B.9. q

Quick Quiz B.7:
How can the grace period possibly elapse in 40
nanoseconds when synchronize_rcu() contains a 10-
millisecond delay?

Answer:
The update-side test was run in absence of readers, so the

E.19. “TOY” RCU IMPLEMENTATIONS 471

poll() system call was never invoked. In addition, the
actual code has this poll() system call commented out,
the better to evaluate the true overhead of the update-side
code. Any production uses of this code would be better
served by using the poll() system call, but then again,
production uses would be even better served by other
implementations shown later in this section. q

Quick Quiz B.8:
Why not simply make rcu_read_lock() wait when a
concurrent synchronize_rcu() has been waiting too
long in the RCU implementation in Listing B.3? Wouldn’t
that prevent synchronize_rcu() from starving?

Answer:
Although this would in fact eliminate the starvation, it
would also mean that rcu_read_lock() would spin or
block waiting for the writer, which is in turn waiting on
readers. If one of these readers is attempting to acquire a
lock that the spinning/blocking rcu_read_lock() holds,
we again have deadlock.

In short, the cure is worse than the disease. See Sec-
tion B.4 for a proper cure. q

Quick Quiz B.9:
Why the memory barrier on line 5 of synchronize_
rcu() in Listing B.6 given that there is a spin-lock acqui-
sition immediately after?

Answer:
The spin-lock acquisition only guarantees that the spin-
lock’s critical section will not “bleed out” to precede the
acquisition. It in no way guarantees that code preced-
ing the spin-lock acquisition won’t be reordered into the
critical section. Such reordering could cause a removal
from an RCU-protected list to be reordered to follow the
complementing of rcu_idx, which could allow a newly
starting RCU read-side critical section to see the recently
removed data element.

Exercise for the reader: use a tool such as Promela/spin
to determine which (if any) of the memory barriers in
Listing B.6 are really needed. See Chapter 12 for informa-
tion on using these tools. The first correct and complete
response will be credited. q

Quick Quiz B.10:
Why is the counter flipped twice in Listing B.6? Shouldn’t
a single flip-and-wait cycle be sufficient?

Answer:
Both flips are absolutely required. To see this, consider
the following sequence of events:

1. Line 8 of rcu_read_lock() in Listing B.5 picks
up rcu_idx, finding its value to be zero.

2. Line 8 of synchronize_rcu() in Listing B.6 com-
plements the value of rcu_idx, setting its value to
one.

3. Lines 10-13 of synchronize_rcu() find that the
value of rcu_refcnt[0] is zero, and thus returns.
(Recall that the question is asking what happens if
lines 14-20 are omitted.)

4. Lines 9 and 10 of rcu_read_lock() store the value
zero to this thread’s instance of rcu_read_idx and
increments rcu_refcnt[0], respectively. Execu-
tion then proceeds into the RCU read-side critical
section.

5. Another instance of synchronize_rcu() again
complements rcu_idx, this time setting its value
to zero. Because rcu_refcnt[1] is zero,
synchronize_rcu() returns immediately. (Re-
call that rcu_read_lock() incremented rcu_
refcnt[0], not rcu_refcnt[1]!)

6. The grace period that started in step 5 has been al-
lowed to end, despite the fact that the RCU read-side
critical section that started beforehand in step 4 has
not completed. This violates RCU semantics, and
could allow the update to free a data element that the
RCU read-side critical section was still referencing.

Exercise for the reader: What happens if rcu_read_
lock() is preempted for a very long time (hours!) just
after line 8? Does this implementation operate correctly
in that case? Why or why not? The first correct and
complete response will be credited. q

Quick Quiz B.11:
Given that atomic increment and decrement are so expen-
sive, why not just use non-atomic increment on line 10
and a non-atomic decrement on line 25 of Listing B.5?

Answer:
Using non-atomic operations would cause increments
and decrements to be lost, in turn causing the implemen-
tation to fail. See Section B.5 for a safe way to use
non-atomic operations in rcu_read_lock() and rcu_
read_unlock(). q

Quick Quiz B.12:
Come off it! We can see the atomic_read() primitive in

472 APPENDIX E. ANSWERS TO QUICK QUIZZES

rcu_read_lock()!!! So why are you trying to pretend
that rcu_read_lock() contains no atomic operations???

Answer:
The atomic_read() primitives does not actually exe-
cute atomic machine instructions, but rather does a nor-
mal load from an atomic_t. Its sole purpose is to keep
the compiler’s type-checking happy. If the Linux kernel
ran on 8-bit CPUs, it would also need to prevent “store
tearing”, which could happen due to the need to store a
16-bit pointer with two eight-bit accesses on some 8-bit
systems. But thankfully, it seems that no one runs Linux
on 8-bit systems. q

Quick Quiz B.13:
Great, if we have N threads, we can have 2N ten-
millisecond waits (one set per flip_counter_and_
wait() invocation, and even that assumes that we wait
only once for each thread. Don’t we need the grace period
to complete much more quickly?

Answer:
Keep in mind that we only wait for a given thread if that
thread is still in a pre-existing RCU read-side critical sec-
tion, and that waiting for one hold-out thread gives all the
other threads a chance to complete any pre-existing RCU
read-side critical sections that they might still be execut-
ing. So the only way that we would wait for 2N intervals
would be if the last thread still remained in a pre-existing
RCU read-side critical section despite all the waiting for
all the prior threads. In short, this implementation will
not wait unnecessarily.

However, if you are stress-testing code that uses RCU,
you might want to comment out the poll() statement
in order to better catch bugs that incorrectly retain a ref-
erence to an RCU-protected data element outside of an
RCU read-side critical section. q

Quick Quiz B.14:
All of these toy RCU implementations have either
atomic operations in rcu_read_lock() and rcu_read_
unlock(), or synchronize_rcu() overhead that in-
creases linearly with the number of threads. Under what
circumstances could an RCU implementation enjoy light-
weight implementations for all three of these primitives,
all having deterministic (O (1)) overheads and latencies?

Answer:
Special-purpose uniprocessor implementations of RCU
can attain this ideal [McK09a]. q

Quick Quiz B.15:
If any even value is sufficient to tell synchronize_
rcu() to ignore a given task, why don’t lines 10 and 11
of Listing B.14 simply assign zero to rcu_reader_gp?

Answer:
Assigning zero (or any other even-numbered constant)
would in fact work, but assigning the value of rcu_gp_
ctr can provide a valuable debugging aid, as it gives the
developer an idea of when the corresponding thread last
exited an RCU read-side critical section. q

Quick Quiz B.16:
Why are the memory barriers on lines 19 and 31 of List-
ing B.14 needed? Aren’t the memory barriers inherent in
the locking primitives on lines 20 and 30 sufficient?

Answer:
These memory barriers are required because the lock-
ing primitives are only guaranteed to confine the critical
section. The locking primitives are under absolutely no
obligation to keep other code from bleeding in to the
critical section. The pair of memory barriers are there-
fore requires to prevent this sort of code motion, whether
performed by the compiler or by the CPU. q

Quick Quiz B.17:
Couldn’t the update-side batching optimization described
in Section B.6 be applied to the implementation shown in
Listing B.14?

Answer:
Indeed it could, with a few modifications. This work is
left as an exercise for the reader. q

Quick Quiz B.18:
Is the possibility of readers being preempted in lines 3-4
of Listing B.14 a real problem, in other words, is there a
real sequence of events that could lead to failure? If not,
why not? If so, what is the sequence of events, and how
can the failure be addressed?

Answer:
It is a real problem, there is a sequence of events leading
to failure, and there are a number of possible ways of
addressing it. For more details, see the Quick Quizzes
near the end of Section B.8. The reason for locating the

E.19. “TOY” RCU IMPLEMENTATIONS 473

discussion there is to (1) give you more time to think
about it, and (2) because the nesting support added in that
section greatly reduces the time required to overflow the
counter. q

Quick Quiz B.19:
Why not simply maintain a separate per-thread nesting-
level variable, as was done in previous section, rather than
having all this complicated bit manipulation?

Answer:
The apparent simplicity of the separate per-thread vari-
able is a red herring. This approach incurs much greater
complexity in the guise of careful ordering of operations,
especially if signal handlers are to be permitted to contain
RCU read-side critical sections. But don’t take my word
for it, code it up and see what you end up with! q

Quick Quiz B.20:
Given the algorithm shown in Listing B.16, how could
you double the time required to overflow the global rcu_
gp_ctr?

Answer:
One way would be to replace the magnitude compar-
ison on lines 33 and 34 with an inequality check of
the per-thread rcu_reader_gp variable against rcu_gp_
ctr+RCU_GP_CTR_BOTTOM_BIT. q

Quick Quiz B.21:
Again, given the algorithm shown in Listing B.16, is
counter overflow fatal? Why or why not? If it is fatal,
what can be done to fix it?

Answer:
It can indeed be fatal. To see this, consider the following
sequence of events:

1. Thread 0 enters rcu_read_lock(), determines that
it is not nested, and therefore fetches the value of
the global rcu_gp_ctr. Thread 0 is then preempted
for an extremely long time (before storing to its per-
thread rcu_reader_gp variable).

2. Other threads repeatedly invoke synchronize_
rcu(), so that the new value of the global rcu_gp_
ctr is now RCU_GP_CTR_BOTTOM_BIT less than it
was when thread 0 fetched it.

3. Thread 0 now starts running again, and stores into its
per-thread rcu_reader_gp variable. The value it
stores is RCU_GP_CTR_BOTTOM_BIT+1 greater than
that of the global rcu_gp_ctr.

4. Thread 0 acquires a reference to RCU-protected data
element A.

5. Thread 1 now removes the data element A that
thread 0 just acquired a reference to.

6. Thread 1 invokes synchronize_rcu(), which in-
crements the global rcu_gp_ctr by RCU_GP_CTR_
BOTTOM_BIT. It then checks all of the per-thread
rcu_reader_gp variables, but thread 0’s value (in-
correctly) indicates that it started after thread 1’s call
to synchronize_rcu(), so thread 1 does not wait
for thread 0 to complete its RCU read-side critical
section.

7. Thread 1 then frees up data element A, which
thread 0 is still referencing.

Note that scenario can also occur in the implementation
presented in Section B.7.

One strategy for fixing this problem is to use 64-bit
counters so that the time required to overflow them would
exceed the useful lifetime of the computer system. Note
that non-antique members of the 32-bit x86 CPU fam-
ily allow atomic manipulation of 64-bit counters via the
cmpxchg64b instruction.

Another strategy is to limit the rate at which grace
periods are permitted to occur in order to achieve a similar
effect. For example, synchronize_rcu() could record
the last time that it was invoked, and any subsequent
invocation would then check this time and block as needed
to force the desired spacing. For example, if the low-order
four bits of the counter were reserved for nesting, and if
grace periods were permitted to occur at most ten times
per second, then it would take more than 300 days for the
counter to overflow. However, this approach is not helpful
if there is any possibility that the system will be fully
loaded with CPU-bound high-priority real-time threads
for the full 300 days. (A remote possibility, perhaps, but
best to consider it ahead of time.)

A third approach is to administratively abolish real-
time threads from the system in question. In this case,
the preempted process will age up in priority, thus getting
to run long before the counter had a chance to overflow.
Of course, this approach is less than helpful for real-time
applications.

A final approach would be for rcu_read_lock() to
recheck the value of the global rcu_gp_ctr after stor-
ing to its per-thread rcu_reader_gp counter, retrying if

474 APPENDIX E. ANSWERS TO QUICK QUIZZES

the new value of the global rcu_gp_ctr is inappropri-
ate. This works, but introduces non-deterministic execu-
tion time into rcu_read_lock(). On the other hand, if
your application is being preempted long enough for the
counter to overflow, you have no hope of deterministic
execution time in any case! q

Quick Quiz B.22:
Doesn’t the additional memory barrier shown on line 14
of Listing B.18 greatly increase the overhead of rcu_
quiescent_state?

Answer:
Indeed it does! An application using this implementa-
tion of RCU should therefore invoke rcu_quiescent_
state sparingly, instead using rcu_read_lock() and
rcu_read_unlock() most of the time.

However, this memory barrier is absolutely required so
that other threads will see the store on lines 12-13 before
any subsequent RCU read-side critical sections executed
by the caller. q

Quick Quiz B.23:
Why are the two memory barriers on lines 19 and 22 of
Listing B.18 needed?

Answer:
The memory barrier on line 19 prevents any RCU read-
side critical sections that might precede the call to rcu_
thread_offline() won’t be reordered by either the
compiler or the CPU to follow the assignment on lines 20-
21. The memory barrier on line 22 is, strictly speak-
ing, unnecessary, as it is illegal to have any RCU read-
side critical sections following the call to rcu_thread_
offline(). q

Quick Quiz B.24:
To be sure, the clock frequencies of POWER systems in
2008 were quite high, but even a 5 GHz clock frequency
is insufficient to allow loops to be executed in 50 picosec-
onds! What is going on here?

Answer:
Since the measurement loop contains a pair of empty
functions, the compiler optimizes it away. The measure-
ment loop takes 1,000 passes between each call to rcu_
quiescent_state(), so this measurement is roughly
one thousandth of the overhead of a single call to rcu_
quiescent_state(). q

Quick Quiz B.25:
Why would the fact that the code is in a library make any
difference for how easy it is to use the RCU implementa-
tion shown in Listings B.18 and B.19?

Answer:
A library function has absolutely no control over the
caller, and thus cannot force the caller to invoke rcu_
quiescent_state() periodically. On the other hand,
a library function that made many references to a given
RCU-protected data structure might be able to invoke
rcu_thread_online() upon entry, rcu_quiescent_
state() periodically, and rcu_thread_offline()
upon exit. q

Quick Quiz B.26:
But what if you hold a lock across a call to
synchronize_rcu(), and then acquire that same lock
within an RCU read-side critical section? This should be
a deadlock, but how can a primitive that generates abso-
lutely no code possibly participate in a deadlock cycle?

Answer:
Please note that the RCU read-side critical section is
in effect extended beyond the enclosing rcu_read_
lock() and rcu_read_unlock(), out to the previous
and next call to rcu_quiescent_state(). This rcu_
quiescent_state can be thought of as an rcu_read_
unlock() immediately followed by an rcu_read_
lock().

Even so, the actual deadlock itself will involve the
lock acquisition in the RCU read-side critical section and
the synchronize_rcu(), never the rcu_quiescent_
state(). q

Quick Quiz B.27:
Given that grace periods are prohibited within RCU read-
side critical sections, how can an RCU data structure
possibly be updated while in an RCU read-side critical
section?

Answer:
This situation is one reason for the existence of asynchro-
nous grace-period primitives such as call_rcu(). This
primitive may be invoked within an RCU read-side criti-
cal section, and the specified RCU callback will in turn be
invoked at a later time, after a grace period has elapsed.

E.20. WHY MEMORY BARRIERS? 475

The ability to perform an RCU update while within
an RCU read-side critical section can be extremely con-
venient, and is analogous to a (mythical) unconditional
read-to-write upgrade for reader-writer locking. q

E.20 Why Memory Barriers?
Quick Quiz C.1:
Where does a writeback message originate from and
where does it go to?

Answer:
The writeback message originates from a given CPU, or in
some designs from a given level of a given CPU’s cache—
or even from a cache that might be shared among several
CPUs. The key point is that a given cache does not have
room for a given data item, so some other piece of data
must be ejected from the cache to make room. If there is
some other piece of data that is duplicated in some other
cache or in memory, then that piece of data may be simply
discarded, with no writeback message required.

On the other hand, if every piece of data that might
be ejected has been modified so that the only up-to-date
copy is in this cache, then one of those data items must
be copied somewhere else. This copy operation is under-
taken using a “writeback message”.

The destination of the writeback message has to be
something that is able to store the new value. This might
be main memory, but it also might be some other cache.
If it is a cache, it is normally a higher-level cache for the
same CPU, for example, a level-1 cache might write back
to a level-2 cache. However, some hardware designs per-
mit cross-CPU writebacks, so that CPU 0’s cache might
send a writeback message to CPU 1. This would normally
be done if CPU 1 had somehow indicated an interest in
the data, for example, by having recently issued a read
request.

In short, a writeback message is sent from some part of
the system that is short of space, and is received by some
other part of the system that can accommodate the data.
q

Quick Quiz C.2:
What happens if two CPUs attempt to invalidate the same
cache line concurrently?

Answer:
One of the CPUs gains access to the shared bus first, and
that CPU “wins”. The other CPU must invalidate its copy

of the cache line and transmit an “invalidate acknowledge”
message to the other CPU.

Of course, the losing CPU can be expected to immedi-
ately issue a “read invalidate” transaction, so the winning
CPU’s victory will be quite ephemeral. q

Quick Quiz C.3:
When an “invalidate” message appears in a large multipro-
cessor, every CPU must give an “invalidate acknowledge”
response. Wouldn’t the resulting “storm” of “invalidate
acknowledge” responses totally saturate the system bus?

Answer:
It might, if large-scale multiprocessors were in fact im-
plemented that way. Larger multiprocessors, particularly
NUMA machines, tend to use so-called “directory-based”
cache-coherence protocols to avoid this and other prob-
lems. q

Quick Quiz C.4:
If SMP machines are really using message passing any-
way, why bother with SMP at all?

Answer:
There has been quite a bit of controversy on this topic
over the past few decades. One answer is that the cache-
coherence protocols are quite simple, and therefore can
be implemented directly in hardware, gaining bandwidths
and latencies unattainable by software message passing.
Another answer is that the real truth is to be found in eco-
nomics due to the relative prices of large SMP machines
and that of clusters of smaller SMP machines. A third
answer is that the SMP programming model is easier to
use than that of distributed systems, but a rebuttal might
note the appearance of HPC clusters and MPI. And so the
argument continues. q

Quick Quiz C.5:
How does the hardware handle the delayed transitions
described above?

Answer:
Usually by adding additional states, though these addi-
tional states need not be actually stored with the cache
line, due to the fact that only a few lines at a time will
be transitioning. The need to delay transitions is but one
issue that results in real-world cache coherence protocols
being much more complex than the over-simplified MESI

476 APPENDIX E. ANSWERS TO QUICK QUIZZES

protocol described in this appendix. Hennessy and Patter-
son’s classic introduction to computer architecture [HP95]
covers many of these issues. q

Quick Quiz C.6:
What sequence of operations would put the CPUs’ caches
all back into the “invalid” state?

Answer:
There is no such sequence, at least in absence of special
“flush my cache” instructions in the CPU’s instruction set.
Most CPUs do have such instructions. q

Quick Quiz C.7:
But if the main purpose of store buffers is to hide acknowl-
edgment latencies in multiprocessor cache-coherence pro-
tocols, why do uniprocessors also have store buffers?

Answer:
Because the purpose of store buffers is not just to
hide acknowledgement latencies in multiprocessor cache-
coherence protocols, but to hide memory latencies in
general. Because memory is much slower than is cache
on uniprocessors, store buffers on uniprocessors can help
to hide write-miss latencies. q

Quick Quiz C.8:
In step 1 above, why does CPU 0 need to issue a “read
invalidate” rather than a simple “invalidate”?

Answer:
Because the cache line in question contains more than
just the variable a. q

Quick Quiz C.9:
In step 1 of the first scenario in Section C.4.3, why is an
“invalidate” sent instead of a ”read invalidate” message?
Doesn’t CPU 0 need the values of the other variables that
share this cache line with “a”?

Answer:
CPU 0 already has the values of these variables, given that
it has a read-only copy of the cache line containing “a”.
Therefore, all CPU 0 need do is to cause the other CPUs
to discard their copies of this cache line. An “invalidate”
message therefore suffices. q

Quick Quiz C.10:
Say what??? Why do we need a memory barrier here,
given that the CPU cannot possibly execute the assert()
until after the while loop completes?

Answer:
CPUs are free to speculatively execute, which can have
the effect of executing the assertion before the while
loop completes. Furthermore, compilers normally assume
that only the currently executing thread is updating the
variables, and this assumption allows the compiler to hoist
the load of a to precede the loop.

In fact, some compilers would transform the loop to a
branch around an infinite loop as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 if (b == 0)
11 for (;;)
12 continue;
13 smp_mb();
14 assert(a == 1);
15 }

Given this optimization, the assertion could clearly fire.
You should use volatile casts or (where available) C++

relaxed atomics to prevent the compiler from optimizing
your parallel code into oblivion.

In short, both compilers and CPUs are quite aggres-
sive about optimizing, so you must clearly communicate
your constraints to them, using compiler directives and
memory barriers. q

Quick Quiz C.11:
Does the guarantee that each CPU sees its own memory
accesses in order also guarantee that each user-level thread
will see its own memory accesses in order? Why or why
not?

Answer:
No. Consider the case where a thread migrates from one
CPU to another, and where the destination CPU perceives
the source CPU’s recent memory operations out of order.
To preserve user-mode sanity, kernel hackers must use
memory barriers in the context-switch path. However,
the locking already required to safely do a context switch
should automatically provide the memory barriers needed
to cause the user-level task to see its own accesses in
order. That said, if you are designing a super-optimized

E.20. WHY MEMORY BARRIERS? 477

scheduler, either in the kernel or at user level, please keep
this scenario in mind! q

Quick Quiz C.12:
Could this code be fixed by inserting a memory barrier
between CPU 1’s “while” and assignment to “c”? Why
or why not?

Answer:
No. Such a memory barrier would only force ordering
local to CPU 1. It would have no effect on the relative
ordering of CPU 0’s and CPU 1’s accesses, so the asser-
tion could still fail. However, all mainstream computer
systems provide one mechanism or another to provide
“transitivity”, which provides intuitive causal ordering: if
B saw the effects of A’s accesses, and C saw the effects
of B’s accesses, then C must also see the effects of A’s
accesses. In short, hardware designers have taken at least
a little pity on software developers. q

Quick Quiz C.13:
Suppose that lines 3-5 for CPUs 1 and 2 in Listing C.3
are in an interrupt handler, and that the CPU 2’s line 9
runs at process level. In other words, the code in all three
columns of the table runs on the same CPU, but the first
two columns run in an interrupt handler, and the third
column runs at process level, so that the code in third
column can be interrupted by the code in the first two
columns. What changes, if any, are required to enable
the code to work correctly, in other words, to prevent the
assertion from firing?

Answer:
The assertion must ensure that the load of “e” precedes
that of “a”. In the Linux kernel, the barrier() primitive
may be used to accomplish this in much the same way
that the memory barrier was used in the assertions in the
previous examples. For example, the assertion can be
modified as follows:

r1 = e;
barrier();
assert(r1 == 0 || a == 1);

No changes are needed to the code in the first two
columns, because interrupt handlers run atomically from
the perspective of the interrupted code. q

Quick Quiz C.14:
If CPU 2 executed an assert(e==0||c==1) in the ex-
ample in Listing C.3, would this assert ever trigger?

Answer:
The result depends on whether the CPU supports “transi-
tivity”. In other words, CPU 0 stored to “e” after seeing
CPU 1’s store to “c”, with a memory barrier between
CPU 0’s load from “c” and store to “e”. If some other
CPU sees CPU 0’s store to “e”, is it also guaranteed to
see CPU 1’s store?

All CPUs I am aware of claim to provide transitivity.
q

478 APPENDIX E. ANSWERS TO QUICK QUIZZES

Dictionaries are inherently circular in nature.

“Self Reference in word definitions”,
David Levary et al.Appendix F

Glossary and Bibliography

Associativity: The number of cache lines that can be
held simultaneously in a given cache, when all of
these cache lines hash identically in that cache. A
cache that could hold four cache lines for each pos-
sible hash value would be termed a “four-way set-
associative” cache, while a cache that could hold
only one cache line for each possible hash value
would be termed a “direct-mapped” cache. A cache
whose associativity was equal to its capacity would
be termed a “fully associative” cache. Fully asso-
ciative caches have the advantage of eliminating as-
sociativity misses, but, due to hardware limitations,
fully associative caches are normally quite limited in
size. The associativity of the large caches found on
modern microprocessors typically range from two-
way to eight-way.

Associativity Miss: A cache miss incurred because the
corresponding CPU has recently accessed more data
hashing to a given set of the cache than will fit in
that set. Fully associative caches are not subject to
associativity misses (or, equivalently, in fully asso-
ciative caches, associativity and capacity misses are
identical).

Atomic: An operation is considered “atomic” if it is not
possible to observe any intermediate state. For ex-
ample, on most CPUs, a store to a properly aligned
pointer is atomic, because other CPUs will see either
the old value or the new value, but are guaranteed
not to see some mixed value containing some pieces
of the new and old values.

Cache: In modern computer systems, CPUs have caches
in which to hold frequently used data. These caches
can be thought of as hardware hash tables with very
simple hash functions, but in which each hash bucket

(termed a “set” by hardware types) can hold only a
limited number of data items. The number of data
items that can be held by each of a cache’s hash
buckets is termed the cache’s “associativity”. These
data items are normally called “cache lines”, which
can be thought of a fixed-length blocks of data that
circulate among the CPUs and memory.

Cache Coherence: A property of most modern SMP ma-
chines where all CPUs will observe a sequence of
values for a given variable that is consistent with
at least one global order of values for that variable.
Cache coherence also guarantees that at the end of
a group of stores to a given variable, all CPUs will
agree on the final value for that variable. Note that
cache coherence applies only to the series of values
taken on by a single variable. In contrast, the mem-
ory consistency model for a given machine describes
the order in which loads and stores to groups of vari-
ables will appear to occur. See Section 15.2.6 for
more information.

Cache Coherence Protocol: A communications proto-
col, normally implemented in hardware, that en-
forces memory consistency and ordering, preventing
different CPUs from seeing inconsistent views of
data held in their caches.

Cache Geometry: The size and associativity of a cache
is termed its geometry. Each cache may be thought
of as a two-dimensional array, with rows of cache
lines (“sets”) that have the same hash value, and col-
umns of cache lines (“ways”) in which every cache
line has a different hash value. The associativity of
a given cache is its number of columns (hence the
name “way”—a two-way set-associative cache has
two “ways”), and the size of the cache is its number
of rows multiplied by its number of columns.

479

480 APPENDIX F. GLOSSARY AND BIBLIOGRAPHY

Cache Line: (1) The unit of data that circulates among
the CPUs and memory, usually a moderate power of
two in size. Typical cache-line sizes range from 16
to 256 bytes.
(2) A physical location in a CPU cache capable of
holding one cache-line unit of data.
(3) A physical location in memory capable of hold-
ing one cache-line unit of data, but that it also aligned
on a cache-line boundary. For example, the address
of the first word of a cache line in memory will end
in 0x00 on systems with 256-byte cache lines.

Cache Miss: A cache miss occurs when data needed
by the CPU is not in that CPU’s cache. The data
might be missing because of a number of reasons,
including: (1) this CPU has never accessed the data
before (“startup” or “warmup” miss), (2) this CPU
has recently accessed more data than would fit in its
cache, so that some of the older data had to be re-
moved (“capacity” miss), (3) this CPU has recently
accessed more data in a given set1 than that set could
hold (“associativity” miss), (4) some other CPU has
written to the data (or some other data in the same
cache line) since this CPU has accessed it (“commu-
nication miss”), or (5) this CPU attempted to write to
a cache line that is currently read-only, possibly due
to that line being replicated in other CPUs’ caches.

Capacity Miss: A cache miss incurred because the cor-
responding CPU has recently accessed more data
than will fit into the cache.

Code Locking: A simple locking design in which a
“global lock” is used to protect a set of critical sec-
tions, so that access by a given thread to that set is
granted or denied based only on the set of threads
currently occupying the set of critical sections, not
based on what data the thread intends to access. The
scalability of a code-locked program is limited by
the code; increasing the size of the data set will nor-
mally not increase scalability (in fact, will typically
decrease scalability by increasing “lock contention”).
Contrast with “data locking”.

Communication Miss: A cache miss incurred because
some other CPU has written to the cache line since
the last time this CPU accessed it.

Critical Section: A section of code guarded by some
synchronization mechanism, so that its execution

1 In hardware-cache terminology, the word “set” is used in the same
way that the word “bucket” is used when discussing software caches.

constrained by that primitive. For example, if a set
of critical sections are guarded by the same global
lock, then only one of those critical sections may be
executing at a given time. If a thread is executing
in one such critical section, any other threads must
wait until the first thread completes before executing
any of the critical sections in the set.

Data Locking: A scalable locking design in which each
instance of a given data structure has its own lock. If
each thread is using a different instance of the data
structure, then all of the threads may be executing
in the set of critical sections simultaneously. Data
locking has the advantage of automatically scaling
to increasing numbers of CPUs as the number of in-
stances of data grows. Contrast with “code locking”.

Direct-Mapped Cache: A cache with only one way, so
that it may hold only one cache line with a given
hash value.

Embarrassingly Parallel: A problem or algorithm
where adding threads does not significantly increase
the overall cost of the computation, resulting in linear
speedups as threads are added (assuming sufficient
CPUs are available).

Exclusive Lock: An exclusive lock is a mutual-
exclusion mechanism that permits only one thread
at a time into the set of critical sections guarded by
that lock.

False Sharing: If two CPUs each frequently write to
one of a pair of data items, but the pair of data items
are located in the same cache line, this cache line
will be repeatedly invalidated, “ping-ponging” back
and forth between the two CPUs’ caches. This is
a common cause of “cache thrashing”, also called
“cacheline bouncing” (the latter most commonly in
the Linux community). False sharing can dramati-
cally reduce both performance and scalability.

Fragmentation: A memory pool that has a large amount
of unused memory, but not laid out to permit sat-
isfying a relatively small request is said to be frag-
mented. External fragmentation occurs when the
space is divided up into small fragments lying be-
tween allocated blocks of memory, while internal
fragmentation occurs when specific requests or types
of requests have been allotted more memory than
they actually requested.

481

Fully Associative Cache: A fully associative cache con-
tains only one set, so that it can hold any subset of
memory that fits within its capacity.

Grace Period: A grace period is any contiguous time
interval such that any RCU read-side critical section
that began before the start of that interval has com-
pleted before the end of that same interval. Many
RCU implementations define a grace period to be a
time interval during which each thread has passed
through at least one quiescent state. Since RCU
read-side critical sections by definition cannot con-
tain quiescent states, these two definitions are almost
always interchangeable.

Heisenbug: A timing-sensitive bug that disappears from
sight when you add print statements or tracing in an
attempt to track it down.

Hot Spot: Data structure that is very heavily used, result-
ing in high levels of contention on the corresponding
lock. One example of this situation would be a hash
table with a poorly chosen hash function.

Humiliatingly Parallel: A problem or algorithm where
adding threads significantly decreases the overall
cost of the computation, resulting in large superlinear
speedups as threads are added (assuming sufficient
CPUs are available).

Invalidation: When a CPU wishes to write to a data
item, it must first ensure that this data item is not
present in any other CPUs’ cache. If necessary, the
item is removed from the other CPUs’ caches via
“invalidation” messages from the writing CPUs to
any CPUs having a copy in their caches.

IPI: Inter-processor interrupt, which is an interrupt sent
from one CPU to another. IPIs are used heavily in
the Linux kernel, for example, within the scheduler
to alert CPUs that a high-priority process is now
runnable.

IRQ: Interrupt request, often used as an abbreviation for
“interrupt” within the Linux kernel community, as in
“irq handler”.

Linearizable: A sequence of operations is “linearizable”
if there is at least one global ordering of the sequence
that is consistent with the observations of all CPUs
and/or threads. Linearizability is much prized by
many researchers, but less useful in practice than
one might expect [HKLP12].

Lock: A software abstraction that can be used to guard
critical sections, as such, an example of a “mutual
exclusion mechanism”. An “exclusive lock” permits
only one thread at a time into the set of critical sec-
tions guarded by that lock, while a “reader-writer
lock” permits any number of reading threads, or but
one writing thread, into the set of critical sections
guarded by that lock. (Just to be clear, the presence
of a writer thread in any of a given reader-writer
lock’s critical sections will prevent any reader from
entering any of that lock’s critical sections and vice
versa.)

Lock Contention: A lock is said to be suffering con-
tention when it is being used so heavily that there
is often a CPU waiting on it. Reducing lock con-
tention is often a concern when designing parallel al-
gorithms and when implementing parallel programs.

Memory Consistency: A set of properties that impose
constraints on the order in which accesses to groups
of variables appear to occur. Memory consistency
models range from sequential consistency, a very
constraining model popular in academic circles,
through process consistency, release consistency, and
weak consistency.

MESI Protocol: The cache-coherence protocol featur-
ing modified, exclusive, shared, and invalid (MESI)
states, so that this protocol is named after the states
that the cache lines in a given cache can take on. A
modified line has been recently written to by this
CPU, and is the sole representative of the current
value of the corresponding memory location. An
exclusive cache line has not been written to, but this
CPU has the right to write to it at any time, as the
line is guaranteed not to be replicated into any other
CPU’s cache (though the corresponding location in
main memory is up to date). A shared cache line is
(or might be) replicated in some other CPUs’ cache,
meaning that this CPU must interact with those other
CPUs before writing to this cache line. An invalid
cache line contains no value, instead representing
“empty space” in the cache into which data from
memory might be loaded.

Mutual-Exclusion Mechanism: A software abstraction
that regulates threads’ access to “critical sections”
and corresponding data.

NMI: Non-maskable interrupt. As the name indicates,
this is an extremely high-priority interrupt that can-

482 APPENDIX F. GLOSSARY AND BIBLIOGRAPHY

not be masked. These are used for hardware-specific
purposes such as profiling. The advantage of using
NMIs for profiling is that it allows you to profile
code that runs with interrupts disabled.

NUCA: Non-uniform cache architecture, where groups
of CPUs share caches and/or store buffers. CPUs
in a group can therefore exchange cache lines with
each other much more quickly than they can with
CPUs in other groups. Systems comprised of CPUs
with hardware threads will generally have a NUCA
architecture.

NUMA: Non-uniform memory architecture, where mem-
ory is split into banks and each such bank is “close”
to a group of CPUs, the group being termed a
“NUMA node”. An example NUMA machine is
Sequent’s NUMA-Q system, where each group of
four CPUs had a bank of memory near by. The CPUs
in a given group can access their memory much more
quickly than another group’s memory.

NUMA Node: A group of closely placed CPUs and as-
sociated memory within a larger NUMA machines.
Note that a NUMA node might well have a NUCA
architecture.

Pipelined CPU: A CPU with a pipeline, which is an
internal flow of instructions internal to the CPU that
is in some way similar to an assembly line, with
many of the same advantages and disadvantages. In
the 1960s through the early 1980s, pipelined CPUs
were the province of supercomputers, but started
appearing in microprocessors (such as the 80486) in
the late 1980s.

Process Consistency: A memory-consistency model in
which each CPU’s stores appear to occur in pro-
gram order, but in which different CPUs might see
accesses from more than one CPU as occurring in
different orders.

Program Order: The order in which a given thread’s in-
structions would be executed by a now-mythical “in-
order” CPU that completely executed each instruc-
tion before proceeding to the next instruction. (The
reason such CPUs are now the stuff of ancient myths
and legends is that they were extremely slow. These
dinosaurs were one of the many victims of Moore’s-
Law-driven increases in CPU clock frequency. Some
claim that these beasts will roam the earth once again,
others vehemently disagree.)

Quiescent State: In RCU, a point in the code where
there can be no references held to RCU-protected
data structures, which is normally any point outside
of an RCU read-side critical section. Any interval of
time during which all threads pass through at least
one quiescent state each is termed a “grace period”.

Read-Copy Update (RCU): A synchronization mech-
anism that can be thought of as a replacement for
reader-writer locking or reference counting. RCU
provides extremely low-overhead access for readers,
while writers incur additional overhead maintaining
old versions for the benefit of pre-existing readers.
Readers neither block nor spin, and thus cannot par-
ticipate in deadlocks, however, they also can see stale
data and can run concurrently with updates. RCU
is thus best-suited for read-mostly situations where
stale data can either be tolerated (as in routing tables)
or avoided (as in the Linux kernel’s System V IPC
implementation).

Read-Side Critical Section: A section of code guarded
by read-acquisition of some reader-writer synchro-
nization mechanism. For example, if one set of crit-
ical sections are guarded by read-acquisition of a
given global reader-writer lock, while a second set
of critical section are guarded by write-acquisition
of that same reader-writer lock, then the first set of
critical sections will be the read-side critical sections
for that lock. Any number of threads may concur-
rently execute the read-side critical sections, but only
if no thread is executing one of the write-side critical
sections.

Reader-Writer Lock: A reader-writer lock is a mutual-
exclusion mechanism that permits any number of
reading threads, or but one writing thread, into the
set of critical sections guarded by that lock. Threads
attempting to write must wait until all pre-existing
reading threads release the lock, and, similarly, if
there is a pre-existing writer, any threads attempting
to write must wait for the writer to release the lock.
A key concern for reader-writer locks is “fairness”:
can an unending stream of readers starve a writer or
vice versa.

Sequential Consistency: A memory-consistency model
where all memory references appear to occur in an
order consistent with a single global order, and where
each CPU’s memory references appear to all CPUs
to occur in program order.

483

Store Buffer: A small set of internal registers used by a
given CPU to record pending stores while the cor-
responding cache lines are making their way to that
CPU. Also called “store queue”.

Store Forwarding: An arrangement where a given CPU
refers to its store buffer as well as its cache so as to
ensure that the software sees the memory operations
performed by this CPU as if they were carried out in
program order.

Super-Scalar CPU: A scalar (non-vector) CPU capable
of executing multiple instructions concurrently. This
is a step up from a pipelined CPU that executes
multiple instructions in an assembly-line fashion—in
a super-scalar CPU, each stage of the pipeline would
be capable of handling more than one instruction.
For example, if the conditions were exactly right, the
Intel Pentium Pro CPU from the mid-1990s could
execute two (and sometimes three) instructions per
clock cycle. Thus, a 200 MHz Pentium Pro CPU
could “retire”, or complete the execution of, up to
400 million instructions per second.

Teachable: A topic, concept, method, or mechanism that
the teacher understands completely and is therefore
comfortable teaching.

Transactional Memory (TM): Shared-memory syn-
chronization scheme featuring “transactions”, each
of which is an atomic sequence of operations that of-
fers atomicity, consistency, isolation, but differ from
classic transactions in that they do not offer durabil-
ity. Transactional memory may be implemented ei-
ther in hardware (hardware transactional memory, or
HTM), in software (software transactional memory,
or STM), or in a combination of hardware and soft-
ware (“unbounded” transactional memory, or UTM).

Unteachable: A topic, concept, method, or mechanism
that the teacher does not understand well is therefore
uncomfortable teaching.

Vector CPU: A CPU that can apply a single instruction
to multiple items of data concurrently. In the 1960s
through the 1980s, only supercomputers had vector
capabilities, but the advent of MMX in x86 CPUs
and VMX in PowerPC CPUs brought vector process-
ing to the masses.

Write Miss: A cache miss incurred because the corre-
sponding CPU attempted to write to a cache line that

is read-only, most likely due to its being replicated
in other CPUs’ caches.

Write-Side Critical Section: A section of code guarded
by write-acquisition of some reader-writer synchro-
nization mechanism. For example, if one set of crit-
ical sections are guarded by write-acquisition of a
given global reader-writer lock, while a second set
of critical section are guarded by read-acquisition of
that same reader-writer lock, then the first set of criti-
cal sections will be the write-side critical sections for
that lock. Only one thread may execute in the write-
side critical section at a time, and even then only if
there are no threads are executing concurrently in
any of the corresponding read-side critical sections.

484 APPENDIX F. GLOSSARY AND BIBLIOGRAPHY

Bibliography

[AA14] Maya Arbel and Hagit Attiya. Concurrent updates with RCU: Search tree
as an example. In Proceedings of the 2014 ACM Symposium on Principles
of Distributed Computing, PODC ’14, pages ???–???, Paris, France, 2014.
ACM.

[AAKL06] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, and Charles E.
Leiserson. Unbounded transactional memory. IEEE Micro, pages 59–69,
January-February 2006. Available: http://www.cag.csail.mit.edu/
scale/papers/utm-ieeemicro2006.pdf [Viewed December 21, 2006].

[AB13] Samy Al Bahra. Nonblocking algorithms and scalable multicore programming.
Commun. ACM, 56(7):50–61, July 2013.

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vande-
voorde, Carl A. Waldspurger, and William E. Weihl. Continuous profiling:
Where have all the cycles gone? In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 1–14, New York, NY, October 1997.

[ACHS13] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are lock-free concurrent
algorithms practically wait-free?, December 2013. ArXiv:1311.3200v2.

[ACMS03] Andrea Arcangeli, Mingming Cao, Paul E. McKenney, and Dipankar Sarma.
Using read-copy update techniques for System V IPC in the Linux 2.5 kernel.
In Proceedings of the 2003 USENIX Annual Technical Conference (FREENIX
Track), pages 297–310, San Antonio, Texas, USA, June 2003. USENIX
Association.

[Ada11] Andrew Adamatzky. Slime mould solves maze in one pass . . . assisted
by gradient of chemo-attractants, August 2011. http://arxiv.org/abs/
1108.4956.

[Adv02] Advanced Micro Devices. AMD x86-64 Architecture Programmer’s Manual
Volumes 1-5, 2002.

[AGH+11a] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.
Michael, and Martin Vechev. Laws of order: Expensive synchronization in
concurrent algorithms cannot be eliminated. In 38th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 487–498, Austin,
TX, USA, 2011. ACM.

[AGH+11b] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.
Michael, and Martin Vechev. Laws of order: Expensive synchronization in
concurrent algorithms cannot be eliminated. SIGPLAN Not., 46(1):487–498,
January 2011.

485

http://www.cag.csail.mit.edu/scale/papers/utm-ieeemicro2006.pdf
http://www.cag.csail.mit.edu/scale/papers/utm-ieeemicro2006.pdf
http://dx.doi.org/10.1145/2483852.2483866
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1145/265924.265925
http://arxiv.org/abs/1311.3200v2
http://arxiv.org/abs/1311.3200v2
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli.pdf
http://arxiv.org/abs/1108.4956
http://arxiv.org/abs/1108.4956
http://dx.doi.org/10.1145/1926385.1926442
http://dx.doi.org/10.1145/1926385.1926442
http://dx.doi.org/10.1145/1925844.1926442
http://dx.doi.org/10.1145/1925844.1926442

486 BIBLIOGRAPHY

[AHS+03] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva,
O. Krieger, M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger,
P. McKenney, M. Ostrowski, B. Rosenburg, M. Stumm, and J. Xenidis. En-
abling autonomic behavior in systems software with hot swapping. IBM
Systems Journal, 42(1):60–76, January 2003.

[AKNT13] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig.
Software verification for weak memory via program transformation. In
Proceedings of the 22nd European conference on Programming Languages
and Systems, ESOP’13, pages 512–532, Rome, Italy, 2013. Springer-Verlag.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for
efficient Bounded Model Checking of concurrent software. In Computer
Aided Verification (CAV), volume 8044 of LNCS, pages 141–157. Springer,
2013.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University
Press, New York, 1979.

[Alg13] Jade Alglave. Weakness is a virtue. In (EC)2 2013: 6th International Workshop
on Exploiting Concurrency Efficiently and Correctly, page 3, 2013.

[AM15] Maya Arbel and Adam Morrison. Predicate RCU: An RCU for scalable
concurrent updates. SIGPLAN Not., 50(8):21–30, January 2015.

[Amd67] Gene Amdahl. Validity of the single processor approach to achieving large-
scale computing capabilities. In AFIPS Conference Proceedings, pages 483–
485, Washington, DC, USA, 1967. IEEE Computer Society.

[AMD17] AMD. OpenCL™ zone—accelerate your applications, January 2017. http:
//developer.amd.com/tools-and-sdks/opencl-zone/.

[AMM+17a] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan
Stern. A formal kernel memory-ordering model (part 1), April 2017. https:
//lwn.net/Articles/718628/.

[AMM+17b] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan
Stern. A formal kernel memory-ordering model (part 2), April 2017. https:
//lwn.net/Articles/720550/.

[AMM+18] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern.
Frightening small children and disconcerting grown-ups: Concurrency in the
Linux kernel. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, pages 405–418, Williamsburg, VA, USA, 2018. ACM.

[AMP+11] Jade Alglave, Luc Maranget, Pankaj Pawan, Susmit Sarkar, Peter Sewell,
Derek Williams, and Francesco Zappa Nardelli. PPCMEM/ARM-
MEM: A tool for exploring the POWER and ARM memory models,
June 2011. http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/
pldi105-sarkar.pdf.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Model-
ling, simulation, testing, and data-mining for weak memory. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 40–40, Edinburgh, United Kingdom,
2014. ACM.

http://dx.doi.org/10.1147/sj.421.0060
http://dx.doi.org/10.1147/sj.421.0060
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/ec213.pdf
http://dx.doi.org/10.1145/2858788.2688518
http://dx.doi.org/10.1145/2858788.2688518
http://dx.doi.org/10.1109/N-SSC.2007.4785615
http://dx.doi.org/10.1109/N-SSC.2007.4785615
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/
https://lwn.net/Articles/718628/
https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/
https://lwn.net/Articles/720550/
http://dx.doi.org/10.1145/3173162.3177156
http://dx.doi.org/10.1145/3173162.3177156
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
http://dx.doi.org/10.1145/2594291.2594347
http://dx.doi.org/10.1145/2594291.2594347

BIBLIOGRAPHY 487

[And90] T. E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
1(1):6–16, January 1990.

[And91] Gregory R. Andrews. Concurrent Programming, Principles, and Practices.
Benjamin Cummins, 1991.

[ARM10] ARM Limited. ARM Architecture Reference Manual: ARMv7-A and ARMv7-
R Edition, 2010.

[ARM17] ARM Limited. ARM Architecture Reference Manual (ARMv8, for ARMv8-A
architecture profile), 2017.

[Ash15] Mike Ash. Concurrent memory deallocation in the objective-c runtime, May
2015. mikeash.com: just this guy, you know?

[ATC+11] Ege Akpinar, Sasa Tomic, Adrian Cristal, Osman Unsal, and Mateo Valero. A
comprehensive study of conflict resolution policies in hardware transactional
memory. In TRANSACT 2011, New Orleans, LA, USA, June 2011. ACM
SIGPLAN.

[ATS09] Ali-Reza Adl-Tabatabai and Tatiana Shpeisman. Draft specifica-
tion of transactional language constructs for c++, August 2009.
URL: https://software.intel.com/sites/default/files/ee/47/
21569 (may need to append .pdf to view after download).

[BA01] Jeff Bonwick and Jonathan Adams. Magazines and vmem: Extending the
slab allocator to many CPUs and arbitrary resources. In USENIX Annual
Technical Conference, General Track 2001, pages 15–33, 2001.

[Bas18] JF Bastien. P1152R0: Deprecating volatile, October 2018. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html.

[BD13] Paolo Bonzini and Mike Day. RCU implementation for Qemu, August
2013. http://lists.gnu.org/archive/html/qemu-devel/2013-08/
msg02055.html.

[BD14] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-
air results. In Proceedings of the Workshop on Memory Systems Performance
and Correctness, MSPC ’14, pages 7:1–7:6, Edinburgh, United Kingdom,
2014. ACM.

[Bec10] Pete Becker. Working draft, standard for programming language C++, Novem-
ber 2010. Available: http://open-std.org/jtc1/sc22/wg21/docs/
papers/2010/n3225.pdf [Viewed: March 4, 2011].

[Bec11] Pete Becker. Working draft, standard for programming language C++,
February 2011. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2011/n3242.pdf.

[BG87] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Inc., 1987.

[BGV17] Hans-J. Boehm, Olivier Giroux, and Viktor Vafeiades. P0668r1: Revising
the C++ memory model, July 2017. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2017/p0668r1.html.

[Bha14] Srivatsa S. Bhat. percpu_rwlock: Implement the core design of per-CPU
reader-writer locks, February 2014. https://patchwork.kernel.org/
patch/2157401/.

http://dx.doi.org/10.1109/71.80120
http://dx.doi.org/10.1109/71.80120
https://www.mikeash.com/pyblog/friday-qa-2015-05-29-concurrent-memory-deallocation-in-the-objective-c-runtime.html
http://www.cs.purdue.edu/transact11/web/papers/Akpinar.pdf
http://www.cs.purdue.edu/transact11/web/papers/Akpinar.pdf
http://www.cs.purdue.edu/transact11/web/papers/Akpinar.pdf
https://software.intel.com/sites/default/files/ee/47/21569
https://software.intel.com/sites/default/files/ee/47/21569
https://www.usenix.org/legacy/event/usenix01/full_papers/bonwick/bonwick.pdf
https://www.usenix.org/legacy/event/usenix01/full_papers/bonwick/bonwick.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://lists.gnu.org/archive/html/qemu-devel/2013-08/msg02055.html
http://lists.gnu.org/archive/html/qemu-devel/2013-08/msg02055.html
http://dx.doi.org/10.1145/2618128.2618134
http://dx.doi.org/10.1145/2618128.2618134
http://open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3225.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3225.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0668r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0668r1.html
https://patchwork.kernel.org/patch/2157401/
https://patchwork.kernel.org/patch/2157401/

488 BIBLIOGRAPHY

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison Wesley Publishing
Company, 1987.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented
Software Architecture Volume 4: A Pattern Language for Distributed Com-
puting. Wiley, Chichester, West Sussex, England, 2007.

[BJ12] Rex Black and Capers Jones. Economics of software quality: An interview
with Capers Jones, part 1 of 2 (podcast transcript), January 2012. http:
//www.informit.com/articles/article.aspx?p=1824791.

[BK85] Bob Beck and Bob Kasten. VLSI assist in building a multiprocessor UNIX
system. In USENIX Conference Proceedings, pages 255–275, Portland, OR,
June 1985. USENIX Association.

[BLM05] C. Blundell, E. C. Lewis, and M. Martin. Deconstructing trans-
actional semantics: The subtleties of atomicity. In Annual Work-
shop on Duplicating, Deconstructing, and Debunking (WDDD), June
2005. Available: http://www.cis.upenn.edu/acg/papers/wddd05_
atomic_semantics.pdf [Viewed June 4, 2009].

[BLM06] C. Blundell, E. C. Lewis, and M. Martin. Subtleties of transactional mem-
ory and atomicity semantics. Computer Architecture Letters, 5(2), 2006.
Available: http://www.cis.upenn.edu/acg/papers/cal06_atomic_
semantics.pdf [Viewed June 4, 2009].

[BMMM05] Luke Browning, Thomas Mathews, Paul E. McKenney, and James Moody.
Apparatus, method, and computer program product for converting simple
locks in a multiprocessor system. US Patent 6,842,809, US Patent and
Trademark Office, Washington, DC, January 2005.

[BMN+15] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod,
and Peter Sewell. The problem of programming language concurrency se-
mantics. In Jan Vitek, editor, Programming Languages and Systems, volume
9032 of Lecture Notes in Computer Science, pages 283–307. Springer Berlin
Heidelberg, 2015.

[BMP08] R. F. Berry, P. E. McKenney, and F. N. Parr. Responsive systems: An
introduction. IBM Systems Journal, 47(2):197–206, April 2008.

[Boe05] Hans-J. Boehm. Threads cannot be implemented as a library. SIGPLAN Not.,
40(6):261–268, June 2005.

[Boe09] Hans-J. Boehm. Transactional memory should be an implementation tech-
nique, not a programming interface. In HOTPAR 2009, page 6, Berke-
ley, CA, USA, March 2009. Available: http://www.usenix.org/
event/hotpar09/tech/full_papers/boehm/boehm.pdf [Viewed May
24, 2009].

[Boh01] Kristoffer Bohmann. Response time still matters, July 2001. URL: http:
//www.bohmann.dk/articles/response_time_still_matters.html
[broken, November 2016].

[Bor06] Richard Bornat. Dividing the sheep from the goats, January 2006. Seminar at
School of Computing, Univ. of Kent. Abstract is available at https://www.
cs.kent.ac.uk/seminar_archive/2005_06/abs_2006_01_24.html.
Retracted in July 2014: http://www.eis.mdx.ac.uk/staffpages/r_
bornat/papers/camel_hump_retraction.pdf.

http://www.informit.com/articles/article.aspx?p=1824791
http://www.informit.com/articles/article.aspx?p=1824791
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf
http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1109/L-CA.2006.18
http://www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf
https://www.google.com/patents/US6842809
https://www.google.com/patents/US6842809
http://dx.doi.org/10.1007/978-3-662-46669-8_12
http://dx.doi.org/10.1007/978-3-662-46669-8_12
http://dx.doi.org/10.1147/sj.472.0197
http://dx.doi.org/10.1147/sj.472.0197
http://dx.doi.org/10.1145/1064978.1065042
http://www.usenix.org/event/hotpar09/tech/full_papers/boehm/boehm.pdf
http://www.usenix.org/event/hotpar09/tech/full_papers/boehm/boehm.pdf
https://www.cs.kent.ac.uk/seminar_archive/2005_06/abs_2006_01_24.html
https://www.cs.kent.ac.uk/seminar_archive/2005_06/abs_2006_01_24.html
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf

BIBLIOGRAPHY 489

[BPP+16] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. The IX operating system: Com-
bining low latency, high throughput, and efficiency in a protected dataplane.
ACM Trans. Comput. Syst., 34(4):11:1–11:39, December 2016.

[Bra07] Reg Braithwaite. Don’t overthink fizzbuzz, January 2007. http://weblog.
raganwald.com/2007/01/dont-overthink-fizzbuzz.html.

[Bra11] Björn Brandenburg. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011. URL: https://www.cs.unc.edu/~anderson/diss/
bbbdiss.pdf.

[BS14] Mark Batty and Peter Sewell. The thin-air problem, February 2014. http:
//www.cl.cam.ac.uk/~pes20/cpp/notes42.html.

[But97] David Butenhof. Programming with POSIX Threads. Addison-Wesley, Bos-
ton, MA, USA, 1997.

[BW14] Silas Boyd-Wickizer. Optimizing Communications Bottlenecks in Multipro-
cessor Operating Systems Kernels. PhD thesis, Massachusetts Institute of
Technology, 2014. https://pdos.csail.mit.edu/papers/sbw-phd-
thesis.pdf.

[CAK+96] Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and Jonathan Walpole.
Fast concurrent dynamic linking for an adaptive operating system. In Inter-
national Conference on Configurable Distributed Systems (ICCDS’96), page
108, Annapolis, MD, May 1996.

[CBM+08] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu,
Stefanie Chiras, and Siddhartha Chatterjee. Software transactional memory:
Why is it only a research toy? ACM Queue, September 2008.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers”
and “writers”. Communications of the ACM, 14(10):667–668, October 1971.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2004),
volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer,
2004.

[CKZ12] Austin Clements, Frans Kaashoek, and Nickolai Zeldovich. Scalable address
spaces using RCU balanced trees. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2012), pages 199–210, London,
UK, March 2012. ACM.

[CKZ+13] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Mor-
ris, and Eddie Kohler. The scalable commutativity rule: Designing scalable
software for multicore processors. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 1–17,
Farminton, Pennsylvania, 2013. ACM.

[Cli09] Cliff Click. And now some hardware transactional memory comments..., Feb-
ruary 2009. URL: http://www.cliffc.org/blog/2009/02/25/and-
now-some-hardware-transactional-memory-comments/.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT electrical engineering and computer science
series. MIT Press, 2001.

http://dx.doi.org/10.1145/2997641
http://dx.doi.org/10.1145/2997641
http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html
http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html
https://www.cs.unc.edu/~anderson/diss/bbbdiss.pdf
https://www.cs.unc.edu/~anderson/diss/bbbdiss.pdf
http://www.cl.cam.ac.uk/~pes20/cpp/notes42.html
http://www.cl.cam.ac.uk/~pes20/cpp/notes42.html
https://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf
https://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf
http://dx.doi.org/10.1145/1454456.1454466
http://dx.doi.org/10.1145/1454456.1454466
http://dx.doi.org/10.1145/362759.362813
http://dx.doi.org/10.1145/362759.362813
http://dx.doi.org/10.1145/2150976.2150998
http://dx.doi.org/10.1145/2150976.2150998
http://dx.doi.org/10.1145/2517349.2522712
http://dx.doi.org/10.1145/2517349.2522712
http://www.cliffc.org/blog/2009/02/25/and-now-some-hardware-transactional-memory-comments/
http://www.cliffc.org/blog/2009/02/25/and-now-some-hardware-transactional-memory-comments/
http://books.google.com/books?id=wHHDQgAACAAJ
http://books.google.com/books?id=wHHDQgAACAAJ

490 BIBLIOGRAPHY

[Com01] Compaq Computer Corporation. Shared memory, threads, interprocess
communication, August 2001. Available: http://h71000.www7.hp.com/
wizard/wiz_2637.html.

[Cor02] Compaq Computer Corporation. Alpha Architecture Reference Manual. Digi-
tal Press, fourth edition, 2002.

[Cor04a] Jonathan Corbet. Approaches to realtime Linux, October 2004. URL: http:
//lwn.net/Articles/106010/.

[Cor04b] Jonathan Corbet. Finding kernel problems automatically, June 2004. http:
//lwn.net/Articles/87538/.

[Cor04c] Jonathan Corbet. Realtime preemption, part 2, October 2004. URL: http:
//lwn.net/Articles/107269/.

[Cor06a] Jonathan Corbet. The kernel lock validator, May 2006. Available: http:
//lwn.net/Articles/185666/ [Viewed: March 26, 2010].

[Cor06b] Jonathan Corbet. Priority inheritance in the kernel, April 2006. Available:
http://lwn.net/Articles/178253/ [Viewed June 29, 2009].

[Cor10a] Jonathan Corbet. Dcache scalability and rcu-walk, December 2010. Available:
https://lwn.net/Articles/419811/ [Viewed May 29, 2017].

[Cor10b] Jonathan Corbet. sys_membarrier(), January 2010. https://lwn.net/
Articles/369567/.

[Cor11] Jonathan Corbet. How to ruin linus’s vacation, July 2011. Available: https:
//lwn.net/Articles/452117/ [Viewed May 29, 2017].

[Cor12] Jonathan Corbet. ACCESS_ONCE(), August 2012. http://lwn.net/
Articles/508991/.

[Cor13] Jonathan Corbet. (nearly) full tickless operation in 3.10, May 2013. http:
//lwn.net/Articles/549580/.

[Cor14a] Jonathan Corbet. ACCESS_ONCE() and compiler bugs, December 2014.
https://lwn.net/Articles/624126/.

[Cor14b] Jonathan Corbet. Relativistic hash tables, part 1: Algorithms, September
2014. http://lwn.net/Articles/612021/.

[Cor14c] Jonathan Corbet. Relativistic hash tables, part 2: Implementation, September
2014. http://lwn.net/Articles/612100/.

[Cor16] Jonathan Corbet. Time to move to C11 atomics?, June 2016. https://lwn.
net/Articles/691128/.

[Cor18] Jonathan Corbet. membarrier(2), October 2018. http://man7.org/linux/
man-pages/man2/membarrier.2.html.

[Cra93] Travis Craig. Building FIFO and priority-queuing spin locks from atomic
swap. Technical Report 93-02-02, University of Washington, Seattle, Wash-
ington, February 1993.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device
Drivers. O’Reilly Media, Inc., third edition, 2005. URL: https://lwn.
net/Kernel/LDD3/.

[CSG99] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer
Architecture: a Hardware/Software Approach. Morgan Kaufman, 1999.

http://h71000.www7.hp.com/wizard/wiz_2637.html
http://h71000.www7.hp.com/wizard/wiz_2637.html
http://lwn.net/Articles/106010/
http://lwn.net/Articles/106010/
http://lwn.net/Articles/87538/
http://lwn.net/Articles/87538/
http://lwn.net/Articles/107269/
http://lwn.net/Articles/107269/
http://lwn.net/Articles/185666/
http://lwn.net/Articles/185666/
http://lwn.net/Articles/178253/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/369567/
https://lwn.net/Articles/369567/
https://lwn.net/Articles/452117/
https://lwn.net/Articles/452117/
http://lwn.net/Articles/508991/
http://lwn.net/Articles/508991/
http://lwn.net/Articles/549580/
http://lwn.net/Articles/549580/
https://lwn.net/Articles/624126/
http://lwn.net/Articles/612021/
http://lwn.net/Articles/612100/
https://lwn.net/Articles/691128/
https://lwn.net/Articles/691128/
http://man7.org/linux/man-pages/man2/membarrier.2.html
http://man7.org/linux/man-pages/man2/membarrier.2.html
ftp://ftp.cs.washington.edu/tr/1993/02/UW-CSE-93-02-02.pdf
ftp://ftp.cs.washington.edu/tr/1993/02/UW-CSE-93-02-02.pdf
https://lwn.net/Kernel/LDD3/
https://lwn.net/Kernel/LDD3/

BIBLIOGRAPHY 491

[Dat82] C. J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley
Publishing Company, 1982.

[DBA09] Saeed Dehnadi, Richard Bornat, and Ray Adams. Meta-analysis of the
effect of consistency on success in early learning of programming. In PPIG
2009, pages 1–13, University of Limerick, Ireland, June 2009. Psychology of
Programming Interest Group.

[DCW+11] Luke Dalessandro, Francois Carouge, Sean White, Yossi Lev, Mark Moir,
Michael L. Scott, and Michael F. Spear. Hybrid NOrec: A case study in the
effectiveness of best effort hardware transactional memory. In Proceedings of
the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), ASPLOS ’11, pages ???–???,
Newport Beach, CA, USA, 2011. ACM.

[Dea18] Will Deacon. [PATCH 00/10] kernel/locking: qspinlock improvements,
April 2018. http://lkml.kernel.org/r/1522947547-24081-1-git-
send-email-will.deacon@arm.com.

[Den15] Peter Denning. Perspectives on OS foundations. In SOSP History Day 2015,
SOSP ’15, pages 3:1–3:46, Monterey, California, 2015. ACM.

[Dep06] Department of Computing and Information Systems, University of Melbourne.
CSIRAC, 2006. http://www.cis.unimelb.edu.au/about/csirac/.

[Des09a] Mathieu Desnoyers. Low-Impact Operating System Tracing. PhD
thesis, Ecole Polytechnique de Montréal, December 2009. Available:
http://www.lttng.org/pub/thesis/desnoyers-dissertation-
2009-12.pdf [Viewed December 9, 2009].

[Des09b] Mathieu Desnoyers. [RFC git tree] userspace RCU (urcu) for Linux, February
2009. http://liburcu.org.

[DFGG11] Aleksandar Dragovejic, Pascal Felber, Vincent Gramoli, and Rachid Guer-
raoui. Why STM can be more than a research toy. Communications of the
ACM, pages 70–77, April 2011.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. SIGOPS Oper. Syst. Rev., 41(6):205–220, October 2007.

[DHK12] Vijay D’Silva, Leopold Haller, and Daniel Kroening. Satisfiability solvers are
static analyzers. In Static Analysis Symposium (SAS), volume 7460 of LNCS,
pages 317–333. Springer, 2012.

[DHL+08] Dave Dice, Maurice Herlihy, Doug Lea, Yossi Lev, Victor Luchangco, Wayne
Mesard, Mark Moir, Kevin Moore, and Dan Nussbaum. Applications of the
adaptive transactional memory test platform. In 3rd ACM SIGPLAN Workshop
on Transactional Computing, pages 1–10, Salt Lake City, UT, USA, February
2008.

[Dig89] Digital Systems Research Center. An Introduction to Programming with
Threads, January 1989.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, Sept 1965.

[Dij68] Edsger W. Dijkstra. Letters to the editor: Go to statement considered harmful.
Commun. ACM, 11(3):147–148, March 1968.

http://www.ppig.org/papers/21st-dehnadi.pdf
http://www.ppig.org/papers/21st-dehnadi.pdf
http://www.cs.rochester.edu/u/scott/papers/2011_asplos.pdf
http://www.cs.rochester.edu/u/scott/papers/2011_asplos.pdf
http://lkml.kernel.org/r/1522947547-24081-1-git-send-email-will.deacon@arm.com
http://lkml.kernel.org/r/1522947547-24081-1-git-send-email-will.deacon@arm.com
http://dx.doi.org/10.1145/2830903.2830904
http://www.cis.unimelb.edu.au/about/csirac/
http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
http://liburcu.org
http://dx.doi.org/10.1145/1924421.1924440
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1007/978-3-642-33125-1_22
http://dx.doi.org/10.1007/978-3-642-33125-1_22
http://www.unine.ch/transact08/papers/Dice-Applications.pdf
http://www.unine.ch/transact08/papers/Dice-Applications.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-35.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-35.pdf
http://dx.doi.org/10.1145/365559.365617
http://dx.doi.org/10.1145/362929.362947

492 BIBLIOGRAPHY

[Dij71] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1(2):115–138, 1971. Available: http://www.cs.utexas.
edu/users/EWD/ewd03xx/EWD310.PDF [Viewed January 13, 2008].

[DKS89] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation
of a fair queuing algorithm. SIGCOMM ’89, pages 1–12, 1989.

[DLM+10] Dave Dice, Yossi Lev, Virendra J. Marathe, Mark Moir, Dan Nussbaum,
and Marek Oleszewski. Simplifying concurrent algorithms by exploiting
hardware transactional memory. In Proceedings of the 22nd ACM symposium
on Parallelism in algorithms and architectures, SPAA ’10, pages 325–334,
Thira, Santorini, Greece, 2010. ACM.

[DLMN09] Dave Dice, Yossi Lev, Mark Moir, and Dan Nussbaum. Early experience with
a commercial hardware transactional memory implementation. In Fourteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’09), pages 157–168, Washington,
DC, USA, March 2009.

[DMD13] Mathieu Desnoyers, Paul E. McKenney, and Michel R. Dagenais. Multi-core
systems modeling for formal verification of parallel algorithms. SIGOPS
Oper. Syst. Rev., 47(2):51–65, July 2013.

[DMLP79] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes
and proofs of theorems and programs. Commun. ACM, 22(5):271–280, May
1979.

[DMS+12] Mathieu Desnoyers, Paul E. McKenney, Alan Stern, Michel R. Dagenais, and
Jonathan Walpole. User-level implementations of read-copy update. IEEE
Transactions on Parallel and Distributed Systems, 23:375–382, 2012.

[Dov90] Ken F. Dove. A high capacity TCP/IP in parallel STREAMS. In UKUUG
Conference Proceedings, London, June 1990.

[Dre11] Ulrich Drepper. Futexes are tricky. Technical Report FAT2011, Red Hat, Inc.,
Raleigh, NC, USA, November 2011.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proc.
International Symposium on Distributed Computing. Springer Verlag, 2006.

[Duf10a] Joe Duffy. A (brief) retrospective on transactional memory, January 2010.
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-
on-transactional-memory/.

[Duf10b] Joe Duffy. More thoughts on transactional memory, May 2010.
http://joeduffyblog.com/2010/05/16/more-thoughts-on-
transactional-memory/.

[Dug10] Abhinav Duggal. Stopping data races using redflag. Master’s thesis, Stony
Brook University, 2010.

[Edg13] Jake Edge. The future of realtime Linux, November 2013. URL: http:
//lwn.net/Articles/572740/.

[Edg14] Jake Edge. The future of the realtime patch set, October 2014. URL: http:
//lwn.net/Articles/617140/.

[EGCD03] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC language specifica-
tions v1.1, May 2003. Available: http://upc.gwu.edu [Viewed September
19, 2008].

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
http://dx.doi.org/10.1145/1810479.1810537
http://dx.doi.org/10.1145/1810479.1810537
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1145/2506164.2506174
http://dx.doi.org/10.1145/2506164.2506174
http://dx.doi.org/10.1145/359104.359106
http://dx.doi.org/10.1145/359104.359106
http://dx.doi.org/10.1109/TPDS.2011.159
http://people.redhat.com/drepper/futex.pdf
http://dx.doi.org/10.1007/11864219_14
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/
http://joeduffyblog.com/2010/05/16/more-thoughts-on-transactional-memory/
http://joeduffyblog.com/2010/05/16/more-thoughts-on-transactional-memory/
http://lwn.net/Articles/572740/
http://lwn.net/Articles/572740/
http://lwn.net/Articles/617140/
http://lwn.net/Articles/617140/
http://upc.gwu.edu

BIBLIOGRAPHY 493

[EGMdB11] Stephane Eranian, Eric Gouriou, Tipp Moseley, and Willem de Bruijn. Linux
kernel profiling with perf, June 2011. https://perf.wiki.kernel.org/
index.php/Tutorial.

[Ell80] Carla Schlatter Ellis. Concurrent search and insertion in avl trees. IEEE
Transactions on Computers, C-29(9):811–817, September 1980.

[ELLM07] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. Snzi: scalable non-
zero indicators. In Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, PODC ’07, pages 13–22, Portland,
Oregon, USA, 2007. ACM.

[Eng68] Douglas Engelbart. The demo, December 1968. URL: http://
dougengelbart.org/firsts/dougs-1968-demo.html.

[ENS05] Ryan Eccles, Blair Nonneck, and Deborah A. Stacey. Exploring parallel
programming knowledge in the novice. In HPCS ’05: Proceedings of the
19th International Symposium on High Performance Computing Systems and
Applications, pages 97–102, Guelph, Ontario, Canada, 2005. IEEE Computer
Society.

[Eri08] Christer Ericson. Aiding pathfinding with cellular automata, June 2008.
http://realtimecollisiondetection.net/blog/?p=57.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison Wesley, 1990.

[ES05] Ryan Eccles and Deborah A. Stacey. Understanding the parallel programmer.
In HPCS ’05: Proceedings of the 19th International Symposium on High
Performance Computing Systems and Applications, pages 156–160, Guelph,
Ontario, Canada, 2005. IEEE Computer Society.

[ETH11] ETH Zurich. Parallel solver for a perfect maze, March
2011. URL: http://nativesystems.inf.ethz.ch/pub/Main/
WebHomeLecturesParallelProgrammingExercises/pp2011hw04.pdf
[broken, November 2016].

[Fel50] W. Feller. An Introduction to Probability Theory and its Applications. John
Wiley, 1950.

[Fos10] Ron Fosner. Scalable multithreaded programming with tasks. MSDN Mag-
azine, 2010(11):60–69, November 2010. http://msdn.microsoft.com/
en-us/magazine/gg309176.aspx.

[FPB79] Jr. Frederick P. Brooks. The Mythical Man-Month. Addison-Wesley, 1979.
[FRK02] Hubertus Francke, Rusty Russell, and Matthew Kirkwood. Fuss, futexes

and furwocks: Fast userlevel locking in linux. In Ottawa Linux Symposium,
pages 479–495, June 2002. Available: http://www.kernel.org/doc/
ols/2002/ols2002-pages-479-495.pdf [Viewed May 22, 2011].

[FSP+17] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc
Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. Mixed-
size concurrency: Arm, power, c/c++11, and sc. SIGPLAN Not., 52(1):429–
442, January 2017.

[GAJM15] Alex Groce, Iftekhar Ahmed, Carlos Jensen, and Paul E. McKenney. How
verified is my code? falsification-driven verification (t). In Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ASE ’15, pages 737–748, Washington, DC, USA, 2015.
IEEE Computer Society.

https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://dx.doi.org/10.1109/TC.1980.1675680
http://dx.doi.org/10.1145/1281100.1281106
http://dx.doi.org/10.1145/1281100.1281106
http://dougengelbart.org/firsts/dougs-1968-demo.html
http://dougengelbart.org/firsts/dougs-1968-demo.html
http://dx.doi.org/10.1109/HPCS.2005.26
http://dx.doi.org/10.1109/HPCS.2005.26
http://realtimecollisiondetection.net/blog/?p=57
http://dx.doi.org/10.1109/HPCS.2005.49
http://msdn.microsoft.com/en-us/magazine/gg309176.aspx
http://msdn.microsoft.com/en-us/magazine/gg309176.aspx
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://dx.doi.org/10.1145/3093333.3009839
http://dx.doi.org/10.1145/3093333.3009839
http://dx.doi.org/10.1109/ASE.2015.40
http://dx.doi.org/10.1109/ASE.2015.40

494 BIBLIOGRAPHY

[Gar90] Arun Garg. Parallel STREAMS: a multi-processor implementation. In
USENIX Conference Proceedings, pages 163–176, Berkeley CA, February
1990. USENIX Association.

[Gar07] Bryan Gardiner. IDF: Gordon Moore predicts end of Moore’s law (again),
September 2007. Available: http://blog.wired.com/business/2007/
09/idf-gordon-mo-1.html [Viewed: November 28, 2008].

[GC96] Michael Greenwald and David R. Cheriton. The synergy between non-
blocking synchronization and operating system structure. In Proceedings of
the Second Symposium on Operating Systems Design and Implementation,
pages 123–136, Seattle, WA, October 1996. USENIX Association.

[GDZE10] Olga Golovanevsky, Alon Dayan, Ayal Zaks, and David Edelsohn. Trace-
based data layout optimizations for multi-core processors. In Proceedings of
the 5th International Conference on High Performance Embedded Architec-
tures and Compilers, HiPEAC’10, pages 81–95, Pisa, Italy, 2010. Springer-
Verlag.

[GG14] Vincent Gramoli and Rachid Guerraoui. Democratizing transactional pro-
gramming. Commun. ACM, 57(1):86–93, January 2014.

[Gha95] Kourosh Gharachorloo. Memory consistency models for shared-memory
multiprocessors. Technical Report CSL-TR-95-685, Computer Systems Lab-
oratory, Departments of Electrical Engineering and Computer Science, Stan-
ford University, Stanford, CA, December 1995. Available: http://www.
hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf [Viewed: Octo-
ber 11, 2004].

[GHH+14] Alex Groce, Klaus Havelund, Gerard J. Holzmann, Rajeev Joshi, and Ru-
Gang Xu. Establishing flight software reliability: testing, model check-
ing, constraint-solving, monitoring and learning. Ann. Math. Artif. Intell.,
70(4):315–349, 2014.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[GKAS99] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a shared memory multiprocessor
operating system. In Proceedings of the 3rd Symposium on Operating System
Design and Implementation, pages 87–100, New Orleans, LA, February 1999.

[GKP13] Justin Gottschlich, Rob Knauerhase, and Gilles Pokam. But how do we really
debug transactional memory? In 5th USENIX Workshop on Hot Topics in
Parallelism (HotPar 2013), San Jose, CA, USA, June 2013.

[GKPS95] Ben Gamsa, Orran Krieger, E. Parsons, and Michael Stumm. Performance
issues for multiprocessor operating systems, November 1995. Technical Re-
port CSRI-339, Available: ftp://ftp.cs.toronto.edu/pub/reports/
csri/339/339.ps.

[Gle10] Thomas Gleixner. Realtime linux: academia v. reality, July 2010. URL:
http://lwn.net/Articles/397422/.

[Gle12] Thomas Gleixner. Linux -rt kvm guest demo, December 2012. Personal
communication.

http://blog.wired.com/business/2007/09/idf-gordon-mo-1.html
http://blog.wired.com/business/2007/09/idf-gordon-mo-1.html
http://dx.doi.org/10.1145/238721.238767
http://dx.doi.org/10.1145/238721.238767
http://dx.doi.org/10.1007/978-3-642-11515-8_8
http://dx.doi.org/10.1007/978-3-642-11515-8_8
http://dx.doi.org/10.1145/2541883.2541900
http://dx.doi.org/10.1145/2541883.2541900
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf
http://dx.doi.org/10.1007/s10472-014-9408-8
http://dx.doi.org/10.1007/s10472-014-9408-8
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://www.usenix.org/system/files/conference/hotpar13/hotpar13-gottschlich.pdf
https://www.usenix.org/system/files/conference/hotpar13/hotpar13-gottschlich.pdf
ftp://ftp.cs.toronto.edu/pub/reports/csri/339/339.ps
ftp://ftp.cs.toronto.edu/pub/reports/csri/339/339.ps
http://lwn.net/Articles/397422/

BIBLIOGRAPHY 495

[GMTW08] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. The read-copy-
update mechanism for supporting real-time applications on shared-memory
multiprocessor systems with Linux. IBM Systems Journal, 47(2):221–236,
May 2008.

[Gol18] David Goldblatt. P1202: Asymmetric fences, October 2018. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1202r0.pdf.

[GPB+07] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. Java: Concurrency in Practice. Addison Wesley, Upper Saddle
River, NJ, USA, 2007.

[Gra91] Jim Gray. The Benchmark Handbook for Database and Transaction Process-
ing Systems. Morgan Kaufmann, 1991.

[Gra02] Jim Gray. Super-servers: Commodity computer clusters pose a software chal-
lenge, April 2002. Available: http://research.microsoft.com/en-
us/um/people/gray/papers/superservers(4t_computers).doc
[Viewed: June 23, 2004].

[Gri00] Scott Griffen. Internet pioneers: Doug englebart, May 2000. Avail-
able: http://www.ibiblio.org/pioneers/englebart.html [Viewed
November 28, 2008].

[Gro01] The Open Group. Single UNIX specification, July 2001. http://www.
opengroup.org/onlinepubs/007908799/index.html.

[Gro07] Dan Grossman. The transactional memory / garbage collection anal-
ogy. In OOPSLA ’07: Proceedings of the 22nd annual ACM SIG-
PLAN conference on Object oriented programming systems and ap-
plications, pages 695–706, Montreal, Quebec, Canada, October 2007.
ACM. Available: http://www.cs.washington.edu/homes/djg/
papers/analogy_oopsla07.pdf [Viewed December 19, 2008].

[GRY12] Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. Verify-
ing highly concurrent algorithms with grace (extended version), July
2012. http://software.imdea.org/~gotsman/papers/recycling-
esop13-ext.pdf.

[GT90] Gary Graunke and Shreekant Thakkar. Synchronization algorithms for shared-
memory multiprocessors. IEEE Computer, 23(6):60–69, June 1990.

[Har16] "No Bugs" Hare. Infographics: Operation costs in CPU clock cycles, Sep-
tember 2016. http://ithare.com/infographics-operation-costs-
in-cpu-clock-cycles/.

[HCS+05] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili.
Parallel programmer productivity: A case study of novice parallel program-
mers. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Super-
computing, page 35, Seattle, WA, USA, 2005. IEEE Computer Society.

[Hei27] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4):172–198, 1927.
English translation in “Quantum theory and measurement” by Wheeler and
Zurek.

[Her90] Maurice P. Herlihy. A methodology for implementing highly concurrent
data structures. In Proceedings of the 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 197–206, Seattle,
WA, USA, March 1990.

http://dx.doi.org/10.1147/sj.472.0221
http://dx.doi.org/10.1147/sj.472.0221
http://dx.doi.org/10.1147/sj.472.0221
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1202r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1202r0.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
http://www.ibiblio.org/pioneers/englebart.html
http://www.opengroup.org/onlinepubs/007908799/index.html
http://www.opengroup.org/onlinepubs/007908799/index.html
http://dx.doi.org/10.1145/1297027.1297080
http://dx.doi.org/10.1145/1297027.1297080
http://www.cs.washington.edu/homes/djg/papers/analogy_oopsla07.pdf
http://www.cs.washington.edu/homes/djg/papers/analogy_oopsla07.pdf
http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
http://dx.doi.org/10.1109/2.55501
http://dx.doi.org/10.1109/2.55501
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://dx.doi.org/10.1109/SC.2005.53
http://dx.doi.org/10.1109/SC.2005.53
http://dx.doi.org/10.1145/99163.99185
http://dx.doi.org/10.1145/99163.99185

496 BIBLIOGRAPHY

[Her91] Maurice Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–149,
January 1991.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent data ob-
jects. ACM Transactions on Programming Languages and Systems, 15(5):745–
770, November 1993.

[Her05] Maurice Herlihy. The transactional manifesto: software engineering and
non-blocking synchronization. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation,
pages 280–280, Chicago, IL, USA, 2005. ACM Press.

[HHK+13] A. Haas, T.A. Henzinger, C.M. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
and A. Sokolova. Distributed queues in shared memory—multicore perfor-
mance and scalability through quantitative relaxation. In Proc. International
Conference on Computing Frontiers, Ischia, Italy, 2013. ACM.

[HKLP12] Andreas Haas, Christoph M. Kirsch, Michael Lippautz, and Hannes Payer.
How FIFO is your concurrent FIFO queue? In Proceedings of the Workshop
on Relaxing Synchronization for Multicore and Manycore Scalability, Tucson,
AZ USA, October 2012.

[HL86] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations
Research. Holden-Day, 1986.

[HLM02] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender prob-
lem: A mechanism for supporting dynamic-sized, lock-free data structures.
In Proceedings of 16th International Symposium on Distributed Computing,
pages 339–353, Toulouse, France, October 2002.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free syn-
chronization: Double-ended queues as an example. In Proceedings of the 23rd

IEEE International Conference on Distributed Computing Systems (ICDCS),
pages 73–82, Providence, RI, May 2003. The Institute of Electrical and
Electronics Engineers, Inc.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA ’93: Proceeding of the 20th

Annual International Symposium on Computer Architecture, pages 289–300,
San Diego, CA, USA, May 1993.

[HMB06] Thomas E. Hart, Paul E. McKenney, and Angela Demke Brown. Making lock-
less synchronization fast: Performance implications of memory reclamation.
In 20th IEEE International Parallel and Distributed Processing Symposium,
Rhodes, Greece, April 2006. Available: http://www.rdrop.com/users/
paulmck/RCU/hart_ipdps06.pdf [Viewed April 28, 2008].

[HMBW07] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan
Walpole. Performance of memory reclamation for lockless synchronization.
J. Parallel Distrib. Comput., 67(12):1270–1285, 2007.

[HMDZ06] David Howells, Paul E. McKenney, Will Deacon, and Peter Zijlstra. Linux
kernel memory barriers, March 2006. https://www.kernel.org/doc/
Documentation/memory-barriers.txt.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Commu-
nications of the ACM, 17(10):549–557, October 1974.

http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/161468.161469
http://dx.doi.org/10.1145/161468.161469
http://dx.doi.org/10.1145/1065010.1065011
http://dx.doi.org/10.1145/1065010.1065011
http://dx.doi.org/10.1145/2482767.2482789
http://dx.doi.org/10.1145/2482767.2482789
http://dx.doi.org/10.1145/2414729.2414731
http://dx.doi.org/10.1007/3-540-36108-1_23
http://dx.doi.org/10.1007/3-540-36108-1_23
http://www.cs.brown.edu/people/mph/HerlihyLM03/main.pdf
http://www.cs.brown.edu/people/mph/HerlihyLM03/main.pdf
http://dx.doi.org/10.1145/165123.165164
http://dx.doi.org/10.1145/165123.165164
http://dx.doi.org/10.1109/IPDPS.2006.1639261
http://dx.doi.org/10.1109/IPDPS.2006.1639261
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
http://dx.doi.org/10.1016/j.jpdc.2007.04.010
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://dx.doi.org/10.1145/355620.361161

BIBLIOGRAPHY 497

[Hol03] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, MA, USA, 2003.

[Hor18] Jann Horn. Reading privileged memory with a side-channel, Jan-
uary 2018. https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html.

[HOS89] James P. Hennessy, Damian L. Osisek, and Joseph W. Seigh II. Passive serial-
ization in a multitasking environment. Technical Report US Patent 4,809,168
(lapsed), US Patent and Trademark Office, Washington, DC, February 1989.

[How12] Phil Howard. Extending Relativistic Programming to Multiple Writers. PhD
thesis, Portland State University, 2012.

[HP95] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufman, 1995.

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth
Edition: A Quantitative Approach. Morgan Kaufman, 2011.

[Hra13] Adam Hraška. Read-copy-update for helenos. Master’s thesis, Charles
University in Prague, Faculty of Mathematics and Physics, Department of
Distributed and Dependable Systems, 2013.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, Burlington, MA, USA, 2008.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–
492, July 1990.

[HW92] Wilson C. Hsieh and William E. Weihl. Scalable reader-writer locks for
parallel systems. In Proceedings of the 6th International Parallel Processing
Symposium, pages 216–230, Beverly Hills, CA, USA, March 1992.

[HW11] Philip W. Howard and Jonathan Walpole. A relativistic enhancement to
software transactional memory. In Proceedings of the 3rd USENIX conference
on Hot topics in parallelism, HotPar’11, pages 1–6, Berkeley, CA, 2011.
USENIX Association.

[HW13] Philip W. Howard and Jonathan Walpole. Relativistic red-black trees. Con-
currency and Computation: Practice and Experience, pages n/a–n/a, 2013.

[IBM94] IBM Microelectronics and Motorola. PowerPC Microprocessor Family: The
Programming Environments, 1994.

[Ima17] Imagination Technologies, LTD. MIPS®Architecture For Programmers Vol-
ume II-A: The MIPS64®Instruction Set Reference Manual, 2017. https:
//imgtec.com/?do-download=4302.

[Inm85] Jack Inman. Implementing loosely coupled functions on tightly coupled
engines. In USENIX Conference Proceedings, pages 277–298, Portland, OR,
June 1985. USENIX Association.

[Inm07] Bill Inmon. Time value of information, January 2007. URL: http://www.b-
eye-network.com/view/3365.

[Int92] International Standards Organization. Information Technology - Database
Language SQL. ISO, 1992. Available: http://www.contrib.andrew.
cmu.edu/~shadow/sql/sql1992.txt [Viewed September 19, 2008].

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1109/IPPS.1992.222989
http://dx.doi.org/10.1109/IPPS.1992.222989
http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
http://dx.doi.org/10.1002/cpe.3157
https://imgtec.com/?do-download=4302
https://imgtec.com/?do-download=4302
http://www.b-eye-network.com/view/3365
http://www.b-eye-network.com/view/3365
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

498 BIBLIOGRAPHY

[Int02a] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual
Volume 3: Instruction Set Reference, 2002.

[Int02b] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual
Volume 3: System Architecture, 2002.

[Int04a] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual Vol-
ume 2B: Instruction Set Reference, N-Z, 2004. Available: ftp://download.
intel.com/design/Pentium4/manuals/25366714.pdf [Viewed: Feb-
ruary 16, 2005].

[Int04b] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual
Volume 3: System Programming Guide, 2004. Available: ftp://download.
intel.com/design/Pentium4/manuals/25366814.pdf [Viewed: Feb-
ruary 16, 2005].

[Int04c] International Business Machines Corporation. z/Architecture principles of
operation, May 2004. Available: http://publibz.boulder.ibm.com/
epubs/pdf/dz9zr003.pdf [Viewed: February 16, 2005].

[Int07] Intel Corporation. Intel 64 Architecture Memory Ordering White Pa-
per, 2007. Available: http://developer.intel.com/products/
processor/manuals/318147.pdf [Viewed: September 7, 2007].

[Int11] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3A: System Programming Guide, Part 1, 2011. Available: http:
//www.intel.com/Assets/PDF/manual/253668.pdf [Viewed: Febru-
ary 12, 2011].

[Jac88] Van Jacobson. Congestion avoidance and control. In SIGCOMM ’88, pages
314–329, August 1988.

[Jac93] Van Jacobson. Avoid read-side locking via delayed free, September 1993.
private communication.

[Jac08] Daniel Jackson. MapReduce course, January 2008. Available: https:
//sites.google.com/site/mriap2008/ [Viewed January 3, 2013].

[Jef14] Alan Jeffrey. Jmm revision status, July 2014. http://mail.openjdk.
java.net/pipermail/jmm-dev/2014-July/000072.html.

[JLK16a] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel ad-
dress space layout randomization (KASLR) with Intel TSX, July
2016. Black Hat USA 2018 https://www.blackhat.com/us-
16/briefings.html#breaking-kernel-address-space-layout-
randomization-kaslr-with-intel-tsx.

[JLK16b] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address space
layout randomization with Intel TSX. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 380–392, Vienna, Austria, 2016. ACM.

[JMRR02] Benedict Joseph Jackson, Paul E. McKenney, Ramakrishnan Rajamony, and
Ronald Lynn Rockhold. Scalable interruptible queue locks for shared-memory
multiprocessor. US Patent 6,473,819, US Patent and Trademark Office,
Washington, DC, October 2002.

[Joh77] Stephen Johnson. Lint, a C program checker, December 1977. Computer
Science Technical Report 65, Bell Laboratories.

ftp://download.intel.com/design/Pentium4/manuals/25366714.pdf
ftp://download.intel.com/design/Pentium4/manuals/25366714.pdf
ftp://download.intel.com/design/Pentium4/manuals/25366814.pdf
ftp://download.intel.com/design/Pentium4/manuals/25366814.pdf
http://publibz.boulder.ibm.com/epubs/pdf/dz9zr003.pdf
http://publibz.boulder.ibm.com/epubs/pdf/dz9zr003.pdf
http://developer.intel.com/products/processor/manuals/318147.pdf
http://developer.intel.com/products/processor/manuals/318147.pdf
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://dx.doi.org/10.1145/52324.52356
https://sites.google.com/site/mriap2008/
https://sites.google.com/site/mriap2008/
http://mail.openjdk.java.net/pipermail/jmm-dev/2014-July/000072.html
http://mail.openjdk.java.net/pipermail/jmm-dev/2014-July/000072.html
https://www.blackhat.com/us-16/briefings.html#breaking-kernel-address-space-layout-randomization-kaslr-with-intel-tsx
https://www.blackhat.com/us-16/briefings.html#breaking-kernel-address-space-layout-randomization-kaslr-with-intel-tsx
https://www.blackhat.com/us-16/briefings.html#breaking-kernel-address-space-layout-randomization-kaslr-with-intel-tsx
http://dx.doi.org/10.1145/2976749.2978321
http://dx.doi.org/10.1145/2976749.2978321
https://www.google.com/patents/US6473819
https://www.google.com/patents/US6473819

BIBLIOGRAPHY 499

[Joh95] Aju John. Dynamic vnodes – design and implementation. In USENIX
Winter 1995, pages 11–23, New Orleans, LA, January 1995. USENIX Associ-
ation. Available: https://www.usenix.org/publications/library/
proceedings/neworl/full_papers/john.a [Viewed October 1, 2010].

[Jon11] Dave Jones. Trinity: A system call fuzzer. In Proceedings of the 13th Ottawa
Linux Symposium, pages ???–???, Ottawa, Canada, June 2011.

[JSG12] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional mem-
ory architecture and implementation for IBM System z, December 2012.
The 45th Annual IEEE/ACM International Symposium on MicroArchitec-
ture, URL: http://www.microarch.org/micro45/talks-posters/3-
jacobi-presentation.pdf.

[Kaa15] Frans Kaashoek. Parallel computing and the os. In SOSP History Day,
October 2015.

[KCH+06] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kumar, and
Anthony Nguyen. Hybrid transactional memory. In Proceedings of the ACM
SIGPLAN 2006 Symposium on Principles and Practice of Parallel Program-
ming, New York, New York, United States, 2006. ACM SIGPLAN. http:
//princeton.kumarbhope.com/papers/PPoPP06/ppopp06.pdf.

[Kel17] Michael J. Kelly. How might the manufacturability of the hard-
ware at device level impact on exascale computing?, 2017. URL:
https://openparallel.com/multicore-world-2017/program-
2017/abstracts2017/.

[KFC11] KFC. Memristor processor solves mazes, March 2011. http://www.
technologyreview.com/blog/arxiv/26467/.

[Kis14] Jan Kiszka. Real-time virtualization - how crazy are we? In Linux Plumbers
Conference, Duesseldorf, Germany, October 2014. URL: http://www.
linuxplumbersconf.org/2014/ocw/sessions/1935.

[KL80] H. T. Kung and P. Lehman. Concurrent manipulation of binary search trees.
ACM Transactions on Database Systems, 5(3):354–382, September 1980.

[KLP12] Christoph M. Kirsch, Michael Lippautz, and Hannes Payer. Fast and scalable
k-fifo queues. Technical Report 2012-04, University of Salzburg, Salzburg,
Austria, June 2012.

[Kni08] John U. Knickerbocker. 3D chip technology. IBM Journal of Research and
Development, 52(6), November 2008. URL: http://www.research.ibm.
com/journal/rd52-6.html [Link to each article is broken as of November
2016; Available via http://ieeexplore.ieee.org/xpl/tocresult.
jsp?isnumber=5388557].

[Knu73] Donald Knuth. The Art of Computer Programming. Addison-Wesley, 1973.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer Publishing Company, Incorporated, 1 edition, 2008.

[KS17a] Michalis Kokologiannakis and Konstantinos Sagonas. Stateless model
checking of the linux kernel’s hierarchical read-copy update (Tree RCU).
Technical report, National Technical University of Athens, January 2017.
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf.

https://www.usenix.org/publications/library/proceedings/neworl/full_papers/john.a
https://www.usenix.org/publications/library/proceedings/neworl/full_papers/john.a
http://codemonkey.org.uk/projects/trinity/
http://dx.doi.org/10.1109/MICRO.2012.12
http://dx.doi.org/10.1109/MICRO.2012.12
http://www.microarch.org/micro45/talks-posters/3-jacobi-presentation.pdf
http://www.microarch.org/micro45/talks-posters/3-jacobi-presentation.pdf
http://sigops.org/sosp/sosp15/history/08-kaashoek-slides.pdf
http://dx.doi.org/10.1145/1122971.1123003
http://princeton.kumarbhope.com/papers/PPoPP06/ppopp06.pdf
http://princeton.kumarbhope.com/papers/PPoPP06/ppopp06.pdf
https://openparallel.com/multicore-world-2017/program-2017/abstracts2017/
https://openparallel.com/multicore-world-2017/program-2017/abstracts2017/
http://www.technologyreview.com/blog/arxiv/26467/
http://www.technologyreview.com/blog/arxiv/26467/
http://www.linuxplumbersconf.org/2014/ocw/sessions/1935
http://www.linuxplumbersconf.org/2014/ocw/sessions/1935
http://dx.doi.org/10.1145/320613.320619
https://arise.or.at/pubpdf/Fast_and_Scalable_k-FIFO_Queues.pdf
https://arise.or.at/pubpdf/Fast_and_Scalable_k-FIFO_Queues.pdf
http://www.research.ibm.com/journal/rd52-6.html
http://www.research.ibm.com/journal/rd52-6.html
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5388557
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5388557
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf

500 BIBLIOGRAPHY

[KS17b] Michalis Kokologiannakis and Konstantinos Sagonas. Stateless model check-
ing of the Linux kernel’s hierarchical read-copy-update (Tree RCU). In
Proceedings of International SPIN Symposium on Model Checking of Soft-
ware, SPIN 2017, New York, NY, USA, July 2017. ACM.

[KWS97] Leonidas Kontothanassis, Robert W. Wisniewski, and Michael L. Scott.
Scheduler-conscious synchronization. ACM Transactions on Computer Sys-
tems, 15(1):3–40, February 1997.

[LA94] Beng-Hong Lim and Anant Agarwal. Reactive synchronization algorithms
for multiprocessors. In Proceedings of the sixth international conference
on Architectural support for programming languages and operating sys-
tems, ASPLOS VI, pages 25–35, San Jose, California, USA, October 1994.
ACM. URL: http://groups.csail.mit.edu/cag/pub/papers/pdf/
reactive.pdf.

[Lam74] Leslie Lamport. A new solution of Dijkstra’s concurrent programming prob-
lem. Communications of the ACM, 17(8):453–455, August 1974.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[Lea97] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison Wesley Longman, Reading, MA, USA, 1997.

[LHF05] Michael Lyons, Bill Hay, and Brad Frey. PowerPC storage model and AIX
programming, November 2005. http://www.ibm.com/developerworks/
systems/articles/powerpc.html.

[Lis88] Barbara Liskov. Distributed programming in Argus. Commun. ACM,
31(3):300–312, 1988.

[LLO09] Yossi Lev, Victor Luchangco, and Marek Olszewski. Scalable reader-writer
locks. In SPAA ’09: Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures, pages 101–110, Calgary, AB,
Canada, 2009. ACM.

[LLS13] Yujie Liu, Victor Luchangco, and Michael Spear. Mindicators: A scalable
approach to quiescence. In Proceedings of the 2013 IEEE 33rd International
Conference on Distributed Computing Systems, ICDCS ’13, pages 206–215,
Washington, DC, USA, 2013. IEEE Computer Society.

[LMKM16] Lihao Liang, Paul E. McKenney, Daniel Kroening, and Tom Melham. Ver-
ification of the tree-based hierarchical read-copy update in the Linux ker-
nel. Technical report, Cornell University Library, October 2016. https:
//arxiv.org/abs/1610.03052.

[LMKM18] Lihao Liang, Paul E. McKenney, Daniel Kroening, and Tom Melham. Verifi-
cation of tree-based hierarchical Read-Copy Update in the Linux Kernel. In
2018 Design, Automation & Test in Europe Conference & Exhibi-
tion, DATE 2018, Dresden, Germany, March 19–23, 2018, 2018.

[Loc02] Doug Locke. Priority inheritance: The real story, July 2002. URL:
http://www.linuxdevices.com/articles/AT5698775833.html [bro-
ken, November 2016], page capture available at http://www.math.unipd.
it/%7Etullio/SCD/2007/Materiale/Locke.pdf.

http://dx.doi.org/doi.org/10.1145/3092282.3092287
http://dx.doi.org/doi.org/10.1145/3092282.3092287
http://dx.doi.org/10.1145/244764.244765
http://dx.doi.org/10.1145/195473.195490
http://dx.doi.org/10.1145/195473.195490
http://groups.csail.mit.edu/cag/pub/papers/pdf/reactive.pdf
http://groups.csail.mit.edu/cag/pub/papers/pdf/reactive.pdf
http://dx.doi.org/10.1145/361082.361093
http://dx.doi.org/10.1145/361082.361093
http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://dx.doi.org/10.1145/42392.42399
http://dx.doi.org/10.1145/1583991.1584020
http://dx.doi.org/10.1145/1583991.1584020
http://dx.doi.org/10.1109/ICDCS.2013.39
http://dx.doi.org/10.1109/ICDCS.2013.39
https://arxiv.org/abs/1610.03052
https://arxiv.org/abs/1610.03052
http://www.cs.ox.ac.uk/tom.melham/pub/Liang-2018-VTB.pdf
http://www.cs.ox.ac.uk/tom.melham/pub/Liang-2018-VTB.pdf
http://www.math.unipd.it/%7Etullio/SCD/2007/Materiale/Locke.pdf
http://www.math.unipd.it/%7Etullio/SCD/2007/Materiale/Locke.pdf

BIBLIOGRAPHY 501

[Lom77] D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. SIGSOFT Softw. Eng. Notes, 2(2):128–137, 1977. URL: http:
//portal.acm.org/citation.cfm?id=808319#.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes and
monitors in Mesa. Communications of the ACM, 23(2):105–117, 1980.

[LS86] Vladimir Lanin and Dennis Shasha. A symmetric concurrent b-tree algorithm.
In ACM ’86: Proceedings of 1986 ACM Fall joint computer conference, pages
380–389, Dallas, Texas, United States, 1986. IEEE Computer Society Press.

[LS11] Yujie Liu and Michael Spear. Toxic transactions. In TRANSACT 2011, San
Jose, CA, USA, June 2011. ACM SIGPLAN.

[LSLK14] Carl Leonardsson, Kostis Sagonas, Truc Nguyen Lam, and Michalis
Kokologiannakis. Nidhugg, July 2014. https://github.com/nidhugg/
nidhugg.

[LVK+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
Repairing sequential consistency in c/c++11. SIGPLAN Not., 52(6):618–632,
June 2017.

[LZC14] Ran Liu, Heng Zhang, and Haibo Chen. Scalable read-mostly synchroniza-
tion using passive reader-writer locks. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 219–230, Philadelphia, PA, June 2014.
USENIX Association.

[MAK+01] Paul E. McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty
Russell, Dipankar Sarma, and Maneesh Soni. Read-copy update. In Ottawa
Linux Symposium, July 2001. URL: https://www.kernel.org/doc/ols/
2001/read-copy.pdf, http://www.rdrop.com/users/paulmck/RCU/
rclock_OLS.2001.05.01c.pdf.

[Mar17] Luc Maraget. Aarch64 model vs. hardware, May 2017. http://pauillac.
inria.fr/~maranget/cats7/model-aarch64/specific.html.

[Mar18] Catalin Marinas. Queued spinlocks model, March 2018. https://
git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-
tla.git.

[Mas92] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Op-
erating System Services. PhD thesis, Columbia University, New York, NY,
1992.

[Mat13] Norm Matloff. Programming on Parallel Machines. University of California,
Davis, Davis, CA, USA, 2013.

[MBM+06] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and
David A. Wood. LogTM: Log-based transactional memory. In Proceed-
ings of the 12th Annual International Symposium on High Performance
Computer Architecture (HPCA-12), Austin, Texas, United States, 2006.
IEEE. Available: http://www.cs.wisc.edu/multifacet/papers/
hpca06_logtm.pdf [Viewed December 21, 2006].

[MBWW12] Paul E. McKenney, Silas Boyd-Wickizer, and Jonathan Walpole. RCU
usage in the linux kernel: One decade later, September 2012. Tech-
nical report paulmck.2012.09.17, http://rdrop.com/users/paulmck/
techreports/survey.2012.09.17a.pdf.

http://dx.doi.org/10.1145/390019.808319
http://dx.doi.org/10.1145/390019.808319
http://portal.acm.org/citation.cfm?id=808319#
http://portal.acm.org/citation.cfm?id=808319#
http://dx.doi.org/10.1145/358818.358824
http://dx.doi.org/10.1145/358818.358824
http://portal.acm.org/citation.cfm?id=324589
https://www.cs.purdue.edu/transact11/web/papers/Liu.pdf
https://github.com/nidhugg/nidhugg
https://github.com/nidhugg/nidhugg
http://dx.doi.org/10.1145/3140587.3062352
http://blogs.usenix.org/conference/atc14/technical-sessions/presentation/liu
http://blogs.usenix.org/conference/atc14/technical-sessions/presentation/liu
https://www.kernel.org/doc/ols/2001/read-copy.pdf
https://www.kernel.org/doc/ols/2001/read-copy.pdf
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://pauillac.inria.fr/~maranget/cats7/model-aarch64/specific.html
http://pauillac.inria.fr/~maranget/cats7/model-aarch64/specific.html
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git
http://valerieaurora.org/synthesis/SynthesisOS/index.html
http://valerieaurora.org/synthesis/SynthesisOS/index.html
http://www.cs.wisc.edu/multifacet/papers/hpca06_logtm.pdf
http://www.cs.wisc.edu/multifacet/papers/hpca06_logtm.pdf
http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf

502 BIBLIOGRAPHY

[McK90a] Paul E. McKenney. Stochastic fairness queuing. In IEEE INFO-
COM’90 Proceedings, pages 733–740, San Francisco, June 1990. The
Institute of Electrical and Electronics Engineers, Inc. Revision avail-
able: http://www.rdrop.com/users/paulmck/scalability/paper/
sfq.2002.06.04.pdf [Viewed May 26, 2008].

[McK90b] Paul E. McKenney. Stochastic fairness queuing. Technical Report ITSTD-
7186-PA-89-11, SRI International, Menlo Park, CA, March 1990. To appear
in INFOCOM’90.

[McK91] Paul E. McKenney. Stochastic fairness queuing. Internetworking: Theory
and Experience, 2:113–131, 1991.

[McK95] Paul E. McKenney. Differential profiling. In MASCOTS 1995, pages 237–241,
Toronto, Canada, January 1995.

[McK96a] Paul E. McKenney. Pattern Languages of Program Design, volume 2, chap-
ter 31: Selecting Locking Designs for Parallel Programs, pages 501–531.
Addison-Wesley, June 1996. Available: http://www.rdrop.com/users/
paulmck/scalability/paper/mutexdesignpat.pdf [Viewed February
17, 2005].

[McK96b] Paul E. McKenney. Selecting locking primitives for parallel programs. Com-
munications of the ACM, 39(10):75–82, October 1996.

[McK99] Paul E. McKenney. Differential profiling. Software - Practice and Experience,
29(3):219–234, 1999.

[McK03] Paul E. McKenney. Using RCU in the Linux 2.5 kernel. Linux Journal,
1(114):18–26, October 2003. Available: http://www.linuxjournal.
com/article/6993 [Viewed November 14, 2007].

[McK04] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-
Copy-Update Techniques in Operating System Kernels. PhD thesis, OGI
School of Science and Engineering at Oregon Health and Sciences University,
2004.

[McK05a] Paul E. McKenney. Memory ordering in modern microprocessors,
part I. Linux Journal, 1(136):52–57, August 2005. Available: http:
//www.linuxjournal.com/article/8211 http://www.rdrop.com/
users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
[Viewed November 30, 2007].

[McK05b] Paul E. McKenney. Memory ordering in modern microproces-
sors, part II. Linux Journal, 1(137):78–82, September 2005.
Available: http://www.linuxjournal.com/article/8212
http://www.rdrop.com/users/paulmck/scalability/paper/
ordering.2007.09.19a.pdf [Viewed November 30, 2007].

[McK05c] Paul E. McKenney. A realtime preemption overview, August 2005. URL:
http://lwn.net/Articles/146861/.

[McK06] Paul E. McKenney. Sleepable RCU, October 2006. Available:
http://lwn.net/Articles/202847/ Revised: http://www.rdrop.
com/users/paulmck/RCU/srcu.2007.01.14a.pdf [Viewed August 21,
2006].

[McK07a] Paul E. McKenney. The design of preemptible read-copy-update, October
2007. Available: http://lwn.net/Articles/253651/ [Viewed October
25, 2007].

http://dx.doi.org/10.1109/INFCOM.1990.91316
http://www.rdrop.com/users/paulmck/scalability/paper/sfq.2002.06.04.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/sfq.2002.06.04.pdf
http://dx.doi.org/10.1109/MASCOT.1995.378681
http://www.rdrop.com/users/paulmck/scalability/paper/mutexdesignpat.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mutexdesignpat.pdf
http://dx.doi.org/10.1145/236156.236174
http://www.linuxjournal.com/article/6993
http://www.linuxjournal.com/article/6993
http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.linuxjournal.com/article/8211
http://www.linuxjournal.com/article/8211
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
http://www.linuxjournal.com/article/8212
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
http://lwn.net/Articles/146861/
http://lwn.net/Articles/202847/
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://lwn.net/Articles/253651/

BIBLIOGRAPHY 503

[McK07b] Paul E. McKenney. Immunize rcu_dereference() against crazy com-
piler writers, October 2007. Git commit: https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
97b430320ce7.

[McK07c] Paul E. McKenney. [PATCH] QRCU with lockless fastpath, February 2007.
Available: http://lkml.org/lkml/2007/2/25/18 [Viewed March 27,
2008].

[McK07d] Paul E. McKenney. Priority-boosting RCU read-side critical sections, Febru-
ary 2007. http://lwn.net/Articles/220677/.

[McK07e] Paul E. McKenney. RCU and unloadable modules, January 2007. Available:
http://lwn.net/Articles/217484/ [Viewed November 22, 2007].

[McK07f] Paul E. McKenney. Using Promela and Spin to verify parallel algorithms,
August 2007. Available: http://lwn.net/Articles/243851/ [Viewed
September 8, 2007].

[McK07g] Paul E. McKenney. What is RCU?, 07 2007. Available: http://
www.rdrop.com/users/paulmck/RCU/whatisRCU.html [Viewed July 6,
2007].

[McK08a] Paul E. McKenney. Hierarchical RCU, November 2008. http://lwn.net/
Articles/305782/.

[McK08b] Paul E. McKenney. RCU part 3: the RCU API, January 2008. Available:
http://lwn.net/Articles/264090/ [Viewed January 10, 2008].

[McK08c] Paul E. McKenney. What is RCU? part 2: Usage, January 2008. Available:
http://lwn.net/Articles/263130/ [Viewed January 4, 2008].

[McK09a] Paul E. McKenney. Re: [PATCH fyi] RCU: the bloatwatch edition, Janu-
ary 2009. Available: http://lkml.org/lkml/2009/1/14/449 [Viewed
January 15, 2009].

[McK09b] Paul E. McKenney. Transactional memory everywhere?, Septem-
ber 2009. http://paulmck.livejournal.com/tag/transactional%
20memory%20everywhere.

[McK11a] Paul E. McKenney. 3.0 and RCU: what went wrong, July 2011. http:
//lwn.net/Articles/453002/.

[McK11b] Paul E. McKenney. Concurrent code and expensive instructions, January
2011. Available: http://lwn.net/Articles/423994 [Viewed January
28, 2011].

[McK11c] Paul E. McKenney. Validating memory barriers and atomic instructions,
December 2011. http://lwn.net/Articles/470681/.

[McK11d] Paul E. McKenney. Verifying parallel software: Can theory meet practice?,
January 2011. http://www.rdrop.com/users/paulmck/scalability/
paper/VericoTheoryPractice.2011.01.28a.pdf.

[McK12a] Paul E. McKenney. Making RCU safe for battery-powered devices, Feb-
ruary 2012. Available: http://www.rdrop.com/users/paulmck/RCU/
RCUdynticks.2012.02.15b.pdf [Viewed March 1, 2012].

[McK12b] Paul E. McKenney. Retrofitted parallelism considered grossly sub-optimal.
In 4th USENIX Workshop on Hot Topics on Parallelism, page 7, Berkeley, CA,
USA, June 2012.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97b430320ce7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97b430320ce7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97b430320ce7
http://lkml.org/lkml/2007/2/25/18
http://lwn.net/Articles/220677/
http://lwn.net/Articles/217484/
http://lwn.net/Articles/243851/
http://www.rdrop.com/users/paulmck/RCU/whatisRCU.html
http://www.rdrop.com/users/paulmck/RCU/whatisRCU.html
http://lwn.net/Articles/305782/
http://lwn.net/Articles/305782/
http://lwn.net/Articles/264090/
http://lwn.net/Articles/263130/
http://lkml.org/lkml/2009/1/14/449
http://paulmck.livejournal.com/tag/transactional%20memory%20everywhere
http://paulmck.livejournal.com/tag/transactional%20memory%20everywhere
http://lwn.net/Articles/453002/
http://lwn.net/Articles/453002/
http://lwn.net/Articles/423994
http://lwn.net/Articles/470681/
http://www.rdrop.com/users/paulmck/scalability/paper/VericoTheoryPractice.2011.01.28a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/VericoTheoryPractice.2011.01.28a.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-grossly-sub-optimal

504 BIBLIOGRAPHY

[McK12c] Paul E. McKenney. Signed overflow optimization hazards in the kernel,
August 2012. http://lwn.net/Articles/511259/.

[McK13] Paul E. McKenney. Structured deferral: synchronization via procrastination.
Commun. ACM, 56(7):40–49, July 2013.

[McK14a] Paul E. McKenney. Is Parallel Programming Hard, And, If So, What Can You
Do About It? (First Edition). kernel.org, Corvallis, OR, USA, 2014.

[McK14b] Paul E. McKenney. N4037: Non-transactional implementation of atomic tree
move, May 2014. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n4037.pdf.

[McK14c] Paul E. McKenney. Proper care and feeding of return values from
rcu_dereference(), February 2014. https://www.kernel.org/doc/
Documentation/RCU/rcu_dereference.txt.

[McK14d] Paul E. McKenney. The RCU API, 2014 edition, September 2014. http:
//lwn.net/Articles/609904/.

[McK14e] Paul E. McKenney. Recent read-mostly research, November 2014. http:
//lwn.net/Articles/619355/.

[McK15a] Paul E. McKenney. Formal verification and Linux-kernel concurrency.
In Compositional Verification Methods for Next-Generation Concurrency,
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2015. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

[McK15b] Paul E. McKenney. Practical experience with formal verification tools. In
Verified Trustworthy Software Systems Specialist Meeting. The Royal Society,
April 2015. http://www.rdrop.com/users/paulmck/scalability/
paper/Validation.2016.04.06e.SpecMtg.pdf.

[McK15c] Paul E. McKenney. RCU requirements part 2 — parallelism and software
engineering, August 2015. http://lwn.net/Articles/652677/.

[McK15d] Paul E. McKenney. RCU requirements part 3, August 2015. http://lwn.
net/Articles/653326/.

[McK15e] Paul E. McKenney. Requirements for RCU part 1: the fundamentals, July
2015. http://lwn.net/Articles/652156/.

[McK17] Paul E. McKenney. Verification challenge 6: Linux-kernel Tree RCU, June
2017. https://paulmck.livejournal.com/46993.html.

[MCM02] Paul E. McKenney, Kevin A. Closson, and Raghupathi Malige. Lingering
locks with fairness control for multi-node computer systems. US Patent
6,480,918, US Patent and Trademark Office, Washington, DC, November
2002.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. Transactions of Computer
Systems, 9(1):21–65, February 1991.

[MD92] Paul E. McKenney and Ken F. Dove. Efficient demultiplexing of incoming
tcp packets. In SIGCOMM ’92, Proceedings of the Conference on Commu-
nications Architecture & Protocols, pages 269–279, Baltimore, MD, August
1992. Association for Computing Machinery.

[MDJ13a] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. URCU-protected
hash tables, November 2013. http://lwn.net/Articles/573431/.

http://lwn.net/Articles/511259/
http://dx.doi.org/10.1145/2483852.2483867
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
http://lwn.net/Articles/609904/
http://lwn.net/Articles/609904/
http://lwn.net/Articles/619355/
http://lwn.net/Articles/619355/
http://materials.dagstuhl.de/files/15/15191/15191.PaulMcKenney.Slides.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/Validation.2016.04.06e.SpecMtg.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/Validation.2016.04.06e.SpecMtg.pdf
http://lwn.net/Articles/652677/
http://lwn.net/Articles/653326/
http://lwn.net/Articles/653326/
http://lwn.net/Articles/652156/
https://paulmck.livejournal.com/46993.html
https://www.google.com/patents/US6480918
https://www.google.com/patents/US6480918
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/144179.144299
http://dx.doi.org/10.1145/144179.144299
http://lwn.net/Articles/573431/

BIBLIOGRAPHY 505

[MDJ13b] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. URCU-protected
queues and stacks, November 2013. https://lwn.net/Articles/
573433/.

[MDJ13c] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. User-space RCU,
November 2013. https://lwn.net/Articles/573424/.

[MDR16a] Paul E. McKenney, Will Deacon, and Luis R. Rodriguez. Semantics of MMIO
mapping attributes across architectures, August 2016. https://lwn.net/
Articles/698014/.

[MDR16b] Paul E. McKenney, Will Deacon, and Luis R. Rodriguez. Semantics of MMIO
mapping attributes across architectures, August 2016. https://lwn.net/
Articles/698014/.

[Mer11] Rick Merritt. IBM plants transactional memory in CPU, August 2011. EE
Times http://www.eetimes.com/electronics-news/4218914/IBM-
plants-transactional-memory-in-CPU.

[Met99] Panagiotis Takis Metaxas. Fast dithering on a data-parallel computer. In
Proceedings of the IASTED International Conference on Parallel and Distrib-
uted Computing and Systems, pages 570–576, Cambridge, MA, USA, 1999.
IASTED.

[MG92] Paul E. McKenney and Gary Graunke. Efficient buffer allocation on shared-
memory multiprocessors. In IEEE Workshop on the Architecture and Imple-
mentation of High Performance Communication Subsystems, pages 194–199,
Tucson, AZ, February 1992. The Institute of Electrical and Electronics Engi-
neers, Inc.

[MGM+09] Paul E. McKenney, Manish Gupta, Maged M. Michael, Phil Howard, Joshua
Triplett, and Jonathan Walpole. Is parallel programming hard, and if so, why?
Technical Report TR-09-02, Portland State University, Portland, OR, USA,
February 2009. Available: http://www.cs.pdx.edu/pdfs/tr0902.pdf
[Viewed February 19, 2009].

[MHS12] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip coherence
is here to stay. Communications of the ACM, 55(7):78–89, July 2012.

[Mic03] Maged M. Michael. Cas-based lock-free algorithm for shared deques. In
Harald Kosch, László Böszörményi, and Hermann Hellwagner, editors, Euro-
Par, volume 2790 of Lecture Notes in Computer Science, pages 651–660.
Springer, 2003.

[Mic04] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Transactions on Parallel and Distributed Systems, 15(6):491–
504, June 2004.

[Mic08] Microsoft. FlushProcessWriteBuffers function, 2008.
https://docs.microsoft.com/en-us/windows/desktop/
api/processthreadsapi/nf-processthreadsapi-
flushprocesswritebuffers.

[Mil06] David S. Miller. Re: [PATCH, RFC] RCU : OOM avoidance and lower
latency, January 2006. Available: https://lkml.org/lkml/2006/1/7/
22 [Viewed February 29, 2012].

[MJST16] Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. Out-of-thin-
air execution is vacuous, July 2016. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2016/p0422r0.html.

https://lwn.net/Articles/573433/
https://lwn.net/Articles/573433/
https://lwn.net/Articles/573424/
https://lwn.net/Articles/698014/
https://lwn.net/Articles/698014/
https://lwn.net/Articles/698014/
https://lwn.net/Articles/698014/
http://www.eetimes.com/electronics-news/4218914/IBM-plants-transactional-memory-in-CPU
http://www.eetimes.com/electronics-news/4218914/IBM-plants-transactional-memory-in-CPU
http://cs.wellesley.edu/~pmetaxas/pdcs99.pdf
http://dx.doi.org/10.1109/HPCS.1992.759449
http://dx.doi.org/10.1109/HPCS.1992.759449
http://www.cs.pdx.edu/pdfs/tr0902.pdf
http://dx.doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1007/978-3-540-45209-6_92
http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf
http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://lkml.org/lkml/2006/1/7/22
https://lkml.org/lkml/2006/1/7/22
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html

506 BIBLIOGRAPHY

[MK88] Marshall Kirk McKusick and Michael J. Karels. Design of a general purpose
memory allocator for the 4.3BSD UNIX kernel. In USENIX Conference
Proceedings, Berkeley CA, June 1988.

[MKM12] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM Euro-
pean Conference on Computer Systems, EuroSys ’12, pages 183–196, Bern,
Switzerland, 2012. ACM.

[ML82] Udi Manber and Richard E. Ladner. Concurrency control in a dynamic search
structure. Technical Report 82-01-01, Department of Computer Science,
University of Washington, Seattle, Washington, January 1982.

[ML84] Udi Manber and Richard E. Ladner. Concurrency control in a dynamic search
structure. ACM Transactions on Database Systems, 9(3):439–455, September
1984.

[MLH94] Peter Magnusson, Anders Landin, and Erik Hagersten. Efficient software
synchronization on large cache coherent multiprocessors. Technical Report
T94:07, Swedish Institute of Computer Science, Kista, Sweden, February
1994.

[MM00] Ingo Molnar and David S. Miller. brlock, March 2000. URL:
http://kernel.nic.funet.fi/pub/linux/kernel/v2.3/patch-
html/patch-2.3.49/linux_include_linux_brlock.h.html.

[MMTW10] Paul E. McKenney, Maged M. Michael, Josh Triplett, and Jonathan Walpole.
Why the grass may not be greener on the other side: a comparison of locking
vs. transactional memory. ACM Operating Systems Review, 44(3), July 2010.

[MMW07] Paul E. McKenney, Maged Michael, and Jonathan Walpole. Why the grass
may not be greener on the other side: A comparison of locking vs. transac-
tional memory. In Programming Languages and Operating Systems, pages
1–5, Stevenson, Washington, USA, October 2007. ACM SIGOPS.

[Mol05] Ingo Molnar. Index of /pub/linux/kernel/projects/rt, February 2005. URL:
http://www.kernel.org/pub/linux/kernel/projects/rt/.

[Mol06] Ingo Molnar. Lightweight robust futexes, March 2006. Available:
http://lxr.linux.no/#linux+v2.6.39/Documentation/robust-
futexes.txt [Viewed May 22, 2011].

[Moo03] Gordon Moore. No exponential is forever–but we can delay forever. In IBM
Academy of Technology 2003 Annual Meeting, San Francisco, CA, October
2003.

[MOZ09] Nicholas Mc Guire, Peter Odhiambo Okech, and Qingguo Zhou. Analysis
of inherent randomness of the linux kernel. In Eleventh Real Time Linux
Workshop, Dresden, Germany, September 2009.

[MP15a] Paul E. McKenney and Aravinda Prasad. Recent read-mostly research in
2015, December 2015. http://lwn.net/Articles/667593/.

[MP15b] Paul E. McKenney and Aravinda Prasad. Some more details on read-log-
update, December 2015. https://lwn.net/Articles/667720/.

[MPA+06] Paul E. McKenney, Chris Purcell, Algae, Ben Schumin, Gaius Cornelius,
Qwertyus, Neil Conway, Sbw, Blainster, Canis Rufus, Zoicon5, Anome, and
Hal Eisen. Read-copy update, July 2006. http://en.wikipedia.org/
wiki/Read-copy-update.

https://docs.freebsd.org/44doc/papers/kernmalloc.pdf
https://docs.freebsd.org/44doc/papers/kernmalloc.pdf
http://dx.doi.org/10.1145/2168836.2168855
http://dx.doi.org/10.1145/2168836.2168855
http://dl.acm.org/citation.cfm?id=869729
http://dl.acm.org/citation.cfm?id=869729
http://kernel.nic.funet.fi/pub/linux/kernel/v2.3/patch-html/patch-2.3.49/linux_include_linux_brlock.h.html
http://kernel.nic.funet.fi/pub/linux/kernel/v2.3/patch-html/patch-2.3.49/linux_include_linux_brlock.h.html
http://dx.doi.org/10.1145/1842733.1842749
http://dx.doi.org/10.1145/1842733.1842749
http://dx.doi.org/10.1145/1376789.1376798
http://dx.doi.org/10.1145/1376789.1376798
http://dx.doi.org/10.1145/1376789.1376798
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://lxr.linux.no/#linux+v2.6.39/Documentation/robust-futexes.txt
http://lxr.linux.no/#linux+v2.6.39/Documentation/robust-futexes.txt
https://www.osadl.org/?id=684
https://www.osadl.org/?id=684
http://lwn.net/Articles/667593/
https://lwn.net/Articles/667720/
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Read-copy-update

BIBLIOGRAPHY 507

[MPI08] MPI Forum. Message passing interface forum, September 2008. Available:
http://www.mpi-forum.org/ [Viewed September 9, 2008].

[MR08] Paul E. McKenney and Steven Rostedt. Integrating and validating dynticks and
preemptable RCU, April 2008. Available: http://lwn.net/Articles/
279077/ [Viewed April 24, 2008].

[MRP+17] Paul E. McKenney, Torvald Riegel, Jeff Preshing, Hans Boehm, Clark Nelson,
Olivier Giroux, Lawrence Crowl, JF Bastian, and Michael Wong. Marking
memory order consume dependency chains, February 2017. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf.

[MS93] Paul E. McKenney and Jack Slingwine. Efficient kernel memory allocation
on shared-memory multiprocessors. In USENIX Conference Proceedings,
pages 295–306, Berkeley CA, February 1993. USENIX Association. Avail-
able: http://www.rdrop.com/users/paulmck/scalability/paper/
mpalloc.pdf [Viewed January 30, 2005].

[MS95] Maged M. Michael and Michael L. Scott. Correction of a memory manage-
ment method for lock-free data structures, December 1995. Technical Report
TR599.

[MS96] M.M Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proc of the Fifteenth ACM
Symposium on Principles of Distributed Computing, pages 267–275, May
1996. Available: http://www.research.ibm.com/people/m/michael/
podc-1996.pdf [Viewed January 26, 2009].

[MS98a] Paul E. McKenney and John D. Slingwine. Read-copy update: Using exe-
cution history to solve concurrency problems. In Parallel and Distributed
Computing and Systems, pages 509–518, Las Vegas, NV, October 1998.

[MS98b] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory multiproces-
sors. J. Parallel Distrib. Comput., 51(1):1–26, 1998.

[MS01] Paul E. McKenney and Dipankar Sarma. Read-copy update mutual exclusion
in Linux, February 2001. Available: http://lse.sourceforge.net/
locking/rcu/rcupdate_doc.html [Viewed October 18, 2004].

[MS08] MySQL AB and Sun Microsystems. MySQL Downloads, November 2008.
Available: http://dev.mysql.com/downloads/ [Viewed November 26,
2008].

[MS09] Paul E. McKenney and Raul Silvera. Example power implementation for
c/c++ memory model, February 2009. Available: http://www.rdrop.com/
users/paulmck/scalability/paper/N2745r.2009.02.27a.html
[Viewed: April 5, 2009].

[MS12] Alexander Matveev and Nir Shavit. Towards a fully pessimistic STM model.
In TRANSACT 2012, San Jose, CA, USA, February 2012. ACM SIGPLAN.

[MS14] Paul E. McKenney and Alan Stern. Axiomatic validation of memory bar-
riers and atomic instructions, August 2014. http://lwn.net/Articles/
608550/.

[MSA+02] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran
Krieger, and Rusty Russell. Read-copy update. In Ottawa Linux Symposium,
pages 338–367, June 2002. Available: http://www.linux.org.uk/~ajh/
ols2002_proceedings.pdf.gz [Viewed June 23, 2004].

http://www.mpi-forum.org/
http://lwn.net/Articles/279077/
http://lwn.net/Articles/279077/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
https://pdfs.semanticscholar.org/cec0/ad7b0fc2d4d6ba45c6212d36217df1ff2bf2.pdf
https://pdfs.semanticscholar.org/cec0/ad7b0fc2d4d6ba45c6212d36217df1ff2bf2.pdf
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/248052.248106
http://www.research.ibm.com/people/m/michael/podc-1996.pdf
http://www.research.ibm.com/people/m/michael/podc-1996.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://lse.sourceforge.net/locking/rcu/rcupdate_doc.html
http://lse.sourceforge.net/locking/rcu/rcupdate_doc.html
http://dev.mysql.com/downloads/
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2009.02.27a.html
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2009.02.27a.html
http://transact2012.cse.lehigh.edu/papers/matveev.pdf
http://lwn.net/Articles/608550/
http://lwn.net/Articles/608550/
http://www.linux.org.uk/~ajh/ols2002_proceedings.pdf.gz
http://www.linux.org.uk/~ajh/ols2002_proceedings.pdf.gz

508 BIBLIOGRAPHY

[MSFM15] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-
log-update: A lightweight synchronization mechanism for concurrent pro-
gramming. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 168–183, Monterey, California, 2015. ACM.

[MSK01] Paul E. McKenney, Jack Slingwine, and Phil Krueger. Experience with an ef-
ficient parallel kernel memory allocator. Software – Practice and Experience,
31(3):235–257, March 2001.

[MSM05] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns
for Parallel Programming. Addison Wesley, Boston, MA, USA, 2005.

[MSS04] Paul E. McKenney, Dipankar Sarma, and Maneesh Soni. Scaling dcache with
RCU. Linux Journal, 1(118):38–46, January 2004.

[MSS12] Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduction to
the ARM and POWER relaxed memory models, October 2012. https:
//www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

[MT01] Jose F. Martinez and Josep Torrellas. Speculative locks for concurrent execu-
tion of critical sections in shared-memory multiprocessors. In Workshop on
Memory Performance Issues, International Symposium on Computer Archi-
tecture, Gothenburg, Sweden, June 2001. Available: http://iacoma.cs.
uiuc.edu/iacoma-papers/wmpi_locks.pdf [Viewed June 23, 2004].

[MT02] Jose F. Martinez and Josep Torrellas. Speculative synchronization: Applying
thread-level speculation to explicitly parallel applications. In Proceedings of
the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 18–29, San Jose, CA, October
2002.

[Mud01] Trevor Mudge. POWER: A first-class architectural design constraint. IEEE
Computer, 34(4):52–58, April 2001.

[Mus04] Museum Victoria Australia. CSIRAC: Australia’s first computer, 2004. URL:
http://museumvictoria.com.au/csirac/.

[MW07] Paul E. McKenney and Jonathan Walpole. What is RCU, fundamentally?, De-
cember 2007. Available: http://lwn.net/Articles/262464/ [Viewed
December 27, 2007].

[MWB+17] Paul E. McKenney, Michael Wong, Hans Boehm, Jens Maurer,
Jeffrey Yasskin, and JF Bastien. P0190R4: Proposal for new
memory_order_consume definition, July 2017. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf.

[MWPF18a] Paul E. McKenney, Ulrich Weigand, Andrea Parri, and Boqun Feng. Linux-
kernel memory model, September 2018. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2018/p0124r6.html.

[MWPF18b] Paul E. McKenney, Ulrich Weigand, Andrea Parri, and Boqun Feng. Linux-
kernel memory model, April 2018. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2018/p0124r5.html.

[Mye79] Glenford J. Myers. The Art of Software Testing. Wiley, 1979.

[Nes06a] Oleg Nesterov. Re: [patch] cpufreq: mark cpufreq_tsc() as
core_initcall_sync, November 2006. Available: http://lkml.org/
lkml/2006/11/19/69 [Viewed May 28, 2007].

http://dx.doi.org/10.1145/2815400.2815406
http://dx.doi.org/10.1145/2815400.2815406
http://dx.doi.org/10.1145/2815400.2815406
http://dx.doi.org/10.1002/spe.363
http://dx.doi.org/10.1002/spe.363
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://iacoma.cs.uiuc.edu/iacoma-papers/wmpi_locks.pdf
http://iacoma.cs.uiuc.edu/iacoma-papers/wmpi_locks.pdf
http://iacoma.cs.uiuc.edu/iacoma-papers/asplos02.pdf
http://iacoma.cs.uiuc.edu/iacoma-papers/asplos02.pdf
http://dx.doi.org/10.1109/2.917539
http://museumvictoria.com.au/csirac/
http://lwn.net/Articles/262464/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r5.html
http://lkml.org/lkml/2006/11/19/69
http://lkml.org/lkml/2006/11/19/69

BIBLIOGRAPHY 509

[Nes06b] Oleg Nesterov. Re: [rfc, patch 1/2] qrcu: "quick" srcu implementation,
November 2006. Available: http://lkml.org/lkml/2006/11/29/330
[Viewed November 26, 2008].

[NVi17a] NVidia. Accelerated computing — training, January 2017. https:
//developer.nvidia.com/accelerated-computing-training.

[NVi17b] NVidia. Existing university courses, January 2017. https://developer.
nvidia.com/educators/existing-courses.

[ON06] Robert Olsson and Stefan Nilsson. TRASH: A dynamic LC-trie and hash
data structure, August 2006. http://www.nada.kth.se/~snilsson/
publications/TRASH/trash.pdf.

[ONH+96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. The case for a single-chip multiprocessor. In ASPLOS VII,
Cambridge, MA, USA, October 1996.

[Ope97] Open Group. The single UNIX specification, version 2: Threads, 1997.
Available: http://www.opengroup.org/onlinepubs/007908799/
xsh/threads.html [Viewed September 19, 2008].

[PAB+95] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon
Inouye, Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic
incremental specialization: Streamlining a commercial operating system. In
15th ACM Symposium on Operating Systems Principles (SOSP’95), pages
314–321, Copper Mountain, CO, December 1995.

[Pat10] David Patterson. The trouble with multicore. IEEE Spectrum, 2010:28–32,
52–53, July 2010.

[Pen18] Roman Penyaev. [PATCH v2 01/26] introduce list_next_or_null_rr_rcu(),
May 2018. http://lkml.kernel.org/r/20180518130413.16997-2-
roman.penyaev@profitbricks.com.

[Pet06] Jeremy Peters. From reuters, automatic trading linked to news events, Decem-
ber 2006. URL: http://www.nytimes.com/2006/12/11/technology/
11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=1323493200.
..

[Pig06] Nick Piggin. [patch 3/3] radix-tree: RCU lockless readside, June 2006.
Available: http://lkml.org/lkml/2006/6/20/238 [Viewed March 25,
2008].

[Pik17] Fedor G. Pikus. Read, copy, update... Then what?, September 2017. https:
//www.youtube.com/watch?v=rxQ5K9lo034.

[Pod10] Andrej Podzimek. Read-copy-update for opensolaris. Master’s thesis, Charles
University in Prague, 2010. Available: https://andrej.podzimek.org/
thesis.pdf [Viewed January 31, 2011].

[Pok16] Michael Pokorny. The deadlock empire, February 2016. https://
deadlockempire.github.io/.

[Pos08] PostgreSQL Global Development Group. PostgreSQL, November 2008.
Available: http://www.postgresql.org/ [Viewed November 26, 2008].

[Pug90] William Pugh. Concurrent maintenance of skip lists. Technical Report CS-
TR-2222.1, Institute of Advanced Computer Science Studies, Department of
Computer Science, University of Maryland, College Park, Maryland, June
1990.

http://lkml.org/lkml/2006/11/29/330
https://developer.nvidia.com/accelerated-computing-training
https://developer.nvidia.com/accelerated-computing-training
https://developer.nvidia.com/educators/existing-courses
https://developer.nvidia.com/educators/existing-courses
http://www.nada.kth.se/~snilsson/publications/TRASH/trash.pdf
http://www.nada.kth.se/~snilsson/publications/TRASH/trash.pdf
http://dx.doi.org/10.1145/237090.237140
http://www.opengroup.org/onlinepubs/007908799/xsh/threads.html
http://www.opengroup.org/onlinepubs/007908799/xsh/threads.html
http://spectrum.ieee.org/computing/software/the-trouble-with-multicore
http://lkml.kernel.org/r/20180518130413.16997-2-roman.penyaev@profitbricks.com
http://lkml.kernel.org/r/20180518130413.16997-2-roman.penyaev@profitbricks.com
http://www.nytimes.com/2006/12/11/technology/11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=1323493200...
http://www.nytimes.com/2006/12/11/technology/11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=1323493200...
http://www.nytimes.com/2006/12/11/technology/11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=1323493200...
http://lkml.org/lkml/2006/6/20/238
https://www.youtube.com/watch?v=rxQ5K9lo034
https://www.youtube.com/watch?v=rxQ5K9lo034
https://andrej.podzimek.org/thesis.pdf
https://andrej.podzimek.org/thesis.pdf
https://deadlockempire.github.io/
https://deadlockempire.github.io/
http://www.postgresql.org/

510 BIBLIOGRAPHY

[Pug00] William Pugh. Reordering on an Alpha processor, 2000. Available: https://
www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
[Viewed: June 23, 2004].

[Pul00] Geoffrey K. Pullum. How Dr. Seuss would prove the halting problem unde-
cidable. Mathematics Magazine, 73(4):319–320, 2000. http://www.lel.
ed.ac.uk/~gpullum/loopsnoop.html.

[PW07] Donald E. Porter and Emmett Witchel. Lessons from large
transactional systems, December 2007. Personal communication
<20071214220521.GA5721@olive-green.cs.utexas.edu>.

[Ray99] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly, 1999.

[RC15] Pedro Ramalhete and Andreia Correia. Poor man’s rcu, August
2015. https://github.com/pramalhe/ConcurrencyFreaks/blob/
master/papers/poormanurcu-2015.pdf.

[RD12] Ravi Rajwar and Martin Dixon. Intel transactional synchronization extensions,
September 2012. Intel Developer Forum (IDF) 2012 ARCS004.

[Reg10] John Regehr. A guide to undefined behavior in c and c++, part 1, July 2010.
http://blog.regehr.org/archives/213.

[Rei07] James Reinders. Intel Threading Building Blocks. O’Reilly, Sebastopol, CA,
USA, 2007.

[RG01] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, pages 294–305,
Austin, TX, December 2001. The Institute of Electrical and Electronics Engi-
neers, Inc.

[RG02] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of
lock-based programs. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 5–17, Austin, TX, October 2002.

[RH02] Zoran Radović and Erik Hagersten. Efficient synchronization for nonuniform
communication architectures. In Proceedings of the 2002 ACM/IEEE Confer-
ence on Supercomputing, pages 1–13, Baltimore, Maryland, USA, November
2002. The Institute of Electrical and Electronics Engineers, Inc.

[RH03] Zoran Radović and Erik Hagersten. Hierarchical backoff locks for nonuniform
communication architectures. In Proceedings of the Ninth International
Symposium on High Performance Computer Architecture (HPCA-9), pages
241–252, Anaheim, California, USA, February 2003.

[RH17] Geoff Romer and Andrew Hunter. An RAII interface for deferred reclama-
tion, February 2017. Available: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2017/p0561r0.html [Viewed May 29, 2017].

[RHP+07] Chistopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.
Ramadan, Aditya Bhandari, and Emmett Witchel. TxLinux: Using and
managing hardware transactional memory in an operating system. In
SOSP’07: Twenty-First ACM Symposium on Operating Systems Princi-
ples, Stevenson, WA, USA, October 2007. ACM SIGOPS. Available:
http://www.sosp2007.org/papers/sosp056-rossbach.pdf [Viewed
October 21, 2007].

https://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
https://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf
http://blog.regehr.org/archives/213
http://pages.cs.wisc.edu/~rajwar/papers/micro01.pdf
http://pages.cs.wisc.edu/~rajwar/papers/micro01.pdf
http://dx.doi.org/10.1145/605397.605399
http://dx.doi.org/10.1145/605397.605399
http://dx.doi.org/10.1109/SC.2002.10038
http://dx.doi.org/10.1109/SC.2002.10038
http://dx.doi.org/10.1109/HPCA.2003.1183542
http://dx.doi.org/10.1109/HPCA.2003.1183542
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0561r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0561r0.html
http://dx.doi.org/10.1145/1294261.1294271
http://dx.doi.org/10.1145/1294261.1294271
http://www.sosp2007.org/papers/sosp056-rossbach.pdf

BIBLIOGRAPHY 511

[Ros06] Steven Rostedt. Lightweight PI-futexes, June 2006. Available: http://lxr.
linux.no/#linux+v2.6.39/Documentation/pi-futex.txt [Viewed
May 22, 2011].

[Ros10a] Steven Rostedt. tracing: Harry Potter and the Deathly Macros, December
2010. Available: http://lwn.net/Articles/418710/ [Viewed: August
28, 2011].

[Ros10b] Steven Rostedt. Using the TRACE_EVENT() macro (part 1), March 2010.
Available: http://lwn.net/Articles/379903/ [Viewed: August 28,
2011].

[Ros10c] Steven Rostedt. Using the TRACE_EVENT() macro (part 2), March 2010.
Available: http://lwn.net/Articles/381064/ [Viewed: August 28,
2011].

[Ros10d] Steven Rostedt. Using the TRACE_EVENT() macro (part 3), April 2010.
Available: http://lwn.net/Articles/383362/ [Viewed: August 28,
2011].

[Ros11] Steven Rostedt. lockdep: How to read its cryptic output, September 2011.
http://www.linuxplumbersconf.org/2011/ocw/sessions/153.

[Roy17] Lance Roy. rcutorture: Add CBMC-based formal verification for SRCU,
January 2017. URL: https://www.spinics.net/lists/kernel/
msg2421833.html.

[RSB+97] Rajeev Rastogi, S. Seshadri, Philip Bohannon, Dennis W. Leinbaugh, Abra-
ham Silberschatz, and S. Sudarshan. Logical and physical versioning in main
memory databases. In Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB ’97, pages 86–95, San Francisco, CA, USA,
August 1997. Morgan Kaufmann Publishers Inc.

[RTY+87] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew. Machine-
independent virtual memory management for paged uniprocessor and mul-
tiprocessor architectures. In 2nd Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 31–39, Palo
Alto, CA, October 1987. Association for Computing Machinery. Avail-
able: http://www.cse.ucsc.edu/~randal/221/rashid-machvm.pdf
[Viewed February 17, 2005].

[Rus00a] Rusty Russell. Re: modular net drivers, June 2000. Avail-
able: http://oss.sgi.com/projects/netdev/archive/2000-
06/msg00250.html [Viewed April 10, 2006].

[Rus00b] Rusty Russell. Re: modular net drivers, June 2000. Avail-
able: http://oss.sgi.com/projects/netdev/archive/2000-
06/msg00254.html [Viewed April 10, 2006].

[Rus03] Rusty Russell. Hanging out with smart people: or... things I learned being a
kernel monkey, July 2003. 2003 Ottawa Linux Symposium Keynote http://
ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html.

[Rut17] Mark Rutland. compiler.h: Remove ACCESS_ONCE(), November 2017.
Git commit: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=b899a850431e.

http://lxr.linux.no/#linux+v2.6.39/Documentation/pi-futex.txt
http://lxr.linux.no/#linux+v2.6.39/Documentation/pi-futex.txt
http://lwn.net/Articles/418710/
http://lwn.net/Articles/379903/
http://lwn.net/Articles/381064/
http://lwn.net/Articles/383362/
http://www.linuxplumbersconf.org/2011/ocw/sessions/153
https://www.spinics.net/lists/kernel/msg2421833.html
https://www.spinics.net/lists/kernel/msg2421833.html
http://dl.acm.org/citation.cfm?id=645923.671017
http://dl.acm.org/citation.cfm?id=645923.671017
http://www.cse.ucsc.edu/~randal/221/rashid-machvm.pdf
http://oss.sgi.com/projects/netdev/archive/2000-06/msg00250.html
http://oss.sgi.com/projects/netdev/archive/2000-06/msg00250.html
http://oss.sgi.com/projects/netdev/archive/2000-06/msg00254.html
http://oss.sgi.com/projects/netdev/archive/2000-06/msg00254.html
http://ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html
http://ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b899a850431e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b899a850431e

512 BIBLIOGRAPHY

[SAH+03] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Dilma Da Silva, Gre-
gory R. Ganger, Orran Krieger, Michael Stumm, Robert W. Wisniewski, Marc
Auslander, Michal Ostrowski, Bryan Rosenburg, and Jimi Xenidis. System
support for online reconfiguration. In Proceedings of the 2003 USENIX An-
nual Technical Conference, pages 141–154, San Antonio, Texas, USA, June
2003. USENIX Association.

[SATG+09] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert Geva, Yang Ni, and
Adam Welc. Towards transactional memory semantics for c++. In SPAA
’09: Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, pages 49–58, Calgary, AB, Canada, 2009.
ACM.

[Sch35] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik. Natur-
wissenschaften, 23:807–812; 823–828; 844–949, November 1935. English
translation: http://www.tuhh.de/rzt/rzt/it/QM/cat.html.

[Sch94] Curt Schimmel. UNIX Systems for Modern Architectures: Symmetric Multi-
processing and Caching for Kernel Programmers. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1994.

[Sco06] Michael Scott. Programming Language Pragmatics. Morgan Kaufmann,
Burlington, MA, USA, 2006.

[Sco13] Michael L. Scott. Shared-Memory Synchronization. Morgan & Claypool, San
Rafael, CA, USA, 2013.

[Seq88] Sequent Computer Systems, Inc. Guide to Parallel Programming, 1988.

[Sew] Peter Sewell. The semantics of multiprocessor programs. Available: http:
//www.cl.cam.ac.uk/~pes20/weakmemory/ [Viewed: June 7, 2010].

[Sey12] Justin Seyster. Runtime Verification of Kernel-Level Concurrency Using
Compiler-Based Instrumentation. PhD thesis, Stony Brook University, 2012.

[SF95] Janice M. Stone and Robert P. Fitzgerald. Storage in the PowerPC. IEEE
Micro, 15(2):50–58, April 1995.

[Sha11] Nir Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84,
March 2011.

[She06] Gautham R. Shenoy. [patch 4/5] lock_cpu_hotplug: Redesign - lightweight
implementation of lock_cpu_hotplug, October 2006. Available: http://
lkml.org/lkml/2006/10/26/73 [Viewed January 26, 2009].

[SHW11] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Con-
sistency and Cache Coherence. Synthesis Lectures on Computer Architecture.
Morgan & Claypool, 2011.

[SM95] John D. Slingwine and Paul E. McKenney. Apparatus and method for achiev-
ing reduced overhead mutual exclusion and maintaining coherency in a multi-
processor system utilizing execution history and thread monitoring. Technical
Report US Patent 5,442,758, US Patent and Trademark Office, Washington,
DC, August 1995.

[SM97] John D. Slingwine and Paul E. McKenney. Method for maintaining data co-
herency using thread activity summaries in a multicomputer system. Technical
Report US Patent 5,608,893, US Patent and Trademark Office, Washington,
DC, March 1997.

https://www.usenix.org/legacy/events/usenix03/tech/full_papers/soules/soules.pdf
https://www.usenix.org/legacy/events/usenix03/tech/full_papers/soules/soules.pdf
http://dx.doi.org/10.1145/1583991.1584012
http://www.tuhh.de/rzt/rzt/it/QM/cat.html
http://www.cl.cam.ac.uk/~pes20/weakmemory/
http://www.cl.cam.ac.uk/~pes20/weakmemory/
http://dx.doi.org/10.1109/40.372352
http://dx.doi.org/10.1145/1897852.1897873
http://lkml.org/lkml/2006/10/26/73
http://lkml.org/lkml/2006/10/26/73
http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016

BIBLIOGRAPHY 513

[SM98] John D. Slingwine and Paul E. McKenney. Apparatus and method for achiev-
ing reduced overhead mutual exclusion and maintaining coherency in a multi-
processor system utilizing execution history and thread monitoring. Technical
Report US Patent 5,727,209, US Patent and Trademark Office, Washington,
DC, March 1998.

[SM04] Dipankar Sarma and Paul E. McKenney. Making RCU safe for deep sub-
millisecond response realtime applications. In Proceedings of the 2004
USENIX Annual Technical Conference (FREENIX Track), pages 182–191,
Boston, MA, USA, June 2004. USENIX Association.

[SM13] Thomas Sewell and Toby Murray. Above and beyond: seL4 noninterference
and binary verification, May 2013. https://cps-vo.org/node/7706.

[Smi15] Richard Smith. Working draft, standard for programming language C++, May
2015. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2015/n4527.pdf.

[Smi18] Richard Smith. Working draft, standard for programming language C++, July
2018. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2018/n4762.pdf.

[SMS08] Michael Spear, Maged Michael, and Michael Scott. Inevitability mech-
anisms for software transactional memory. In 3rd ACM SIGPLAN Work-
shop on Transactional Computing, Salt Lake City, Utah, February 2008.
ACM. Available: http://www.cs.rochester.edu/u/scott/papers/
2008_TRANSACT_inevitability.pdf [Viewed January 10, 2009].

[SNGK17] Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas, and Nectarios
Koziris. Combining htm and rcu to implement highly efficient balanced binary
search trees. In 12th ACM SIGPLAN Workshop on Transactional Computing,
Austin, TX, USA, February 2017.

[SPA94] SPARC International. The SPARC Architecture Manual, 1994.

[Spi77] Keith R. Spitz. Tell which is which and you’ll be rich, 1977. Inscription on
wall of dungeon.

[Spr01] Manfred Spraul. Re: RFC: patch to allow lock-free traversal of lists with in-
sertion, October 2001. URL: http://lkml.iu.edu/hypermail/linux/
kernel/0110.1/0410.html.

[Spr08] Manfred Spraul. [RFC, PATCH] state machine based rcu, August 2008.
Available: http://lkml.org/lkml/2008/8/21/336 [Viewed December
8, 2008].

[SR84] Z. Segall and L. Rudolf. Dynamic decentralized cache schemes for MIMD
parallel processors. In 11th Annual International Symposium on Computer
Architecture, pages 340–347, June 1984.

[SRK+11] Justin Seyster, Prabakar Radhakrishnan, Samriti Katoch, Abhinav Duggal,
Scott D. Stoller, and Erez Zadok. Redflag: a framework for analysis of
kernel-level concurrency. In Proceedings of the 11th international conference
on Algorithms and architectures for parallel processing - Volume Part I,
ICA3PP’11, pages 66–79, Melbourne, Australia, 2011. Springer-Verlag.

[SRL90a] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. Comput., 39(9):1175–
1185, 1990.

http://www.rdrop.com/~paulmck/RCU/realtimeRCU.2004.06.12a.pdf
http://www.rdrop.com/~paulmck/RCU/realtimeRCU.2004.06.12a.pdf
https://cps-vo.org/node/7706
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4762.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4762.pdf
http://www.cs.rochester.edu/u/scott/papers/2008_TRANSACT_inevitability.pdf
http://www.cs.rochester.edu/u/scott/papers/2008_TRANSACT_inevitability.pdf
http://lkml.iu.edu/hypermail/linux/kernel/0110.1/0410.html
http://lkml.iu.edu/hypermail/linux/kernel/0110.1/0410.html
http://lkml.org/lkml/2008/8/21/336
http://dx.doi.org/10.1145/800015.808203
http://dx.doi.org/10.1145/800015.808203
http://dl.acm.org/citation.cfm?id=2075416.2075425
http://dl.acm.org/citation.cfm?id=2075416.2075425
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058

514 BIBLIOGRAPHY

[SRL90b] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Transactions on
Computers, 39(9):1175–1185, 1990.

[SS94] Duane Szafron and Jonathan Schaeffer. Experimentally assessing the usability
of parallel programming systems. In IFIP WG10.3 Programming Environ-
ments for Massively Parallel Distributed Systems, pages 19.1–19.7, Monte
Verita, Ascona, Switzerland, 1994.

[SS06] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash
tables. J. ACM, 53(3):379–405, May 2006.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Will-
iams. POWER and ARM litmus tests, 2011. https://www.cl.cam.ac.
uk/~pes20/ppc-supplemental/test6.pdf.

[SSHT93] Janice S. Stone, Harold S. Stone, Philip Heidelberger, and John Turek. Mul-
tiple reservations and the Oklahoma update. IEEE Parallel and Distributed
Technology Systems and Applications, 1(4):58–71, November 1993.

[SSRB00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent
and Networked Objects. Wiley, Chichester, West Sussex, England, 2000.

[SSVM02] S. Swaminathan, John Stultz, Jack Vogel, and Paul E. McKenney. Fairlocks –
a high performance fair locking scheme. In Proceedings of the 14th IASTED
International Conference on Parallel and Distributed Computing and Systems,
pages 246–251, Cambridge, MA, USA, November 2002.

[ST87] William E. Snaman and David W. Thiel. The VAX/VMS distributed lock
manager. Digital Technical Journal, 5:29–44, September 1987.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings
of the 14th Annual ACM Symposium on Principles of Distributed Computing,
pages 204–213, Ottawa, Ontario, Canada, August 1995.

[Ste92] W. Richard Stevens. Advanced Programming in the UNIX Environment.
Addison Wesley, 1992.

[Sut08] Herb Sutter. Effective concurrency, 2008. Series in Dr. Dobbs Journal.

[Sut13] Adrian Sutton. Concurrent programming with the Disruptor, January 2013.
Presentation at Linux.conf.au 2013, URL: https://www.youtube.com/
watch?v=ItpT_vmRHyI.

[SW95] Richard L. Sites and Richard T. Witek. Alpha AXP Architecture. Digital Press,
second edition, 1995.

[SZJ12] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Eliminating
read barriers through procrastination and cleanliness. In Proceedings of the
2012 International Symposium on Memory Management, ISMM ’12, pages
49–60, Beijing, China, 2012. ACM.

[Tal07] Nassim Nicholas Taleb. The Black Swan. Random House, 2007.

[TDV15] Joseph Tassarotti, Derek Dreyer, and Victor Vafeiadis. Verifying read-copy-
update in a logic for weak memory. In Proceedings of the 2015 Proceedings
of the 36th annual ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’15, pages 110–120, New York, NY, USA,
June 2015. ACM.

http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1007/978-3-0348-8534-8_19
http://dx.doi.org/10.1007/978-3-0348-8534-8_19
http://dx.doi.org/10.1145/1147954.1147958
http://dx.doi.org/10.1145/1147954.1147958
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
http://dx.doi.org/10.1109/88.260295
http://dx.doi.org/10.1109/88.260295
https://www.researchgate.net/publication/221569047_Fairlocks_A_High_Performance_Fair_Locking_Scheme
https://www.researchgate.net/publication/221569047_Fairlocks_A_High_Performance_Fair_Locking_Scheme
http://dx.doi.org/10.1145/224964.224987
https://www.youtube.com/watch?v=ItpT_vmRHyI
https://www.youtube.com/watch?v=ItpT_vmRHyI
http://dx.doi.org/10.1145/2258996.2259005
http://dx.doi.org/10.1145/2258996.2259005
http://dx.doi.org/10.1145/2737924.2737992
http://dx.doi.org/10.1145/2737924.2737992

BIBLIOGRAPHY 515

[The08] The Open MPI Project. Open MPI, November 2008. Available: http:
//www.open-mpi.org/software/ [Viewed November 26, 2008].

[The11] The Valgrind Developers. Valgrind, November 2011. http://www.
valgrind.org/.

[The12] The OProfile Developers. Oprofile, April 2012. http://oprofile.
sourceforge.net.

[TMW11] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, scalable,
concurrent hash tables via relativistic programming. In Proceedings of the
2011 USENIX Annual Technical Conference, pages 145–158, Portland, OR
USA, June 2011. The USENIX Association.

[Tor01] Linus Torvalds. Re: [Lse-tech] Re: RFC: patch to allow lock-free traversal of
lists with insertion, October 2001. URL: http://lkml.org/lkml/2001/
10/13/105, http://lkml.org/lkml/2001/10/13/82.

[Tor03] Linus Torvalds. Linux 2.6, August 2003. Available: ftp://kernel.org/
pub/linux/kernel/v2.6 [Viewed June 23, 2004].

[Tor08] Linus Torvalds. Move ACCESS_ONCE() to <linux/compiler.h>, May 2008.
Git commit: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=9c3cdc1f83a6.

[Tra01] Transaction Processing Performance Council. TPC, 2001. Available: http:
//www.tpc.org/ [Viewed December 7, 2008].

[Tre86] R. K. Treiber. Systems programming: Coping with parallelism, April 1986.
RJ 5118.

[Tri12] Josh Triplett. Relativistic Causal Ordering: A Memory Model for Scalable
Concurrent Data Structures. PhD thesis, Portland State University, 2012.

[TS93] Hiroaki Takada and Ken Sakamura. A bounded spin lock algorithm with
preemption. Technical Report 93-02, University of Tokyo, Tokyo, Japan,
1993.

[TS95] H. Takada and K. Sakamura. Real-time scalability of nested spin locks. In
Proceedings of the 2nd International Workshop on Real-Time Computing
Systems and Applications, RTCSA ’95, pages 160–167, Tokyo, Japan, 1995.
IEEE Computer Society.

[Tur37] Alan M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. In Proceedings of the London Mathematical Society, vol-
ume 42 of 2, pages 230–265, 1937.

[TZK+13] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 18–32, Farminton, Pennsylvania, 2013. ACM.

[Ung11] David Ungar. Everything you know (about parallel programming) is wrong!:
A wild screed about the future. In Dynamic Languages Symposium 2011,
Portland, OR, USA, October 2011. Invited talk presentation.

[Uni08a] University of California, Berkeley. BOINC: compute for science, October
2008. Available: http://boinc.berkeley.edu/ [Viewed January 31,
2008].

http://www.open-mpi.org/software/
http://www.open-mpi.org/software/
http://www.valgrind.org/
http://www.valgrind.org/
http://oprofile.sourceforge.net
http://oprofile.sourceforge.net
http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
http://lkml.org/lkml/2001/10/13/105
http://lkml.org/lkml/2001/10/13/105
http://lkml.org/lkml/2001/10/13/82
ftp://kernel.org/pub/linux/kernel/v2.6
ftp://kernel.org/pub/linux/kernel/v2.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9c3cdc1f83a6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9c3cdc1f83a6
http://www.tpc.org/
http://www.tpc.org/
http://www.pdx.edu/computer-science/sites/www.pdx.edu.computer-science/files/Triplett.pdf
http://www.pdx.edu/computer-science/sites/www.pdx.edu.computer-science/files/Triplett.pdf
http://www.is.s.u-tokyo.ac.jp/library/tech-reports/TR93-02.ps.gz
http://www.is.s.u-tokyo.ac.jp/library/tech-reports/TR93-02.ps.gz
http://dx.doi.org/10.1109/RTCSA.1995.528766
http://dx.doi.org/10.1145/2517349.2522713
http://dynamic-languages-symposium.org/dls-11/program/media/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongAWildScreedAboutTheFuture_Dls.pdf
http://dynamic-languages-symposium.org/dls-11/program/media/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongAWildScreedAboutTheFuture_Dls.pdf
http://boinc.berkeley.edu/

516 BIBLIOGRAPHY

[Uni08b] University of California, Berkeley. SETI@HOME, December 2008. Avail-
able: http://setiathome.berkeley.edu/ [Viewed January 31, 2008].

[Uni10] University of Maryland. Parallel maze solving, November 2010. http:
//www.cs.umd.edu/class/fall2010/cmsc433/p3/.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceed-
ings of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’95, pages 214–222, Ottowa, Ontario, Canada, 1995.
ACM.

[VBC+15] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset,
and Francesco Zappa Nardelli. Common compiler optimisations are invalid
in the c11 memory model and what we can do about it. SIGPLAN Not.,
50(1):209–220, January 2015.

[VGS08] Haris Volos, Neelam Goyal, and Michael M. Swift. Pathological interac-
tion of locks with transactional memory. In 3rd ACM SIGPLAN Work-
shop on Transactional Computing, Salt Lake City, Utah, USA, Febru-
ary 2008. ACM. Available: http://www.cs.wisc.edu/multifacet/
papers/transact08_txlock.pdf [Viewed September 7, 2009].

[Vog09] Werner Vogels. Eventually consistent. Commun. ACM, 52:40–44, January
2009.

[Š11] Jaroslav Ševčík. Safe optimisations for shared-memory concurrent programs.
SIGPLAN Not., 46(6):306–316, June 2011.

[Wei63] J. Weizenbaum. Symmetric list processor. Commun. ACM, 6(9):524–536,
September 1963.

[Wei12] Frédéric Weisbecker. Interruption timer périodic, 2012. http:
//www.dailymotion.com/video/xtxtew_interruption-timer-
periodique-frederic-weisbecker-kernel-recipes-12_tech.

[Wei13] Stewart Weiss. Unix lecture notes, May 2013. Available:
http://www.compsci.hunter.cuny.edu/~sweiss/course_
materials/unix_lecture_notes/ [Viewed April 8, 2014].

[Wik08] Wikipedia. Zilog Z80, 2008. Available: http://en.wikipedia.org/
wiki/Z80 [Viewed: December 7, 2008].

[Wik12] Wikipedia. Labyrinth, January 2012. http://en.wikipedia.org/wiki/
Labyrinth.

[Wil12] Anthony Williams. C++ Concurrency in Action: Practical Multithreading.
Manning, Shelter Island, NY, USA, 2012.

[WKS94] Robert W. Wisniewski, Leonidas Kontothanassis, and Michael L. Scott. Scal-
able spin locks for multiprogrammed systems. In 8th IEEE Int’l. Parallel
Processing Symposium, Cancun, Mexico, April 1994. The Institute of Electri-
cal and Electronics Engineers, Inc.

[WTS96] Cai-Dong Wang, Hiroaki Takada, and Ken Sakamura. Priority inheritance
spin locks for multiprocessor real-time systems. In Proceedings of the 2nd
International Symposium on Parallel Architectures, Algorithms, and Networks,
ISPAN ’96, pages 70–76, Beijing, China, 1996. IEEE Computer Society.

[xen14] xenomai.org. Xenomai, December 2014. URL: http://xenomai.org/.

http://setiathome.berkeley.edu/
http://www.cs.umd.edu/class/fall2010/cmsc433/p3/
http://www.cs.umd.edu/class/fall2010/cmsc433/p3/
http://dx.doi.org/10.1145/224964.224988
http://dx.doi.org/10.1145/2775051.2676995
http://dx.doi.org/10.1145/2775051.2676995
http://www.cs.wisc.edu/multifacet/papers/transact08_txlock.pdf
http://www.cs.wisc.edu/multifacet/papers/transact08_txlock.pdf
http://dx.doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1145/1993316.1993534
http://dx.doi.org/10.1145/367593.367617
http://www.dailymotion.com/video/xtxtew_interruption-timer-periodique-frederic-weisbecker-kernel-recipes-12_tech
http://www.dailymotion.com/video/xtxtew_interruption-timer-periodique-frederic-weisbecker-kernel-recipes-12_tech
http://www.dailymotion.com/video/xtxtew_interruption-timer-periodique-frederic-weisbecker-kernel-recipes-12_tech
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/
http://en.wikipedia.org/wiki/Z80
http://en.wikipedia.org/wiki/Z80
http://en.wikipedia.org/wiki/Labyrinth
http://en.wikipedia.org/wiki/Labyrinth
http://dx.doi.org/10.1109/IPPS.1994.288245
http://dx.doi.org/10.1109/IPPS.1994.288245
http://dx.doi.org/10.1109/ISPAN.1996.508963
http://dx.doi.org/10.1109/ISPAN.1996.508963
http://xenomai.org/

BIBLIOGRAPHY 517

[Xu10] Herbert Xu. bridge: Add core IGMP snooping support, February 2010.
Available: http://marc.info/?t=126719855400006&r=1&w=2 [Viewed
March 20, 2011].

[YHLR13] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. Per-
formance evaluation of Intel® Transactional Synchronization Extensions for
high-performance computing. In Proceedings of SC13: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
SC ’13, pages 19:1–19:11, Denver, Colorado, 2013. ACM.

[Yod04a] Victor Yodaiken. Against priority inheritance, September 2004. Avail-
able: http://www.yodaiken.com/papers/inherit.pdf [Viewed May
26, 2007].

[Yod04b] Victor Yodaiken. Temporal inventory and real-time synchronization in RTLin-
uxPro, September 2004. URL: http://www.yodaiken.com/papers/
sync.pdf.

[Zel11] Cyril Zeller. CUDA C/C++ basics: Supercomputing 2011 tutorial, Novem-
ber 2011. https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-
basics.pdf.

[Zha89] Lixia Zhang. A New Architecture for Packet Switching Network Protocols.
PhD thesis, Massachusetts Institute of Technology, July 1989.

[Zij14] Peter Zijlstra. Another go at speculative page faults, October 2014. https:
//lkml.org/lkml/2014/10/20/620.

http://marc.info/?t=126719855400006&r=1&w=2
http://dx.doi.org/10.1145/2503210.2503232
http://dx.doi.org/10.1145/2503210.2503232
http://dx.doi.org/10.1145/2503210.2503232
http://www.yodaiken.com/papers/inherit.pdf
http://www.yodaiken.com/papers/sync.pdf
http://www.yodaiken.com/papers/sync.pdf
https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
https://lkml.org/lkml/2014/10/20/620
https://lkml.org/lkml/2014/10/20/620

518 BIBLIOGRAPHY

If I have seen further it is by standing on the
shoulders of giants.

Isaac Newton, modernizedAppendix G

Credits

G.1 LATEX Advisor
With this release, Akira Yokosawa officially takes on the
role of LATEX advisor, a capacity he has been acting in for
quite some time. This role perhaps most notably includes
the care and feeding of the style guide laid out in Ap-
pendix D. This work includes table layout, listings, fonts,
rendering of math, acronyms, bibliography formatting,
and epigraphs. Akira also perfected the cross-referencing
of quick quizzes, allowing easy and exact navigation be-
tween quick quizzes and their answers.

This role also includes the build system, which Akira
has optimized and made much more user-friendly. His
enhancements have included automating response to bib-
liography changes and automatically determining which
source files are present.

G.2 Reviewers
• Alan Stern (Chapter 15.

• Andy Whitcroft (Section 9.5.2, Section 9.5.4).

• Artem Bityutskiy (Chapter 15, Appendix C).

• Dave Keck (Appendix C).

• David S. Horner (Section 12.1.5).

• Gautham Shenoy (Section 9.5.2, Section 9.5.4).

• “jarkao2”, AKA LWN guest #41960 (Section 9.5.4).

• Jonathan Walpole (Section 9.5.4).

• Josh Triplett (Chapter 12).

• Michael Factor (Section 17.2).

• Mike Fulton (Section 9.5.2).

• Peter Zijlstra (Section 9.5.3).

• Richard Woodruff (Appendix C).

• Suparna Bhattacharya (Chapter 12).

• Vara Prasad (Section 12.1.5).

Reviewers whose feedback took the extremely wel-
come form of a patch are credited in the git logs.

G.3 Machine Owners
A great debt of thanks goes to Martin Bligh, who origi-
nated the Advanced Build and Test (ABAT) system at
IBM’s Linux Technology Center, as well as to Andy
Whitcroft, Dustin Kirkland, and many others who ex-
tended this system.

Many thanks go also to a great number of machine own-
ers: Andrew Theurer, Andy Whitcroft, Anton Blanchard,
Chris McDermott, Cody Schaefer, Darrick Wong, David
“Shaggy” Kleikamp, Jon M. Tollefson, Jose R. Santos,
Marvin Heffler, Nathan Lynch, Nishanth Aravamudan,
Tim Pepper, and Tony Breeds.

G.4 Original Publications
1. Section 2.4 (“What Makes Parallel Programming

Hard?”) on page 13 originally appeared in a Portland
State University Technical Report [MGM+09].

2. Section 6.5 (“Retrofitted Parallelism Considered
Grossly Sub-Optimal”) on page 89 originally ap-
peared in 4th USENIX Workshop on Hot Topics on
Parallelism [McK12b].

3. Section 9.5.2 (“RCU Fundamentals”) on page 131
originally appeared in Linux Weekly News [MW07].

519

520 APPENDIX G. CREDITS

4. Section 9.5.3 (“RCU Usage”) on page 138 originally
appeared in Linux Weekly News [McK08c].

5. Section 9.5.4 (“RCU Linux-Kernel API”) on
page 147 originally appeared in Linux Weekly
News [McK08b].

6. Section 9.5.5 (“RCU Related Work”) on
page 152 originally appeared in Linux Weekly
News [McK14e].

7. Section 9.5.5 (“RCU Related Work”) on page 152
originally appeared in Linux Weekly News [MP15a].

8. Chapter 12 (“Formal Verification”) on page 199 orig-
inally appeared in Linux Weekly News [McK07f,
MR08, McK11c].

9. Section 12.3 (“Axiomatic Approaches”) on page 228
originally appeared in Linux Weekly News [MS14].

10. Chapter 15 (“Advanced Synchronization: Memory
Ordering”) on page 269 originally appeared in the
Linux kernel [HMDZ06].

11. Chapter 15 (“Advanced Synchronization: Memory
Ordering”) on page 269 originally appeared in Linux
Weekly News [AMM+17a, AMM+17b].

12. Section 15.3.2 (“Address- and Data-Dependency Dif-
ficulties”) on page 291 originally appeared in the
Linux kernel [McK14c].

13. Section 15.4 (“Memory-Barrier Instructions For Spe-
cific CPUs”) on page 296 originally appeared in
Linux Journal [McK05a, McK05b].

G.5 Figure Credits
1. Figure 3.1 (p 17) by Melissa Broussard.

2. Figure 3.2 (p 18) by Melissa Broussard.

3. Figure 3.3 (p 18) by Melissa Broussard.

4. Figure 3.4 (p 18) by Melissa Broussard.

5. Figure 3.5 (p 19) by Melissa Broussard.

6. Figure 3.6 (p 20) by Melissa Broussard.

7. Figure 3.7 (p 20) by Melissa Broussard.

8. Figure 3.8 (p 20) by Melissa Broussard.

9. Figure 3.10 (p 23) by Melissa Broussard.

10. Figure 5.3 (p 47) by Melissa Broussard.

11. Figure 6.1 (p 69) by Kornilios Kourtis.

12. Figure 6.2 (p 70) by Melissa Broussard.

13. Figure 6.3 (p 70) by Kornilios Kourtis.

14. Figure 6.4 (p 73) by Kornilios Kourtis.

15. Figure 6.13 (p 81) by Melissa Broussard.

16. Figure 6.14 (p 82) by Melissa Broussard.

17. Figure 6.15 (p 82) by Melissa Broussard.

18. Figure 7.1 (p 98) by Melissa Broussard.

19. Figure 7.2 (p 98) by Melissa Broussard.

20. Figure 10.11 (p 166) by Melissa Broussard.

21. Figure 10.12 (p 167) by Melissa Broussard.

22. Figure 11.1 (p 181) by Melissa Broussard.

23. Figure 11.2 (p 181) by Melissa Broussard.

24. Figure 11.3 (p 187) by Melissa Broussard.

25. Figure 11.6 (p 198) by Melissa Broussard.

26. Figure 14.1 (p 250) by Melissa Broussard.

27. Figure 14.2 (p 251) by Melissa Broussard.

28. Figure 14.3 (p 252) by Melissa Broussard.

29. Figure 14.10 (p 259) by Melissa Broussard.

30. Figure 14.11 (p 259) by Melissa Broussard.

31. Figure 14.14 (p 261) by Melissa Broussard.

32. Figure 14.15 (p 268) by Sarah McKenney.

33. Figure 14.16 (p 268) by Sarah McKenney.

34. Figure 15.2 (p 270) by Melissa Broussard.

35. Figure 15.5 (p 276) by Akira Yokosawa.

36. Figure 15.14 (p 300) by Melissa Brossard.

37. Figure 16.2 (p 309) by Melissa Broussard.

38. Figure 17.1 (p 311) by Melissa Broussard.

G.6. OTHER SUPPORT 521

39. Figure 17.2 (p 312) by Melissa Broussard.

40. Figure 17.3 (p 312) by Melissa Broussard.

41. Figure 17.4 (p 313) by Melissa Broussard.

42. Figure 17.8 (p 324) by Melissa Broussard.

43. Figure 17.9 (p 325) by Melissa Broussard.

44. Figure 17.10 (p 325) by Melissa Broussard.

45. Figure 17.11 (p 326) by Melissa Broussard.

46. Figure A.2 (p 348) by Melissa Broussard.

47. Figure E.2 (p 419) by Kornilios Kourtis.

Figure 9.23 was adapted from Fedor Pikus’s “When to
use RCU” slide [Pik17].

G.6 Other Support
We owe thanks to many CPU architects for patiently ex-
plaining the instruction- and memory-reordering features
of their CPUs, particularly Wayne Cardoza, Ed Silha, An-
ton Blanchard, Tim Slegel, Juergen Probst, Ingo Adlung,
Ravi Arimilli, Cathy May, Derek Williams, H. Peter An-
vin, Andy Glew, Leonid Yegoshin, Richard Grisenthwaite,
and Will Deacon. Wayne deserves special thanks for his
patience in explaining Alpha’s reordering of dependent
loads, a lesson that Paul resisted quite strenuously!

Portions of this material are based upon work sup-
ported by the National Science Foundation under Grant
No. CNS-0719851.

	1 How To Use This Book
	1.1 Roadmap
	1.2 Quick Quizzes
	1.3 Alternatives to This Book
	1.4 Sample Source Code
	1.5 Whose Book Is This?

	2 Introduction
	2.1 Historic Parallel Programming Difficulties
	2.2 Parallel Programming Goals
	2.2.1 Performance
	2.2.2 Productivity
	2.2.3 Generality

	2.3 Alternatives to Parallel Programming
	2.3.1 Multiple Instances of a Sequential Application
	2.3.2 Use Existing Parallel Software
	2.3.3 Performance Optimization

	2.4 What Makes Parallel Programming Hard?
	2.4.1 Work Partitioning
	2.4.2 Parallel Access Control
	2.4.3 Resource Partitioning and Replication
	2.4.4 Interacting With Hardware
	2.4.5 Composite Capabilities
	2.4.6 How Do Languages and Environments Assist With These Tasks?

	2.5 Discussion

	3 Hardware and its Habits
	3.1 Overview
	3.1.1 Pipelined CPUs
	3.1.2 Memory References
	3.1.3 Atomic Operations
	3.1.4 Memory Barriers
	3.1.5 Cache Misses
	3.1.6 I/O Operations

	3.2 Overheads
	3.2.1 Hardware System Architecture
	3.2.2 Costs of Operations
	3.2.3 Hardware Optimizations

	3.3 Hardware Free Lunch?
	3.3.1 3D Integration
	3.3.2 Novel Materials and Processes
	3.3.3 Light, Not Electrons
	3.3.4 Special-Purpose Accelerators
	3.3.5 Existing Parallel Software

	3.4 Software Design Implications

	4 Tools of the Trade
	4.1 Scripting Languages
	4.2 POSIX Multiprocessing
	4.2.1 POSIX Process Creation and Destruction
	4.2.2 POSIX Thread Creation and Destruction
	4.2.3 POSIX Locking
	4.2.4 POSIX Reader-Writer Locking
	4.2.5 Atomic Operations (GCC Classic)
	4.2.6 Atomic Operations (C11)
	4.2.7 Atomic Operations (Modern GCC)
	4.2.8 Per-Thread Variables

	4.3 Alternatives to POSIX Operations
	4.3.1 Organization and Initialization
	4.3.2 Thread Creation, Destruction, and Control
	4.3.3 Locking
	4.3.4 Accessing Shared Variables
	4.3.5 Atomic Operations
	4.3.6 Per-CPU Variables

	4.4 The Right Tool for the Job: How to Choose?

	5 Counting
	5.1 Why Isn't Concurrent Counting Trivial?
	5.2 Statistical Counters
	5.2.1 Design
	5.2.2 Array-Based Implementation
	5.2.3 Eventually Consistent Implementation
	5.2.4 Per-Thread-Variable-Based Implementation
	5.2.5 Discussion

	5.3 Approximate Limit Counters
	5.3.1 Design
	5.3.2 Simple Limit Counter Implementation
	5.3.3 Simple Limit Counter Discussion
	5.3.4 Approximate Limit Counter Implementation
	5.3.5 Approximate Limit Counter Discussion

	5.4 Exact Limit Counters
	5.4.1 Atomic Limit Counter Implementation
	5.4.2 Atomic Limit Counter Discussion
	5.4.3 Signal-Theft Limit Counter Design
	5.4.4 Signal-Theft Limit Counter Implementation
	5.4.5 Signal-Theft Limit Counter Discussion

	5.5 Applying Specialized Parallel Counters
	5.6 Parallel Counting Discussion
	5.6.1 Parallel Counting Performance
	5.6.2 Parallel Counting Specializations
	5.6.3 Parallel Counting Lessons

	6 Partitioning and Synchronization Design
	6.1 Partitioning Exercises
	6.1.1 Dining Philosophers Problem
	6.1.2 Double-Ended Queue
	6.1.3 Partitioning Example Discussion

	6.2 Design Criteria
	6.3 Synchronization Granularity
	6.3.1 Sequential Program
	6.3.2 Code Locking
	6.3.3 Data Locking
	6.3.4 Data Ownership
	6.3.5 Locking Granularity and Performance

	6.4 Parallel Fastpath
	6.4.1 Reader/Writer Locking
	6.4.2 Hierarchical Locking
	6.4.3 Resource Allocator Caches

	6.5 Beyond Partitioning
	6.5.1 Work-Queue Parallel Maze Solver
	6.5.2 Alternative Parallel Maze Solver
	6.5.3 Performance Comparison I
	6.5.4 Alternative Sequential Maze Solver
	6.5.5 Performance Comparison II
	6.5.6 Future Directions and Conclusions

	6.6 Partitioning, Parallelism, and Optimization

	7 Locking
	7.1 Staying Alive
	7.1.1 Deadlock
	7.1.2 Livelock and Starvation
	7.1.3 Unfairness
	7.1.4 Inefficiency

	7.2 Types of Locks
	7.2.1 Exclusive Locks
	7.2.2 Reader-Writer Locks
	7.2.3 Beyond Reader-Writer Locks
	7.2.4 Scoped Locking

	7.3 Locking Implementation Issues
	7.3.1 Sample Exclusive-Locking Implementation Based on Atomic Exchange
	7.3.2 Other Exclusive-Locking Implementations

	7.4 Lock-Based Existence Guarantees
	7.5 Locking: Hero or Villain?
	7.5.1 Locking For Applications: Hero!
	7.5.2 Locking For Parallel Libraries: Just Another Tool
	7.5.3 Locking For Parallelizing Sequential Libraries: Villain!

	7.6 Summary

	8 Data Ownership
	8.1 Multiple Processes
	8.2 Partial Data Ownership and pthreads
	8.3 Function Shipping
	8.4 Designated Thread
	8.5 Privatization
	8.6 Other Uses of Data Ownership

	9 Deferred Processing
	9.1 Running Example
	9.2 Reference Counting
	9.3 Hazard Pointers
	9.4 Sequence Locks
	9.5 Read-Copy Update (RCU)
	9.5.1 Introduction to RCU
	9.5.2 RCU Fundamentals
	9.5.3 RCU Usage
	9.5.4 RCU Linux-Kernel API
	9.5.5 RCU Related Work
	9.5.6 RCU Exercises

	9.6 Which to Choose?
	9.7 What About Updates?

	10 Data Structures
	10.1 Motivating Application
	10.2 Partitionable Data Structures
	10.2.1 Hash-Table Design
	10.2.2 Hash-Table Implementation
	10.2.3 Hash-Table Performance

	10.3 Read-Mostly Data Structures
	10.3.1 RCU-Protected Hash Table Implementation
	10.3.2 RCU-Protected Hash Table Performance
	10.3.3 RCU-Protected Hash Table Discussion

	10.4 Non-Partitionable Data Structures
	10.4.1 Resizable Hash Table Design
	10.4.2 Resizable Hash Table Implementation
	10.4.3 Resizable Hash Table Discussion
	10.4.4 Other Resizable Hash Tables

	10.5 Other Data Structures
	10.6 Micro-Optimization
	10.6.1 Specialization
	10.6.2 Bits and Bytes
	10.6.3 Hardware Considerations

	10.7 Summary

	11 Validation
	11.1 Introduction
	11.1.1 Where Do Bugs Come From?
	11.1.2 Required Mindset
	11.1.3 When Should Validation Start?
	11.1.4 The Open Source Way

	11.2 Tracing
	11.3 Assertions
	11.4 Static Analysis
	11.5 Code Review
	11.5.1 Inspection
	11.5.2 Walkthroughs
	11.5.3 Self-Inspection

	11.6 Probability and Heisenbugs
	11.6.1 Statistics for Discrete Testing
	11.6.2 Abusing Statistics for Discrete Testing
	11.6.3 Statistics for Continuous Testing
	11.6.4 Hunting Heisenbugs

	11.7 Performance Estimation
	11.7.1 Benchmarking
	11.7.2 Profiling
	11.7.3 Differential Profiling
	11.7.4 Microbenchmarking
	11.7.5 Isolation
	11.7.6 Detecting Interference

	11.8 Summary

	12 Formal Verification
	12.1 State-Space Search
	12.1.1 Promela and Spin
	12.1.2 How to Use Promela
	12.1.3 Promela Example: Locking
	12.1.4 Promela Example: QRCU
	12.1.5 Promela Parable: dynticks and Preemptible RCU
	12.1.6 Validating Preemptible RCU and dynticks

	12.2 Special-Purpose State-Space Search
	12.2.1 Anatomy of a Litmus Test
	12.2.2 What Does This Litmus Test Mean?
	12.2.3 Running a Litmus Test
	12.2.4 PPCMEM Discussion

	12.3 Axiomatic Approaches
	12.3.1 Axiomatic Approaches and Locking
	12.3.2 Axiomatic Approaches and RCU

	12.4 SAT Solvers
	12.5 Stateless Model Checkers
	12.6 Summary

	13 Putting It All Together
	13.1 Counter Conundrums
	13.1.1 Counting Updates
	13.1.2 Counting Lookups

	13.2 Refurbish Reference Counting
	13.2.1 Implementation of Reference-Counting Categories
	13.2.2 Linux Primitives Supporting Reference Counting
	13.2.3 Counter Optimizations

	13.3 RCU Rescues
	13.3.1 RCU and Per-Thread-Variable-Based Statistical Counters
	13.3.2 RCU and Counters for Removable I/O Devices
	13.3.3 Array and Length
	13.3.4 Correlated Fields

	13.4 Hashing Hassles
	13.4.1 Correlated Data Elements
	13.4.2 Update-Friendly Hash-Table Traversal

	14 Advanced Synchronization
	14.1 Avoiding Locks
	14.2 Non-Blocking Synchronization
	14.2.1 Simple NBS
	14.2.2 NBS Discussion

	14.3 Parallel Real-Time Computing
	14.3.1 What is Real-Time Computing?
	14.3.2 Who Needs Real-Time Computing?
	14.3.3 Who Needs Parallel Real-Time Computing?
	14.3.4 Implementing Parallel Real-Time Systems
	14.3.5 Implementing Parallel Real-Time Operating Systems
	14.3.6 Implementing Parallel Real-Time Applications
	14.3.7 Real Time vs. Real Fast: How to Choose?

	15 Advanced Synchronization: Memory Ordering
	15.1 Ordering: Why and How?
	15.1.1 Why Hardware Misordering?
	15.1.2 How to Force Ordering?
	15.1.3 Basic Rules of Thumb

	15.2 Tricks and Traps
	15.2.1 Variables With Multiple Values
	15.2.2 Memory-Reference Reordering
	15.2.3 Address Dependencies
	15.2.4 Data Dependencies
	15.2.5 Control Dependencies
	15.2.6 Cache Coherence
	15.2.7 Multicopy Atomicity

	15.3 Compile-Time Consternation
	15.3.1 Memory-Reference Restrictions
	15.3.2 Address- and Data-Dependency Difficulties
	15.3.3 Control-Dependency Calamities

	15.4 Hardware Specifics
	15.4.1 Alpha
	15.4.2 ARMv7-A/R
	15.4.3 ARMv8
	15.4.4 Itanium
	15.4.5 MIPS
	15.4.6 POWER / PowerPC
	15.4.7 SPARC TSO
	15.4.8 x86
	15.4.9 z Systems

	15.5 Where is Memory Ordering Needed?

	16 Ease of Use
	16.1 What is Easy?
	16.2 Rusty Scale for API Design
	16.3 Shaving the Mandelbrot Set

	17 Conflicting Visions of the Future
	17.1 The Future of CPU Technology Ain't What it Used to Be
	17.1.1 Uniprocessor Über Alles
	17.1.2 Multithreaded Mania
	17.1.3 More of the Same
	17.1.4 Crash Dummies Slamming into the Memory Wall

	17.2 Transactional Memory
	17.2.1 Outside World
	17.2.2 Process Modification
	17.2.3 Synchronization
	17.2.4 Discussion

	17.3 Hardware Transactional Memory
	17.3.1 HTM Benefits WRT to Locking
	17.3.2 HTM Weaknesses WRT Locking
	17.3.3 HTM Weaknesses WRT to Locking When Augmented
	17.3.4 Where Does HTM Best Fit In?
	17.3.5 Potential Game Changers
	17.3.6 Conclusions

	17.4 Formal Regression Testing?
	17.4.1 Automatic Translation
	17.4.2 Environment
	17.4.3 Overhead
	17.4.4 Locate Bugs
	17.4.5 Minimal Scaffolding
	17.4.6 Relevant Bugs
	17.4.7 Formal Regression Scorecard

	17.5 Functional Programming for Parallelism

	A Important Questions
	A.1 What Does ``After'' Mean?
	A.2 What is the Difference Between ``Concurrent'' and ``Parallel''?
	A.3 What Time Is It?

	B ``Toy'' RCU Implementations
	B.1 Lock-Based RCU
	B.2 Per-Thread Lock-Based RCU
	B.3 Simple Counter-Based RCU
	B.4 Starvation-Free Counter-Based RCU
	B.5 Scalable Counter-Based RCU
	B.6 Scalable Counter-Based RCU With Shared Grace Periods
	B.7 RCU Based on Free-Running Counter
	B.8 Nestable RCU Based on Free-Running Counter
	B.9 RCU Based on Quiescent States
	B.10 Summary of Toy RCU Implementations

	C Why Memory Barriers?
	C.1 Cache Structure
	C.2 Cache-Coherence Protocols
	C.2.1 MESI States
	C.2.2 MESI Protocol Messages
	C.2.3 MESI State Diagram
	C.2.4 MESI Protocol Example

	C.3 Stores Result in Unnecessary Stalls
	C.3.1 Store Buffers
	C.3.2 Store Forwarding
	C.3.3 Store Buffers and Memory Barriers

	C.4 Store Sequences Result in Unnecessary Stalls
	C.4.1 Invalidate Queues
	C.4.2 Invalidate Queues and Invalidate Acknowledge
	C.4.3 Invalidate Queues and Memory Barriers

	C.5 Read and Write Memory Barriers
	C.6 Example Memory-Barrier Sequences
	C.6.1 Ordering-Hostile Architecture
	C.6.2 Example 1
	C.6.3 Example 2
	C.6.4 Example 3

	C.7 Are Memory Barriers Forever?
	C.8 Advice to Hardware Designers

	D Style Guide
	D.1 Paul's Conventions
	D.2 NIST Style Guide
	D.2.1 Unit Symbol
	D.2.2 NIST Guide Yet To Be Followed

	D.3 LaTeX Conventions
	D.3.1 Monospace Font
	D.3.2 Non Breakable Spaces
	D.3.3 Hyphenation and Dashes
	D.3.4 Punctuation
	D.3.5 Floating Object Format
	D.3.6 Improvement Candidates

	E Answers to Quick Quizzes
	E.1 How To Use This Book
	E.2 Introduction
	E.3 Hardware and its Habits
	E.4 Tools of the Trade
	E.5 Counting
	E.6 Partitioning and Synchronization Design
	E.7 Locking
	E.8 Data Ownership
	E.9 Deferred Processing
	E.10 Data Structures
	E.11 Validation
	E.12 Formal Verification
	E.13 Putting It All Together
	E.14 Advanced Synchronization
	E.15 Advanced Synchronization: Memory Ordering
	E.16 Ease of Use
	E.17 Conflicting Visions of the Future
	E.18 Important Questions
	E.19 ``Toy'' RCU Implementations
	E.20 Why Memory Barriers?

	F Glossary and Bibliography
	G Credits
	G.1 LaTeX Advisor
	G.2 Reviewers
	G.3 Machine Owners
	G.4 Original Publications
	G.5 Figure Credits
	G.6 Other Support

